首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study aims to discuss the hydrogeochemical processes in the Aosta Valley region and assess the quality of its groundwater for suitability of drinking and irrigation purposes. One hundred twenty-two samples were collected from the Aosta Valley region in the years 2007 and 2008 (61 per year), and analysed for pH, electrical conductivity, total dissolved solids (TDS), total hardness, major cations and anions. The pH of the samples in both years indicated a near-neutral to alkaline nature of the groundwater. The cation and anion chemistry showed the general ionic abundance as: Ca2+ > Mg2+ > Na+ > K+ and HCO3 ?>SO4 2?>Cl?>NO3 ?>F? in both years. Ca2+-Mg2+-HCO3 ? and Ca2+-Mg2+-Cl?-SO4 2? were the dominant hydrogeochemical facies. The computed saturation indices demonstrated that the groundwater was supersaturated with respect to dolomite and calcite in both years. The groundwater chemistry of the study area was mainly controlled by the dissolution of carbonate, sulphate and silicate minerals, as well as ion exchange processes. A comparison of the groundwater quality in relation to drinking water standards showed that most of the water samples were suitable for drinking and domestic uses. The computed water quality index (WQI) values of the study area groundwater ranged from 24 to 84 in the year 2007 and from 22 to 82 in the year 2008, and all the location fell under the Excellent to Good category. Quality assessment for irrigation uses revealed that the groundwater was good to permissible quality for irrigation; however, locally higher salinity, residual sodium carbonate (RSC) and magnesium hazard (MH) restricted its suitability for irrigation at a few sites. These results will be useful in implementing future measures in groundwater resource management at regional and national level.  相似文献   

2.
Groundwater survey has been carried out in the area of Gummanampadu sub-basin located in Guntur District, Andhra Pradesh, India for assessing the factors that are responsible for changing of groundwater chemistry and consequent deterioration of groundwater quality, where the groundwater is a prime source for drinking and irrigation due to non-availability of surface water in time. The area is underlain by the Archaean Gneissic Complex, over which the Proterozoic Cumbhum rocks occur. The results of the plotting of Ca2+ + Mg2+ versus HCO3 ? + CO3 2?, Ca2+ + Mg2+ versus total cations, Na+ + K+ versus total cations, Cl? + SO4 2? versus Na+ + K+, Na+ versus Cl?, Na+ versus HCO3 ? + CO3 2?, Na+ versus Ca2+ and Na+: Cl? versus EC indicate that the rock–water interaction under alkaline condition is the main mechanism in activating mineral dissociation and dissolution, causing the release of Ca2+, Mg2+, Na+, K+, HCO3 ?, CO3 2?, SO4 2? and F? ions into the groundwater. The ionic relations also suggest that the higher concentrations of Na+ and Cl? ions are the results of ion exchange and evaporation. The influences of anthropogenic sources are the other cause for increasing of Mg2+, Na+, Cl?, SO4 2? and NO3 ? ions. Further, the excess alkaline condition in water accelerates more effective dissolution of F?-bearing minerals. Moreover, the chemical data plotted in the Piper’s, Gibbs’s and Langelier–Ludwig’s diagrams, computed for the chloro-alkaline and saturation indices, and analyzed in the principal component analysis, support the above hypothesis. The groundwater quality is, thus, characterized by Na+ > Ca2+ > Mg2+ > K+: HCO3 ? + CO3 2? > Cl? > SO4 2? > NO3 ? > F? facies. On the other hand, majority of groundwater samples are not suitable for drinking with reference to the concentrations of TDS, TH, Mg2+ and F?, while those are not good for irrigation with respect to USSL’s and Wilcox’s diagrams, residual sodium carbonate, and magnesium hazard, but they are safe for irrigation with respect to permeability index. Thus, the study recommends suitable management measures to improve health conditions as well as to increase agricultural output.  相似文献   

3.
4.
Twenty groundwater samples were collected from Enugu metropolis over two seasonal periods in order to characterize the groundwater and to determine its quality for domestic and irrigation purposes. The results show that groundwater of the area is strongly acidic to slightly alkaline in nature and varied from “soft water” to “moderately hard” water type. The major ionic trend is in the order Cl> Na> HCO3 ? > K> Mg2+ > Ca2+ > SO4 2?and Mg2+ > Cl> Na> K> Ca2+ > HCO 3 > SO4 2? in abundance for dry and rainy seasons, respectively. The results also reveal that there is an increase in trend of the ionic concentrations during the dry season, which arises from weathering of the host rocks and anthropogenic activities. Two hydrochemical facies were identified, namely, Na+ –K+ –Cl? –SO4 2?and Ca2+ –Mg2+ –Cl? –SO4 2? , with Na+ –K+ –Cl? –SO4 2? as the dominant facies for the two seasons. Groundwater quality ranges from “very poor water” to “good water” and “water unsuitable for drinking purposes” to “good water” for the dry season and rainy season investigations, respectively. The groundwater is suitable for irrigation purposes for the two seasons.  相似文献   

5.
Groundwater is an important water source for agricultural irrigation in Penyang County. Some traditional methods such as irrigation coefficient, sodium adsorption ratio, total alkalinity, total salinity and total dissolved solids were employed to assess groundwater quality in this area. In addition, an improved technique for order preference by similarity to ideal solution model was applied for comprehensive assessment. The origin of major ions and groundwater hydrogeochemical evolution was also discussed. Groundwater in Penyang County contains relative concentrations of dominant constituents in the following order: Na+ > Ca2+ > Mg2+ > K+ for cations and HCO3 ? > SO4 2? > Cl? > CO3 2? for anions. Groundwater quality is largely excellent and/or good, suggesting general suitability for agricultural use. Calcite and dolomite are found saturated in groundwater and thus tend to precipitate out, while halite, fluorite and gypsum are unsaturated and will dissolve into groundwater during flow. Groundwater in the study area is weathering-dominated, and mineral weathering (carbonate and silicate minerals) and ion exchange are the most important factors controlling groundwater chemistry.  相似文献   

6.
Groundwater of an aquifer located in the vicinity of a large coal washery near Zarand City, Iran consists of two hydrochemically differing facies, which have been informally designated as groundwater (A) and groundwater (B). Groundwater (A) is native, brackish in composition and is characterized by Na+ > Mg2+ > Ca2+ > K+ and SO4 2? > HCO3 ? > Cl? > NO3 ?. Spearman’s rank correlation coefficient matrices, factor analysis data, and values of chloro-alkaline indices, C ratio and Na+/Cl? molar ratio indicate that in the groundwater (A), the ionic load of Ca2+, Mg2+, Na+, K+, SO4 2? and HCO3 ? is derived essentially from weathering of both carbonates and aluminosilicates and direct cation and reverse cation–anion exchange reactions. Groundwater (B) is the polluted variant of the groundwater (A), brackish to saline in composition, and unlike the groundwater (A), consists of HCO3 ? as the dominant anion. In comparison with the groundwater (A), the groundwater (B) contains higher concentrations of all ions, and its average ionic load (av. = 59.74 me/L) is 1.43 times higher than that of the groundwater (A) (av. = 41.54 me/L). Additional concentrations of Ca2+, Mg2+, K+, SO4 2?, Cl? and HCO3 ? in the groundwater (B) are provided mainly by downward infiltrating water from the coal washery tailings pond and reverse cation–anion exchange reaction between tailings pond water and exchanger of the aquifer matrix during non-conservative mixing process of groundwater (A) and tailings pond water. Certain additional concentrations of Na+, K+ and NO3 ? in the groundwater (B) are provided by other anthropogenic sources. Quality wise, both groundwaters are marginally suitable for cultivation of salt-tolerant crops only.  相似文献   

7.
Excess fluoride in groundwater affects the human health and results in dental and skeletal fluorosis. Higher concentration of fluoride was noted in hard rock terrain of the south India, in the Krishnagiri district of Tamilnadu. The region has a complex geology ranging from ultra basic to acid igneous rocks, charnockite and gneissic rocks. Thirty-four groundwater samples were collected from this study area and analysed for major cations and anions along with fluoride. The order of dominance of cations is Na+?>?Mg2+?>?Ca2+?>?K+ and the anions in the following order HCO3 ??>?Cl??>?NO3 ??>?SO4 2?. It is found that nearly 58 % of the samples have more fluoride ranging from 1 to 3 mg/L. It is also noted that high fluoride waters correspond to magnesium water types. This is due to the release of fluoride from the magnesium-bearing minerals like, biotite, hornblende, etc., or weathering of apatite/hydroxyapatites found in charnockites.  相似文献   

8.
Major ions and important trace elements in addition to δ18O and δ2H were analysed for 43 groundwater samples sampled from the Al-Batin alluvial fan aquifer, South Iraq. The most dominant ions (with respect to molarity) were: Na+ > Cl? > SO4 2? > Ca2+ > Mg2+ > NO3 ? > HCO3 ?, with total dissolved solids (TDS) averaging 7855 mg/L. High concentrations were found for the trace elements U, Mo, V, B, Sr, and Cr. This study suggests a hydraulic connection exists near the fan apex between the uppermost part of the Al-Batin aquifer and the underlying Dammam aquifer by means of the Abu-Jir fault system. Except for the effects of extensive irrigation, fertilizer use, and poorly maintained sewers, the groundwater chemistry is mainly controlled by geological processes such as dissolution of evaporites and the enrichment of dissolved ions as a result of the high evaporation and low recharge rate. Furthermore, it is shown that the Kuwaiti fuel–oil burning during Gulf War in 1991 contributed to the enrichment of V and Mo in the studied aquifer. The spatial distribution of most ions appears to generally increase from the south-west towards the north-east, in the direction of groundwater flow. The stable isotopes show heavier values in groundwater with a gradually increasing trend in the direction of groundwater flow due to the decreasing depth to groundwater and thus increasing of evaporation from both groundwater or irrigation return water. Additionally, the stable isotope signature suggests that rainfall from sources in the Arabian Gulf and the Arabian Sea is the major source of recharge for the Al-Batin aquifer. Except for two samples of groundwater, all samples were not suitable for potable use according to the WHO standards. Most of the groundwater is suitable for some agricultural purpose and for livestock water supply. Apart from the high salinity, boron represents the most critical element in the groundwater with respect to agricultural purposes.  相似文献   

9.
A study was conducted to understand the hydrogeological processes dominating in the North 24 Parganas and South 24 Parganas based on representative 39 groundwater samples collected from selected area. The abundance of major ions was in the order of Ca2+ > Na+ > Mg2+ > K+ > Fe2+ for cations and HCO3 ? > PO4 3? > Cl? > SO4 2? > NO3 ? for anions. Piper trilinear diagram was plotted to understand the hydrochemical facies. Most of the samples are of Ca-HCO3 type. Based on conventional graphical plots for (Ca + Mg) vs. (SO4 + HCO3) and (Na + K) vs. Cl, it is interpreted that silicate weathering and ion exchange are the dominant processes within the study area. Previous studies have reported quartz, feldspar, illite, and chlorite clay minerals as the major mineral components obtained by the XRD analysis of sediments. Mineralogical investigations by SEM and EDX of aquifer materials have shown the occurrence of arsenic as coating on mineral grains in the silty clay as well as in the sandy layers. Excessive withdrawal of groundwater for irrigation and drinking purposes is responsible for fluctuation of the water table in the West Bengal. Aeration beneath the ground surface caused by fluctuation of the water table may lead to the formation of carbonic acid. Carbonic acid is responsible for the weathering of silicate minerals, and due to the formation of clay as a product of weathering, ion exchange also dominates in the area. These hydrogeological processes may be responsible for the release of arsenic into the groundwater of the study area, which is a part of North 24 Parganas and South 24 Parganas.  相似文献   

10.
The physicochemical properties and major ion chemistry of the groundwater sources from alluvial aquifers along the stretch (60 km) of Jhelum River in Kashmir Himalaya were determined in order to identify hydro-geochemical processes and their suitability for drinking purposes. The data depicted that calcium and bicarbonates were dominating among the cations and anions. The results indicate the trend of cation dominance as Ca2+ > Na+ > Mg2+ > K+, whereas anion dominance was in the order of HCO3 ? > Cl? > SO4 2?. Ratio of calcium to magnesium indicated the dissolution of Ca2+ from CaCO3, which results in an increased levels of Ca2+ in the groundwater. Interpretation of Piper Trilinear plot understands the various geochemical processes affecting the groundwater quality and shows groundwater was dominated by Ca–HCO3 type. The pH was recorded in the slightly alkalinity range 7.2–7.8 and was showing positive correlation with HCO3 ?. The chloro-alkaline indices revealed 86% of the sources exchange by a type of base-exchange reactions, rest by cation–anion exchange. Gibbs diagram revealed groundwater sources fall in the category of rock dominance. The concentration of the nitrogen compounds was in the progression of NO3–N > NH4–N > NO2–N, and the PO4 ? fluctuated from 0.12 to 0.22 mg/L. Moreover, corrosivity ratio indicated that water from the majority of sources (71%) is safe to supply using pipes without any corrosive effects, while 29% of sources are corrosive in nature and need non-corrosive pipes for transporting and lifting of groundwater. The results revealed, groundwater samples were within permissible limits as prescribed by International and National standards, for drinking purposes. The State government and NGO’s can show their interest in utilizing such water resources to overcome the shortage of drinking water in a sustainable way for the daily consumption of the people living in the vicinity of Jhelum River.  相似文献   

11.
The present work is an effort to develop an appraisal of the hydrogeochemical regime for the aquifers of Dhekiajuli, Sonitpur district, Assam, which is imperative considering: (i) excessive use of groundwater for irrigation; (ii) reported high arsenic (As) contamination; (iii) application of fertilizer is an inevitable process undergoing in this region to achieve higher yield owing to deteriorating water quality; and (iv) study area being the location of many tea estates of Assam, that export tea in many foreign countries. The highest As concentration of 44.39 µg/L was detected in this study (Bachasimalu and Sitalmari region), implying high As-contaminated aquifers being used for drinking and irrigation purposes in the area. The relative abundance pattern of major cations and anions was in the order of Na+ > Mg2+ > Ca2+ > K+ and HCO3 ? > Cl? > SO4 2?, respectively. Majority of the samples belong to Na+–K+–Cl?–HCO3 ? and mixed water type. Closer inspection of Piper plot reveals that a higher As value (>40 µg/L) was prevalent in HCO3 ? water type. Results of hydrogeochemical plots suggest silicate and carbonate weathering, ion exchange and anthropogenic activities to be the dominant processes governing groundwater contamination, including As which is further supported from PCA loadings. The Singri area to the east of the affected areas and adjacent to the Brahmaputra River has oxic aquifers owing to the absence of mass deposition of younger sediments, while reducing conditions prevails in the Bachasimalu and Sitalmari region. High positive correlation between As and Fe (r = 0.83**) and a negative correlation between ORP and Fe (r = ?0.68**) further add that Fe (hydr)oxides are the direct source of As release in the affected region, the mechanism being reductive hydrolysis of such (hydr)oxides. The study implies that although groundwater is suitable for irrigation use, there is a high probability of As getting into the food chain through tea and other edible plants irrigated with As-contaminated water; thus, the area has a maximum probability of facing health hazards caused by As-contaminated groundwater.  相似文献   

12.
The assessment of hydrogeochemical processes that govern the water quality of inland freshwater aquifers in coastal environment, especially in Indian sub-continent, is occasionally attempted. To bridge the gap, a detail hydrochemical evaluation of groundwater occurring in coastal alluvium is attempted. Single set of high-density water sampling is done from a limited area to gain an in-depth knowledge of the processes that govern the water chemistry of the sandy aquifers. The water is of weak alkaline nature and less mineralized, EC being < 1,000 μS/cm in many samples. Major ion composition indicates that water is contaminated with excess concentration of nitrates. Ionic abundance is in the order of Cl? > Na > Ca2+ > HCO3 ? > SO4 2? > Mg2+  > NO3 ?. Na+ and Cl? are almost in similar proportions implying the influence of coastal climate on water quality. The water shows modest variation in their ionic assemblage among different sample points as evident from Schoeller scheme. Groundwater can be classified into three distinct facies viz. Cl?–Ca2+–Mg2+, Na+–Cl? and Ca2+–Mg2+–HCO3 ? types. The ionic assemblages, their indices, ratios and cross-plots substantiate that multiple processes were involved in the evolution of the water chemistry. Among them, silicate weathering, halite dissolution, ion exchange and base exchange played prominent role in the ion enrichment of groundwater. The aquatic chemistry is further influenced and modified by marine environment, evapotranspiration and anthropogenic inputs which is authenticated by good correlation (r 2 = 1) among the Na+–Cl?, EC–Mg2+, Na+ and Cl?. Gibbs plots established that evaporation is more responsible for contribution of minerals to the groundwater than aquifer material. Nitrate contamination can be attributed for poor sewerage disposal mechanism which is aggravated by fertilizer inputs, irrigation practices and agriculture activity. A contrasting correlation (r 2 ≥90 to <0.40) among select pairs of ions reassures dissimilar source of those ions, involvement of multiple processes and limited interaction of formation water with aquifer material.  相似文献   

13.
14.
The hydrochemical characteristics and quality of groundwater in Lokoja basement area have been evaluated based on different indices for assessing groundwater for drinking and irrigation purposes. Twenty groundwater samples were collected and analyzed for physicochemical parameters, major ions and heavy metals. The results revealed that the groundwater is slightly alkaline, with little variations in chemical composition. For example, electrical conductivity (EC) ranges from 242μS/cm to 1835μS/cm. The abundance of the major ions is in the order of Ca2+ >Na+>Mg2+>K+> Fe2+/3+ = HCO3 >Cl? >NO3 >SO4 >PO4. Based on the hydrochemical data, four hydrochemical facies were identified namely, Ca-Mg-HCO3, Na-K-HCO3, Na-K-Cl-SO4 and Ca-Mg-Cl-SO4 and these facies depict groundwater recharge zone, transition flow zone, deep flow zone and mixed water zone respectively. Groundwater from the area is unsuitable for drinking and domestic purposes as some of the ions and heavy metals of health concerns are well above the stipulated guideline values. Irrigation water quality indicators (salinity, Na % and Mg %), reveal that the groundwater is unsuitable for irrigation purposes. Interpreted statistical analysis reveals that the groundwater chemical compositions are controlled predominantly by weathering of litho units of the basement rocks and by drainage from domestic wastes.  相似文献   

15.
Assessment of groundwater quality is essential to ensure sustainable use of it for drinking, agricultural, and industrial purposes. The chemical quality of groundwater of Gaya region has been studied in detail in this work to delineate the potable groundwater zones. A total of 30 groundwater samples and 2 surface water samples were collected in and around Gaya district of Bihar. The major cations follow the trend: Ca2+?>?Mg2+?>?Na+?>?K+. The domination of calcium ions in the groundwater is due to weathering of rocks. The K+ ranged between 0.2 and 47.95 ppm, suggesting its abundance the below desired limit; but some samples were found to be above permissible limit. K+ weathering of potash silicate and the use of potash fertilizer could be the source. The major anions abundance followed the order HCO 3 ? ?>?Cl??>?SO 4 2? ?>?NO 3 ? ?>?PO 4 3? . Dissolution of carbonates and reaction of silicates with carbonic acid accounts for the addition of HCO 3 ? to the groundwater and oxidation of sulphite may be the source of SO 4 2? . Principal component analysis was utilized to reflect those chemical data with the greatest correlation and seven major principal components (PCs) representing >80 % of cumulative variance were able to interpret the most information contained in the data. PC1, PC2 and PC3 reflect the hydrogeochemical processes like mineral dissolution, weathering and anthropogenic sources. PC4, PC5, PC6 and PC7 show monotonic, random and independent relationships.  相似文献   

16.
Groundwater of the unconfined aquifer (1,100 sq. km) of a two-tier coastal aquifer located in the Amol–Ghaemshahr plain, Mazandaran Province, Northern Iran, is classified into fresh and brackish water types. Fresh groundwater (FGW) samples (n = 36) are characterized by Ca2+ > Na> Mg2+ > K+ and HCO3 ? > Cl? > SO4 2? > NO3 ?. Spearman’s rank correlation coefficient matrices, factor analysis data, values of the C-ratio (av. = 0.89) and CAI and values of the molar ratios of Ca2+/HCO3 ?, Ca2+/SO4 2?, Mg2+/HCO3 ? and Mg2+/SO4 2? indicate that the ionic load in the FGW is derived essentially from carbonic acid-aided weathering of carbonates and aluminosilicates, saline/sea water trapped in the aquifer sediments (now admixed with the groundwater) and ion exchange reactions. Values of the CAI and Na+/Cl? molar ratio suggest that the part of the Ca2+ (±Mg2+) content in 23 FGW samples is derived from clay minerals of the aquifer matrix, and part of the Na+ content in 20, 12, and 3 FGW samples is derived, respectively, from alkali feldspar weathering, clay minerals of the aquifer matrix and rain water and/or halite. Brackish groundwater (BGW) samples (n = 4) contain Cl? as the dominant anion and their average total ionic concentration (38.65 meq/L) is 1.79 times higher than that of the FGW samples (21.50 meq/L). BGW pockets were generated by non-conservative mixing of FGW with the upconed saline water from the underlying saline groundwater zone of the semi-confined aquifer along bore wells involved in excessive extraction of groundwater from the unconfined aquifer. Groundwater belongs essentially to “high salinity, low sodium” irrigation water class.  相似文献   

17.
The Narava basin in Visakhapatnam district situated on the east coast is a productive agricultural area, and is also one of the fastest growing urban areas in India. The agricultural and urban-industrialization activities have a lot of impact on this coastal aquifer water quality. The hydrochemistry of the groundwater was analyzed in the basin area with reference to drinking and agricultural purposes. The area is underlain by Precambrian rocks like khondalites, charnockites and migmatites. The water samples were collected from shallow wells for the year 2008. Physical and chemical parameters of groundwater such as pH, total alkalinity (TA), electrical conductivity (EC), total dissolved solids (TDS), total hardness (TH), Ca2+, Mg2+, Na+, K+, HCO3 ?, Cl?, SO4 2?, NO3 ?, F? were determined. The analytical results revealed that the most of the groundwater found to be in polluted category. Geographical information system (GIS) was utilized to generate different spatial distribution maps of various chemical constituents in the study area. The analytical data were used to compute certain parameters such as salinity hazard, percent sodium (Na%), sodium adsorption ratio (SAR), residual sodium carbonate (RSC), permeability index (PI), Kelley??s ratio (KR) and corrosivity ratio (CR) to determine the quality of water for agricultural purposes. The abundance of the major ions in the basin area was found to be in the following sequence: Na+?>?Ca2+?>?Mg2+?>?K+:Cl??>?HCO3 ??>?SO4 2??>?NO3 ??>?F?. According to Gibbs?? diagram most of the samples fall under rock dominance. As per Wilcox and USSL classification most of the groundwater samples are suitable for irrigation except few samples which are unsuitable due to the presence of high salinity and high sodium hazard. From the obtained data, it can be concluded that the water quality profile was good and useful for normal irrigation agriculture.  相似文献   

18.
The present study research investigation is aimed to assess the groundwater quality for the urban area in Khan Younis City, southern Gaza Strip, for multi-domestic purposes. The physicochemical analysis of the groundwater wells shows the major ions in the order of Na+ > Mg2+ > Ca2+ > B3+ > K+ and Cl? > HCO3 ? > SO4 2? > NO3 2? > F? > PO4 3?. Groundwater quality is classified as very hard-brackish water type. Ninety-five percent of the wells are classified as saline water type with high NO3 2? concentrations. Based on water quality index (WQI), the groundwater falls into one of three categories: fair water (10%), poor water (15%), very poor (45%), and worst (30%). The high WQI values are because of high Na+, Cl?, SO4 2?, and NO3 2? concentrations, while synthetic pollution index (SPI) values indicate that most about 80% of the wells are seriously polluted. Langelier Saturation Index (LSI) indicates that most of data are either slightly scale forming or corrosive water or slightly corrosive but non-scale forming, and 75% of the wells are suitable for construction purposes (have SO4 2? concentrations <300 mg/L). The groundwater reaches alarming situation, where almost chemically unsuitable for drinking purposes and the water to be used after proper treatment such as desalination.  相似文献   

19.
A total of twenty-three water samples were collected in winter 2013 to assess groundwater quality in the Oued Rmel aquifer in the Zaghouan governate in Tunisia. These samples were subject to in-field measurements of some physico-chemical parameters (temperature, pH, and salinity), and laboratory analysis of major elements. Several parameters were used to assess the quality of water destined for irrigation, including electrical conductivity (EC) and sodium adsorption ratio (SAR). As part of this work, GIS was used to study spatial distributions of SAR, EC, residual sodium carbonate, sodium percentage (%Na), Doneen’s permeability index, Kelly’s ratio, and magnesium hazard and, therefore, evaluated the water quality of Oued Rmel (good, fair, or poor) regarding irrigation. The major ions most abundantly found in the waters of Oued Rmel were in the following order: Na+?>?Ca2+?>?Mg2+?>?K+ and Cl??>?SO42??>?HCO3. 56% of water samples from the Oued Rmel aquifer showed a low alkalinization risk, where SAR was lower than 10, 39% have a medium soil destabilization risks (10?<?SAR?<?18), and just 5% indicated high alkalinity hazards (SAR?>?26). Samples of water intended for irrigation showed a medium to high sodicity and alkalinization risk. It is expected that output may help in assessing the impacts of water quality of the Oued Rmel aquifer used for irrigation.  相似文献   

20.
A diagnosis of the groundwater quality of 70 wells sampled during two climatic regimes (dry and raining seasons) from a semiarid area in Rajasthan, India, had been carried out using standard methods. Analysis of the results for various hydrochemical parameters wherein the geological units are alluvium, quartzite and granite gneisses showed that all the parameters did not fall within the World Health Organisation’s acceptable limits for irrigation and drinking water purposes. The order of major cations and anions obtained during the dry and raining seasons are Na+ ? Mg2+ ? Ca2+ ? K+ and Cl?? HCO3 ? ? SO4 2?? CO3 ?> F? ? NO3 ?, respectively. A maximum value of nitrate of 491.6 mg/l has been examined and its contamination is due to discriminated highly impacted groundwater samples by agricultural activity and small-scale urbanization. Fluoride (F?) concentration is 6.50 mg/l as a maximum value, whereas values in about 26 % of the samples are more than the permissible limit (1.5 mg/l) for drinking water. The cumulative probability distributions of the selected ions show two individual intersection points with three diverse segments, considered as regional threshold values and highly impacted threshold values for differentiating the samples with the effects of geogenic, anthropogenic and saline water mixing. The first threshold values indicate the background hydrochemical constituents in the study area. The second threshold value of 732 mg/l for bicarbonate indicates that sandy aquifer is being dissolved during wet period, whereas NO3 ? concentration of more than the initial threshold value (=75 mg/l) indicates discriminated highly impacted groundwater samples by agricultural activity and urbanization in dry season. Various parameters such as soluble sodium percentage (SSP), salinity (electrical conductivity (EC)), sodium adsorption ratio (SAR), residual sodium carbonate (RSC), Kelley’s ratio (KR), permeability index (PI), residual sodium bicarbonate (RSB) and magnesium absorption ratio (MAR) for the well samples show that, overall, 46 % of groundwater samples are not suitable for irrigation. Further, chloro-alkaline indices (CAIs) were used for distinguishing regional recharge and discharge zones whereas corrosivity ratio (CR) utilized for demarcating areas to use metallic pipes for groundwater supply. In general, groundwater quality is mainly controlled by the chemical weathering of rock-forming minerals. The information obtained represents a base for future work that will help to assess the groundwater condition for periodical monitoring and managing the groundwater from further degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号