首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The simultaneous presence of a strong quasi-periodic oscillation, of period ∼10 s, in the optical and X-ray light curves of the X-ray transient XTE J1118+480 suggests that a significant fraction of the optical flux originates from the inner part of the accretion flow, where most of the X-rays are produced. We present a model of magnetic flares in an accretion disc corona where thermal cyclo-synchrotron emission contributes significantly to the optical emission, while the X-rays are produced by inverse Compton scattering of the soft photons produced by dissipation in the underlying disc and by the synchrotron process itself. Given the observational constraints, we estimate the values for the coronal temperature, optical depth and magnetic field intensity, as well as the accretion rate for the source. Within our model we predict a correlation between optical and hard X-ray variability and an anticorrelation between optical and soft X-rays. We also expect optical variability on flaring time-scales (∼tens of ms), with a power-density spectrum similar to that observed in the X-ray band. Finally, we use both the available optical/extreme-ultraviolet/X-ray spectral energy distribution and the low-frequency time variability to discuss limits on the inner radius of the optically thick disc.  相似文献   

2.
We report the identification of a possible optical counterpart to the super-Eddington X-ray source NGC 5204 X-1. New Chandra data show that the X-ray source is point-like, with a luminosity of 5.2×1039 erg s−1 (0.5–8 keV) . It displays medium- and long-term X-ray variability in observations spanning a period of 20 yr. The accurate Chandra position allows us to identify a blue optical continuum source ( m v =19.7) at the position of NGC 5204 X-1, using newly obtained optical data from the INTEGRAL instrument on the William Herschel Telescope. The X-ray and optical source properties are consistent with the scenario in which we are observing the beamed X-ray emission of a high-mass X-ray binary in NGC 5204, composed of an O star with either a black hole or neutron star companion.  相似文献   

3.
We present a multi-wavelength study of the Be/X-ray binary system EXO 2030+375. We report that the Be companion is currently in a low-activity phase as indicated by the notable decrease of the infrared and optical emission. If this trend continues the source will lose its circumstellar envelope. Infrared spectroscopy in the IJHK bands is presented for the first time, along with optical and X-ray observations. These infrared spectra agree with the optical companion being an early-type (B0) main-sequence star. When active EXO 2030+375 shows an X-ray outburst at each periastron passage of the neutron star. In addition to the maximum X-ray luminosity displayed at orbital phase ∼0.0, we find a smaller maximum in the light curve at phase ∼0.5. This second intensity peak may be explained if the velocity of the wind is lower than or comparable to the orbital velocity of the neutron star at apastron. We also comment on the relation between the optical/infrared behaviour and the X-ray emission and argue that the X-ray inactive period observed between 1993 August and 1996 April is a result of centrifugal inhibition of accretion of matter rather than a low-activity circumstellar disc.  相似文献   

4.
While all but one of the gamma-ray bursts observed in the X-ray band showed an X-ray afterglow, about 60 per cent of them have not been detected in the optical band. We demonstrate that in many cases this is not as a result of adverse observing conditions, or delay in performing the observations. We also show that the optically non-detected afterglows are not affected by particularly large Galactic absorbing columns, since its distribution is similar for both the detected and non-detected burst subclasses. We then investigate the hypothesis that the failure of detecting the optical afterglow is due to absorption at the source location. We find that this is a marginally viable interpretation, but only if the X-ray burst and afterglow emission and the possible optical/UV flash do not destroy the dust responsible for absorption in the optical band. If dust is efficiently destroyed, we are led to conclude that bursts with no detected optical afterglow are intrinsically different. Prompt infrared observations are the key to solving this issue.  相似文献   

5.
We present the XMM–Newton X-ray eclipse light curve of the dwarf nova OY Car. The eclipse ingress and egress are well resolved for the first time in any dwarf nova placing strong constraints on the size and the location of the X-ray emitting region. We find good fits to a simple linear eclipse model, giving ingress/egress durations of  30 ± 3 s (Δφorb= 0.0054 ± 0.0005)  . Remarkably, this is shorter than the ingress/egress duration of the sharp eclipse in the optical, as measured by Wood et al. (1989) and ascribed to the white dwarf  (43 ± 2 s)  . We also find that the X-ray eclipse is narrower than the optical eclipse by  14 ± 2 s  , which is precisely the difference required to align the second and third contact points of the X-ray and optical eclipses. We discuss these results and conclude that X-ray emission in OY Car arises most likely from the polar regions of the white dwarf.
Our data were originally reported by Ramsay et al. (2001b) , but they did not make a quantitative measurement of eclipse parameters. We have also corrected important timing anomalies present in the data available at that time.  相似文献   

6.
We have investigated multiband optical photometric variability and stability of the Hα line profile of the transient X-ray binary IGR J01583+6713. We set an upper limit of 0.05 mag on photometric variations in the V band over a time-scale of three months. The Hα line is found to consist of non-Gaussian profile and quite stable for a duration of two months. We have identified the spectral type of the companion star to be B2 IVe while the distance to the source is estimated to be ∼4.0 kpc. Along with the optical observations, we have also carried out analysis of X-ray data from three short observations of the source, two with the Swift –XRT and one with the RXTE –PCA. We have detected a variation in the absorption column density, from a value of  22.0 × 1022 cm−2  immediately after the outburst down to  2.6 × 1022 cm−2  four months afterwards. In the quiescent state, the X-ray absorption is consistent with the optical reddening measurement of   E ( B − V ) = 1.46  mag. From one of the Swift observations, during which the X-ray intensity was higher, we have a possible pulse detection with a period of 469.2 s. For a Be X-ray binary, this indicates an orbital period in the range of 216–561 d for this binary system.  相似文献   

7.
1 INTRODUCTIONThe broad emission lines, the most important characteristics of active galactic nuclei (AGN),are generally believed to be emitted by photoionized gas in the clouds that are illuminated bythe UV to X-ray continuum radiation of the celltral source (Netzer 1990). The photoionizationmodel is quite successful in explaining the average emission line properties of AGNs using anaverage ionizing continuum. To date, there are two sets of statistical relationships between thecolltin…  相似文献   

8.
We present a phase-resolved ROSAT HRI X-ray light curve of the dwarf nova OY Car in quiescence. The X-ray flux is eclipsed at the same time as the optical eclipse of the primary, and the region of X-ray emission is comparable in size to the white dwarf. We use subsequent optical observations to update the orbital ephemeris of the system.  相似文献   

9.
Using the Rossi X-ray Timing Explorer and the Nordic Optical Telescope, we have obtained the highest ever quality X-ray/white-light high-speed photometry of XB 1916–053. We refine the X-ray period ( P X) to 3000.6±0.2 s via a restricted cycle counting approach. Using our complete optical light curve, we have extended the optical period ( P opt) ephemeris by another 4 yr, providing further evidence for its stability, although a slightly longer period of 3027.555±0.002 s now provides a marginally better fit. Moreover, modulations at both P X and P opt are present in the optical data, with the former dominating the nightly light curves (i.e. a few cycles of data). We have also attempted to determine the 'beat' period, as seen in the repeating evolution of the X-ray dip structure, and the variation in primary dip phase. We find that a quasi-period of 4.74±0.05 d provides the best fit to the data, even then requiring phase shifts between cycles, with the expected 3.90-d 'beat' of P X and P opt appearing to be less likely. Finally, considering the nature of each of these temporal phenomena, we outline possible models, which could explain all of the observed behaviour of this enigmatic source, focusing on which of P X or P opt is the binary period.  相似文献   

10.
We present observations of the 1997 outburst of the X-ray transient GS 1354−64 (BW Cir) at X-ray, optical and, for the first time, radio wavelengths; our results include upper limits to the linear and circular polarization for the radio data. The X-ray outburst was unusual in that the source remained in the low/hard X-ray state throughout; the X-ray peak was also preceded by at least one optical outburst, suggesting that it was an 'outside-in' outburst – similar to those observed in dwarf novae systems, although possibly taking place on a viscous time-scale in this case. It therefore indicates that the optical emission was not dominated by the reprocessing of X-rays, but that instead we see the instability directly. While the radio source was too faint to detect any extended structure, spectral analysis of the radio data and a comparison with other similar systems suggest that mass ejections, probably in the form of a jet, took place and that the emitted synchrotron spectrum may have extended as far as infrared wavelengths. Finally, we compare this 1997 outburst of GS 1354−64 with possible previous outbursts and also with other hard-state objects, both transient and persistent. It appears that a set of characteristics – such as a weak, flat-spectrum radio jet, a mHz QPO increasing in frequency, a surprisingly high optical/X-ray luminosity ratio, and the observed optical peak preceding the X-ray peak – may be common to all hard-state X-ray transients.  相似文献   

11.
We present simultaneous X-ray and optical B - and V -band light curves of the Seyfert Galaxy NGC 3783 spanning 2 years. The flux in all bands is highly variable and the fluctuations are significantly correlated. As shown before by Stirpe et al. the optical bands vary simultaneously, with a delay of less than 1.5 d but both B and V bands lag the X-ray fluctuations by 3–9 d. This delay points at optical variability produced by X-ray reprocessing and the value of the lag places the reprocessor close to the broad-line region. A power spectrum analysis of the light curve, however, shows that the X-ray variability has a power-law shape bending to a steeper slope at a time-scale of ∼2.9 d while the variability amplitude in the optical bands continues to grow towards the longest time-scale covered, ∼300 d. We show that the power spectra together with the small value of the time delay are inconsistent with a picture where all the optical variability is produced by X-ray reprocessing, though the small amplitude, rapid optical fluctuations might be produced in this way. We detect larger variability amplitudes on long time-scales in the optical bands than in the X-rays. This behaviour adds to similar results recently obtained for at least three other active galactic nuclei and indicates a separate source of long-term optical variability, possibly accretion rate or thermal fluctuations, in the optically emitting accretion disc.  相似文献   

12.
We present the results of concurrent X-ray and optical monitoring of the Seyfert 1 galaxy Mrk 79 over a period of more than 5 yr. We find that on short to medium time-scales (days to a few tens of days) the 2–10 keV X-ray and optical u - and V -band fluxes are significantly correlated, with a delay between the bands consistent with 0 d. We show that most of these variations may be well reproduced by a model where the short-term optical variations originate from reprocessing of X-rays by an optically thick accretion disc. The optical light curves, however, also display long time-scale variations over thousands of days, which are not present in the X-ray light curve. These optical variations must originate from an independent variability mechanism and we show that they can be produced by variations in the (geometrically) thin disc accretion rate as well as by varying reprocessed fractions through changes in the location of the X-ray corona.  相似文献   

13.
We present results from XMM–Newton observations of the obscured quasi-stellar object 1SAX J1218.9+2958. We find that the previously reported optical and soft X-ray counterpart positions are incorrect. However, we confirm the spectroscopic redshift of 0.176. The optical counterpart has a K magnitude of 13.5 and an R – K colour of 5.0 and is therefore a bright extremely red object. The X-ray spectrum is well described by a power law  (Γ= 2.0 ± 0.2)  absorbed by an intrinsic neutral column density of  8.2+1.1−0.7× 1022 cm−2  . We find that any scattered emission contributes at most 0.5 per cent to the total X-ray flux. From the optical/near-infrared colour we estimate that the active nucleus must contribute at least 50 per cent of the total flux in the K band and that the ratio of extinction to X-ray absorption is 0.1–0.7 times that expected from a Galactic dust–gas ratio and extinction curve. If 1SAX J1218.9+2958 were 100 times less luminous it would be indistinguishable from the population responsible for most of the 2–10 keV X-ray background. This has important implications for the optical/infrared properties of faint absorbed X-ray sources.  相似文献   

14.
We show that the set of observational characteristics for low-mass X-ray binaries in the optical and X-ray bands can be explained in terms of the model of an optically thick accretion disk with an atmosphere irradiated by a central X-ray source. We show that this set of observational data can be successfully used to measure the orbital inclination of a binary, the geometric parameters of its accretion disk, and the reprocessing time of X-emission to optical one. For the burster GS 1826-238, a low-mass X-ray binary with a neutron star, we have estimated the binary inclination and the thickness of the disk atmosphere at the outer edge from the mean optical flux and the amplitude of periodic modulations in the optical light curve: i = 62.5° ± 5.5° and H d/R d = 0.145 ± 0.009. The optical response time of the binary to an X-ray burst disagrees with the geometric delay in the propagation of X-ray photons in the binary. We believe that this points to a finite X-ray reprocessing/reradiation time, 1.0 s ≲ τ repr ≲ 2.2 s, in the hot atmosphere above the accretion disk.  相似文献   

15.
We report on the BeppoSAX detection of a hard X-ray excess in the X-ray spectrum of the classical high-ionization Seyfert 2 galaxy Tol 0109–383. The X-ray emission of this source observed below 7 keV is dominated by reflection from both cold and ionized gas, as seen in the ASCA data. The excess hard X-ray emission is presumably caused by the central source absorbed by an optically thick obscuring torus with N H∼2×1024 cm−2 . The strong cold X-ray reflection, if it is produced at the inner surface of the torus, is consistent with the picture where much of the inner nucleus of Tol 0109–383 is exposed to direct view, as indicated by optical and infrared properties. However, the X-ray absorption must occur at small radii in order to hide the central X-ray source but leave the optical high-ionization emission-line region unobscured. This may also be the case for objects such as the Seyfert 1 galaxy Mrk231.  相似文献   

16.
We present a detailed study of the morphological features of 22 rich galaxy clusters. Our sample is constructed from a cross-correlation of optical     data with X-ray (0.1–2.4 keV) ROSAT pointed observations. We systematically compare cluster images and morphological parameters in an attempt to reliably identify possible substructure in both optical and the X-ray images. To this end, we compute various moments of the optical and X-ray surface-brightness distribution such as the ellipticities, centre-of-mass shifts and ellipsoidal orientations. We assess the significance of our results using Monte Carlo simulations. We find significant correlations between the optical and X-ray morphological parameters, indicating that in both parts of the spectrum it is possible to identify correctly the dynamical state of a cluster. Most of our clusters (17/22) have a good one-to-one correspondence between the optical and the X-ray images, and about 10 appear to have strong indications of substructure. This corresponds to a minimum percentage of order ∼45 per cent, which is in very good accordance with other similar analyses. Finally, five out of 22 systems (∼22 per cent) seem to have distinct subclumps in the optical which are not verified in the X-ray images, and thus are suspect of being due to optical projection effects. These results will serve as a useful guide in interpreting subsequent analyses of large optical cluster catalogues.  相似文献   

17.
Using deep exposures (∼105 s) with the ROSAT High Resolution Imager, we have performed flux-limited surveys for X-ray sources in the vicinity of the Hyades-age open stellar clusters NGC 6633 and IC 4756, detecting 31 and 13 sources, respectively. Our primary aim is to search for so-far unrecognized cluster members. We propose identifications or classifications (cluster member, field star, extragalactic field object) for the X-ray sources, based on published membership lists, and on X-ray:optical flux ratios and optical colour–magnitude diagrams. Results of simulating the expected X-ray-emitting source populations are compared with the ROSAT measurements and with the expected capabilities of the XMM mission. The simulations provide a novel method of comparing the activity levels of NGC 6633 and IC 4756 with that of the Hyades. The measurements and simulations confirm that cluster members are the major class of X-ray emitter in these fields at flux levels     (0.1–2.4 keV), contributing ∼40 per cent of the total X-ray sources. We find six possible new members in NGC 6633 and four candidates in IC 4756; all require further observation to establish membership probability.  相似文献   

18.
We report the results of a study of X-ray point sources coincident with the high-velocity system (HVS) projected in front of NGC 1275. A very deep X-ray image of the core of the Perseus cluster, made with the Chandra X-ray Observatory , has been used. We find a population of ultraluminous X-ray sources [ULXs; seven sources with   L X(0.5 − 7.0  keV) > 7 × 1039 erg s-1  ]. As with the ULX populations in the Antennae and Cartwheel galaxies, those in the HVS are associated with a region of very active star formation. Several sources have possible optical counterparts found on the Hubble Space Telescope ( HST ) images, although the X-ray brightest one does not. Absorbed power-law models fit the X-ray spectra, with most having a photon index between 2 and 3.  相似文献   

19.
The 2006 outburst of GK Persei differed significantly at optical and ultraviolet (UV) wavelengths from typical outbursts of this object. We present multiwavelength (X-ray, UV and optical) Swift and AAVSO data, giving unprecedented broad-band coverage of the outburst, allowing us to follow the evolution of the longer-than-normal 2006 outburst across these wavelengths. In the optical and UV we see a triple-peaked morphology with maximum brightness ∼1.5 mag lower than in previous years. In contrast, the peak hard X-ray flux is the same as in previous outbursts. We resolve this dichotomy by demonstrating that the hard X-ray flux only accounts for a small fraction of the total energy liberated during accretion, and interpret the optical/UV outburst profile as arising from a series of heating and cooling waves traversing the disc, caused by its variable density profile.  相似文献   

20.
We present optical spectroscopy and optical and infrared photometry of the neutron star soft X-ray transient Aql X–1 during its X-ray outburst of 1997 August. By modelling the X-ray, optical and IR light curves, we find a 3-d delay between the IR and X-ray rise times, analogous to the UV–optical delay seen in dwarf novae outbursts and black hole X-ray transients. We interpret this delay as the signature of an 'outside-in' outburst, in which a thermal instability in the outer disc propagates inward. This outburst is the first of this type definitively identified in a neutron star X-ray transient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号