首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objectives of this study were to examine the runoff characteristics and to estimate water budget at the wind–water erosion crisscross region on the Loess Plateau of China. A small catchment known as Liudaogou that has representative meteorological and hydrological conditions of the wind–water erosion crisscross region was chosen as the study location. A numerical model for rainfall-runoff was developed and verified; rainfall-runoff calculation for 5 years (2005–2009) was performed. The observed data and numerical result of the surface runoff were used for evaluating runoff characteristics and estimating the annual water budget. Runoff rate was proportional to average intensity of rain. Even though rainfall duration was for few minutes, surface runoff was generated by intensity of more than 2.6 mm × 5 min?1, when rainfall duration exceeded 10 h; surface runoff was generated by an intensity of 0.6 mm × 5 min?1, while annual runoff rate was 10–15 %. The unit area of 1 km2 was adopted as the index area for estimating annual water budget. Runoff, evapotranspiration, variation of water storage, and habitant water consumption accounted for 20.4, 75.6, 0, and 4 % of the total annual precipitation, respectively. Results of this study provide the basis for further research on hydrology, water resources, and sustainable water development and utilization at the wind–water erosion crisscross region on the northern Loess Plateau where annual water resources are relatively deficient.  相似文献   

2.
The Wenchuan earthquake has caused abundance of loose materials supplies for debris flows. Many debris flows have occurred in watersheds in area beyond 20 km2, presenting characteristics differing from those in small watersheds. The debris flows yearly frequency decreases exponentially, and the average debris flow magnitude increases linearly with watershed size. The rainfall thresholds for debris flows in large watersheds were expressed as I?=?14.7 D ?0.79 (2 h?<?D?<?56 h), which is considerably higher than those in small watersheds as I?=?4.4 D ?0.70 (2 h?<?D?<?37 h). A case study is conducted in Ergou, 39.4 km2 in area, to illustrate the formation and development processes of debris flows in large watersheds. A debris flow develops in a large watershed only when the rainfall was high enough to trigger the wide-spread failures and erosions on slope and realize the confluence in the watershed. The debris flow was supplied by the widely distributed failures dominated by rill erosions (14 in 22 sources in this case). The intermittent supplying increased the size and duration of debris flow. While the landslide dam failures provided most amounts for debris flows (57 % of the total amount), and amplified the discharge suddenly. During these processes, the debris flow velocity and density increased as well. The similar processes were observed in other large watersheds, indicating this case is representative.  相似文献   

3.
The 2008 Ms 8.0 Wenchuan earthquake triggered a large number of extensive landslides. It also affected geologic properties of the mountains such that large-scale landslides followed the earthquake, resulting in the formation of a disaster chain. On 10 July 2013, a catastrophic landslide–debris flow suddenly occurred in the Dujiangyan area of Sichuan Province in southeast China. This caused the deaths of 166 people and the burying or damage of 11 buildings along the runout path. The landslide involved the failure of ≈1.47 million m3, and the displaced material from the source area was ≈0.3 million m3. This landslide displayed shear failure at a high level under the effects of a rainstorm, which impacted and scraped an accumulated layer underneath and a heavily weathered rock layer during the release of potential and kinetic energies. The landslide body entrained a large volume of surface residual diluvial soil, and then moved downstream along a gully to produce a debris flow disaster. This was determined to be a typical landslide–debris flow disaster type. The runout of displaced material had a horizontal extent of 1200 m and a vertical extent of 400 m. This was equivalent to the angle of reach (fahrböschung angle) of 19° and covered an area of 0.2 km2. The background and motion of the landslide are described in this study. On the basis of the above analysis, dynamic simulation software (DAN3D) and rheological models were used to simulate the runout behavior of the displaced landslide materials in order to provide information for the hazard zonation of similar types of potential landslide–debris flows in southeast China following the Wenchuan earthquake. The simulation results of the Sanxicun landslide revealed that the frictional model had the best performance for the source area, while the Voellmy model was most suitable for the scraping and accumulation areas. The simulations estimated that the motion could last for ≈70 s, with a maximum speed of 47.7 m/s.  相似文献   

4.
Understanding the sediment source is very significant for erosion control in small watersheds. On the Loess Plateau of China, over 110 thousands of check dams were constructed in the past 60 years, which played an important role in controlling soil loss and also kept much information of erosion and sediment yield in the past. The objective of this investigation is to identify the sediment source by the 137Cs tracing method in a small watershed in the Loess Hilly Region of China. Fifty-five sampling sites were selected from the watershed (44 from the inter-gully area, 7 from the gully sides and 4 from the reference sites), and a total of 114 soil samples were collected from three sediment profile cores at the Sidizui watershed check dam constructed in 1959. Based on the erosion rate from the inter-gully area by the 137Cs models, and the total erosion amount deposited in the check dam since 1963, the relative contributions of sediment from the inter-gully area and gully area were estimated during 1963–2013. By comparing the difference of 137Cs activities of surface soils from the check dam (deposited in the 2011–2013 flood events), the inter-gully and gully areas, the relative contributions of sediment derived from the two source areas to the flood sediment during recent years (2011–2013) were estimated by a simple mixing model. Results showed that the erosion rate from the inter-gully area was about 3054 t/km2 a during 1963–2013, and the relative contributions of sediment from the inter-gully area and gully area were estimated to be 27 and 73%, respectively. The sediment from the inter-gully area was about 20% of the total sediment yield amount to the 2011–2013 floods, and from the gully area it was about 80%. The relative contribution of sediment from the inter-gully or gully area was not a fixed value in the watershed. Both of the inter-gully erosion and gully erosion should be simultaneously controlled, and more erosion control measures on the gully area should be taken in the subsequent watershed management in order to reduce the erosion amount in this region.  相似文献   

5.
Glacial lake outburst flood (GLOF) is a powerful natural phenomenon that is very active in the Karakoram and Himalayas. This paper presents a case study from Gupis Tehsil in northern areas of Pakistan that is exposed to GLOFs from nine different glacial lakes in its upper catchment areas. Khukush Lake being the largest of all the glacial lakes has been studied and a flood attenuation model has been created for the whole Gupis Tehsil. This lake covers almost 2.2 km2 of surface area, and its calculated volume is 2.6 × 104 m3. In case of its outburst, the peak flow discharge is calculated to be 7,642 m3/s. The catchment area which contributes water and debris to the lake is 170 km2. This lake is dammed by a glacial moraine, which is not strong enough to sustain the pressure for a longer period of time. Other factors that are reducing the reliability of the dam are the secondary hazards which are in direct contact with the lake, and in case of their reactivation, they can put severe impacts on the dam. There are eight potential sites of the snow avalanche activity where debris along with snow may fall directly into the lake producing a strong wave. This strong wave of water will increase the pressure on the dam and ultimately will increase the probability for its outburst. The presense of water springs towards the downstream side of the natural dam also indicate the presence of hidden channels passing through the dam which may weaken the shear strength of the dam. Almost 24 villages settled along either sides of the Gupis River are critically studied for the expected flood from Khukush Lake. With few exceptions, almost 20–25 % area of all the villages will be affected from this flood.  相似文献   

6.
In this study, the Variable Infiltration Capacity model and Palmer Drought Severity Index (PDSI) were combined for drought identification on the Loess Plateau. The calibration method of climatic characteristic (K j ) in PDSI was improved. Land cover datasets in 1980 and 2005 were used to drive the model. The driest periods over the past four decades of the study region emerged in 1976–1982, 1997–2001 and 2003–2008. Regardless of ranking by duration, spatial extent or severity, most of the prominent droughts occurred in the detected driest periods. The drought severity and area over the upper reaches of the Yellow River were higher than other domains. A total of 53 droughts with area greater than the 25,000 km2 threshold were identified with durations longer than 3 months using clustering algorithm. Most regions of the study area exhibited spatially increasing trends in drought severity and frequency, indicating that the Loess Plateau has experienced apparent drying and warming processes between 1971 and 2010.  相似文献   

7.
Debris flood risk assessment for Mosquito Creek, British Columbia, Canada   总被引:2,自引:2,他引:0  
Mosquito Creek drains a 15.5 km2 watershed on the North Shore Mountains north of Vancouver, British Columbia, Canada, and flows through the densely urbanized District and then City of North Vancouver. Previous studies determined that the creek is subject to debris floods (hyperconcentrated flows). The National Research Council of Canada is applying multi-hazard risk assessment procedures for various regions in B.C. and chose Mosquito Creek as one of its target areas. As part of its natural hazard management plan, the District of North Vancouver (DNV) requested an assessment of debris flood hazards and associated risk to life. Using a combination of empirical methods, dendrochronology and some judgment, BGC Engineering Inc. assessed debris flood hazard extent, velocity and depth for estimated 100-, 200-, 500- and 2,500-year debris flow return periods. Based on the results from the hazard assessment, risk for individuals and groups living within the hazard area, including residential homes and a fire hall, was estimated. Compared to risk tolerance criteria accepted on an interim basis by the DNV, we estimate that societal risk exceeds tolerable standards and that individual risk exceeds tolerable standards for 10 homes. The results from the risk to loss of life study have prompted DNV to implement a series of risk reduction measures including installation of a debris containment net and watershed restoration measures.  相似文献   

8.
A series of empirical studies involving typhoon rainstorm and flood risk scenario analysis were carried out on a medium spatial scale, covering Pingyang County. Considering a rainstorm/water-logging conversion process, active flooding submergence and per unit area values (million yuan/km2), two typical risk scenarios (50- and 100-year frequency) were simulated and analyzed. The study revealed that high-risk areas distributed across the towns of Aojiang, Qiancang and Xiaojiang, with a maximum submerged depth of 4.61 m for a 100-year flood hazard. In the case of a disaster loss rate >65 %, the potential maximum loss could be more than 10 million yuan/km2. For medium-scale disaster risk, more attention must be paid to catastrophic events, which have a low probability of occurrence but would induce great losses. An amended risk formula could determine the degree of priority for responses to hazards of equal risk value better. In Pingyang County, the 50-year flood risk for Kunyang, Aojiang, Qiancang and Xiaojiang is greater than that of 100-year events for the next 50 years. However, these areas should give priority to their responses to 100-year disaster events during the next 100 years. In addition, the attention of disaster risk should vary in different spatial regions.  相似文献   

9.
Due to deficient water resources in the Loess Plateau, watershed management plays a very important role, not only for ecological and environmental protection but also for the social development of the region. To better understand the hydrological and water resource variations in the typical watershed of the Loess Plateau and the Qinghe River Basin, the influences of land cover and climate change were analysed, and a SWAT model was built to simulate the response of the hydrological situation to land cover changes that have occurred over the past 30 years. The results demonstrated that the main land cover change occurring in the Qinghe River Basin was the conversion of land cover from grassland to woodland and farmland from the late 1980s to 2010. Woodland and farmland took 87.36 and 10.55%, respectively, from the overall area transferred over 20 years and more than 18% of the total watershed area. Hydrological simulation results indicated that land cover played a predominant role in the hydrological variation of the Qinghe River Basin, although the effects of climate change should not be discounted. The significant changes in land cover could be superimposed by policy orientation and economic requirements. Although it is hard to evaluate the land cover changes and the corresponding hydrological responses in a simple language, related analyses have demonstrated an increasing trend of runoff in the dry season, while there is a somewhat decreasing trend during the flood season in the river basin. There results could be significant and provide a positive influence on both future flood control and the conservation of water and soil.  相似文献   

10.
Estimation of soil erosion using RUSLE in Caijiamiao watershed,China   总被引:4,自引:1,他引:3  
Jinghu Pan  Yan Wen 《Natural Hazards》2014,71(3):2187-2205
Soil erosion is a serious environmental and production problem in China. In particular, natural conditions and human impact have made the Chinese Loess Plateau particularly prone to intense soil erosion area. To decrease the risk on environmental impacts, there is an increasing demand for sound, and readily applicable techniques for soil conservation planning in this area. This work aims at the assessment of soil erosion and its spatial distribution in hilly Loess Plateau watershed (northwestern China) with a surface area of approximately 416.31 km2. This study was conducted at the Caijiamiao watershed to determine the erosion hazard in the area and target locations for appropriate initiation of conservation measures using the revised universal soil loss equation (RUSLE). The erosion factors of RUSLE were collected and processed through a geographic information system (GIS)-based approach. The soil erosion parameters were evaluated in different ways: The R-factor map was developed from the rainfall data, the K-factor map was obtained from the soil map, the C-factor map was generated based on Landsat-5 Thematic Mapper image and spectral mixture analysis, and a digital elevation model with a spatial resolution of 25 m was derived from topographic map at the scale of 1:50,000 to develop the LS-factor map. Support practice P factor was from terraces that exist on slopes where crops are grown. By integrating the six-factor maps in GIS through pixel-based computing, the spatial distribution of soil loss in the study area was obtained by the RUSLE model. The results showed that spatial average soil erosion at the watershed was 78.78 ton ha?1 year?1 in 2002 and 70.58 ton ha?1 year?1 in 2010, while the estimated sediment yield was found to be 327.96 × 104 and 293.85 × 104 ton, respectively. Soil erosion is serious, respectively, from 15 to 35 of slope degree, elevation area from 1,126 to 1,395 m, in the particular area of soil and water loss prevention. As far as land use is concerned, soil losses are highest in barren land and those in waste grassland areas are second. The results of the study provide useful information for decision maker and planners to take appropriate land management measures in the area. It thus indicates the RUSLE–GIS model is a useful tool for evaluating and mapping soil erosion quantitatively and spatially at a river watershed scale on a cell basis in Chinese Loess Plateau and for planning of conservation practices.  相似文献   

11.
Riedel  Jon L.  Sarrantonio  Sharon M. 《Natural Hazards》2021,106(3):2519-2544

We examine the magnitude, frequency, and precipitation threshold of the extreme flood hazard on 37 low-order streams in the lower Stehekin River Valley on the arid eastern slope of the North Cascades. Key morphometric variables identify the magnitude of the hazard by differentiating debris flood from debris flow systems. Thirty-two debris flow systems are fed by basins?<?6 km2 and deposited debris cones with slopes?>?10°. Five debris flood systems have larger drainage areas and debris fans with slopes 7–10°. The debris flood systems have Melton ruggedness ratios from 0.42–0.64 compared to 0.78–3.80 for debris flow basins. We record stratigraphy at seven sites where soil surfaces buried by successive debris flows limit the age of events spanning 6000 years. Eighteen radiocarbon ages from the soils are the basis for estimates of a 200 to1500-year range in recurrence interval for larger debris flows and a 450?±?50-year average. Smaller events occur approximately every 100 years. Fifteen debris flows occurred in nine drainage systems in the last 15 years, including multiple flows on three streams. Summer storms in 2010 and 2013 with peak rainfall intensities of 7–9 mm/h sustained for 8–11 h triggered all but one flow; the fall 2015 event on Canyon Creek occurred after 170 mm of rain in 78 h. A direct link between fires and debris flows is unclear because several recent debris flows occurred in basins that did not burn or burned at low intensity, and basins that burned at high intensity did not carry debris flows. All but one of the recent flows and fires occurred on the valley’s southwest-facing wall. We conclude that fires and debris flows are linked by aspect at the landscape scale, where the sunny valley wall has flashy runoff due to sparse vegetation from frequent fires.

  相似文献   

12.
This article documents a 240,000-m3 debris flow resulting from a glacial lake outburst flood in Fjærland, Western Norway, May 8, 2004. The event started when a glacial lake breached a moraine ridge. The ensuing debris flow was able to erode material along its path, increasing in volume from about 25,000 to 240,000 m3 before depositing about 3 km from its starting point. Field investigations, pre- and post-flow aerial photographs as well as airborne laser scanning (LIDAR) were used to describe and investigate the flow. The most striking and unusual feature of this case study is the very pronounced erosion and bulking. We have made a detailed study of this aspect. Erosion and entrainment is quantified and the final volume of the debris flow is determined. We also present geometrical and sedimentological features of the final deposit. Based on the Fjærland data, we suggest that a self-sustaining mechanism might partly explain the extreme growth of debris flows traversing soft terrain.  相似文献   

13.
Guo  Xiaojun  Li  Yong  Chen  Xingchang  Zhang  Ju  Sun  Yuqing 《Landslides》2021,18(7):2427-2443

A channelized debris flow/flood generally originates from initial gully erosion by superficial runoff that evolves rapidly into massive erosion of the channel bed. Knowledge of the formation conditions of such events is crucial for accurate forecasting, and determination of rainfall and runoff thresholds for such hazards is a primary concern following a strong earthquake. This work proposed a framework for debris flow/flood formation at the watershed scale in two watersheds (area: 2.4 and 32.4 km2) in the Wenchuan Earthquake area (China). The critical runoff and rainfall conditions required for debris flow/flood formation were simulated and their annual variations investigated. Ultimately, the runoff conditions required for debris flow/flood formation in the two studied watersheds were calculated on an annual basis and found to increase in time. Similarly, following consideration of three different rainfall types, critical rainfall conditions were proposed that also showed an increasing tendency. The increase of rainfall and runoff conditions for debris flow/flood formation is attributable to both the recovery of vegetation and the reduction of source materials. In comparison with actual monitored flow behaviors and previously proposed rainfall thresholds, the results showed strong consistency and high forecasting efficiency.

  相似文献   

14.
Zhang  Yue  Wang  Ying  Zhang  Yunxia  Luan  Qingzu  Liu  Heping 《Natural Hazards》2021,105(1):967-981

Flash flooding is one of the most devastating natural disasters in China. A quantitative flash flood hazard assessment is important for saving human lives and reducing economic losses. In this study, integrated rainfall–runoff modeling (HEC-HMS) and hydraulic modeling (FLO-2D) schemes were used to assess flash flood inundation areas and depths under 5-year, 10-year, 25-year, 50-year, 100-year, 200-year, 500-year and 1000-year rainfall scenarios in a mountainous basin (Hadahe River Basin, HRB) in northern China. The overall flash flood hazard in HRB is high. Under the eight rainfall scenarios, the total flooded area ranged from 6 to 8.73 km2; the flash flood inundation areas with depths of 1–2 m, 2–3 m, and over 3 m was 1.53–2.69 km2, 0.63–1.44 km2 and 0.33–1.11 km2, respectively; and these areas accounted for 25.5–30.8%, 10.5–16.5% and 5.5–12.7% of the whole flooded area. The total flooded area increases rapidly with the return period increasing from 5 to 200 years, and the increase gradient slows when the return period is greater than 200 years. In the downstream area of HRB, the flash flood area with inundation depths greater than 1 m accounted for 54–71% of the flooded area under the eight scenarios. In comparison to other areas in the HRB, the downstream area is at the highest risk given its extensive inundation and substantial property exposure. The quantitative hazard assessment framework presented in this study can be applied in other mountainous basins for flash flood defense and disaster management purposes.

  相似文献   

15.
《International Geology Review》2012,54(14):1861-1876
Currently mechanisms for the onset of the widespread aeolian dust accumulation in the Chinese Loess Plateau since 8–7 Ma remain elusive. In this study, we compile 11 records of climate (14–7 Ma) and tectonic activity of the Tibetan Plateau and its adjacent areas (15–6 Ma). The results suggest that strong tectonic activity in the northeastern Tibetan Plateau has produced massive debris and dust, which was deposited in the piedmont basins and reworked by weathering and fluviolacustrine erosion. At the same time, global cooling and uplift of the Tibetan Plateau over the period of 14–7 Ma intensified the East Asian winter monsoon and westerly winds (westerlies) while weakening the Asian summer monsoon, which led to the spread of dry land vegetation and aridification in interior China. Sediments in the piedmont basins were then exposed in the aridity and transported by the westerlies to the Chinese Loess Plateau and the North Pacific. We suggest that tectonic activity in the northeastern Tibetan Plateau and shifting global climate together triggered the widespread aeolian dust accumulation in the Chinese Loess Plateau and the North Pacific since 8–7 Ma.  相似文献   

16.
Based on data from two runoff plots and ten stations in hilly loess region Dalihe drainage basin ranging in area from 0.0006 to 3983 km2 on the Loess Plateau, the relationship between mean annual specific sediment yield (Y s) and drainage area (A) is studied, which is different from those for many other drainage areas of the world, neither at the scale of whole basin nor at local scale on the Loess Plateau. With increasing drainage area, the mean annual specific sediment yield experiences two peak values: the first peak value appears at 0.00408 km2 in area corresponding to the whole slope surface, and the second peak value appears at 96.1 km2 in area. The non-linear variation in the Y sA can be explained as follows: the first peak value can be explained by the abrupt increase in slope gradient and flow shear stress resulting in highly increased sediment concentration and specific sediment yield. And the second peak value can be explained by the combined influence of flow shear stress and drainage density, represented by dimensionless variable Ω.  相似文献   

17.
The Ms8.0 Wenchuan earthquake that occurred on 12 May 2008 in southwestern China and triggered numerous landslides is one of the stronger ones in the steep eastern margins of the Tibetan Plateau. The surfaces of these landslides have recovered gradually with vegetation, which provide useful information about the evolution of geologic environment as well as the long-term assessment of landslides after earthquake. The Mianyuanhe watershed shows many co-seismic landslides. The active fault passing through its center is selected as a study area aiming to analyze the annual surface recovery rate (SRR) of landslides by interpretation of remote-sensing images in five periods from 2008 to 2013. The results are here described. (1) Although a large amount of loose deposits were transformed into debris flows, the surfaces of the landslides recovered rapidly with vegetation and almost no landslides occurred at new sites after the Wenchuan earthquake. In the year 2008, the exposed surface projected area (ESPA) of the landslides showed a total area of 56.3 km2 and covered 28.9 % of the study area, which was reduced rapidly to 19.1 % in 2011 and 15.8 % in 2013. (2) The study area was divided into four geologic units, including clastic rocks, melange zone, carbonate rocks, and magmatic rocks. Smaller ESPAs and higher SRRs were found in the former two units versus the latter ones. (3) A single large landslide shows an SRR lower than a group of smaller ones having an equal total surface, while the SRRs of debris flows are lower than those of rockfalls and landslides. (4) The vegetation cover would return to the pre-earthquake level in 2020 approximately, which indicates that the impact of the Wenchuan earthquake on landslides and debris-flows activities would cease almost completely.  相似文献   

18.
The Longxi river basin with the city of Dujiangyan, in the Sichuan province of South West China, belongs to the seismic area of the May 12, 2008 Wenchuan earthquake. Lots of loose co-seismic materials were present on the slopes, which in later years served as source material for rainfall-induced debris flows. A total of 12 debris flows, were triggered by heavy rainfall on August 13, 2010 in the study area. The FLO-2D numerical analysis software was adopted to simulate debris flows intensity, including movement velocities and maximum flow depths. A comparison of the measured fan spreading with the simulation results, the evaluation parameter Ω was used to verify accuracy of simulation, the results show Ω values ranging between 1.37 and 1.65 indicating relative good simulation results. This study also estimated the flood hydrograph for various recurrence intervals (20, 100, and 200 years, respectively) to perform scenario simulations of debris flows, and followed Swiss and Austrian standards to establish a debris flow hazard classification model on the basis of a combination of the debris flow intensity and the recurrence period. This study distinguishes three hazard classes: low, medium, and high. This proposed approach generated a debris flow hazard distribution map that could be used for disaster prevention in the Wenchuan earthquake-stricken area, South West China.  相似文献   

19.
Leh and surrounding region of the Ladakh mountain range in the trans-Himalaya experienced multiple cloudbursts and associated flash floods during August 4–6, 2010. However, 12.8 mm/day rainfall recorded at the nearest meteorological station at Leh did not corroborate with the flood severity. For better understanding of this event, hydrological analysis and atmospheric modeling are carried out in tandem. Two small catchments (<3 km2) were studied along the stream continuum to assess the flood characteristics to identify the cloudburst impact zones. Peak flood discharges were estimated close to the head wall region and at the catchment outlet of the Leh town and the Sabu eastern tributary catchments. Storm runoff depth is estimated by developing a triangular hydrograph by using the known time base of the flood hydrograph. This triangular hydrographs have been transformed further into storm hydrographs to gain a better understanding of the storm duration by using the dimensionless hydrograph method at selected cross sections. Storm duration is estimated by using the relationship between time to peak and time of concentration of the catchment. The peak flood estimates ranged from 122(±35 %) m3/s for Leh town catchment (2.393 km2), 545(±35 %) m3/s for Sabu eastern tributary catchment (2.831 km2) to 1,070(±35 %) m3/sec for Sabu catchment (64.95 km2). To assess the atmospheric processes associated with this event, a triple nest simulation (27, 9 and 3 km) is performed using Advanced Research Weather Research and Forecasting (WRF) modeling system. The simulation does show the evolution of the event from August 4 to 6, 2010. Observation constraints, orographic responses, etc. make such analysis complex at such scale. Independent estimate by the atmospheric process model and the hydrological method shows the storm depth of 70 mm and 91.8(±35 %) mm, respectively, in catchment scale. Hydrological evaluation further refined the spatial and temporal extents of the cloudbursts in the respective catchments with an estimated storm depth of 209(±35 %) mm in 11.9 min and 320(±35 %) in 8.8 min occurring in an area of 0.842–1.601 km2, respectively. This study shows that the insight developed on the cloudburst phenomena by the atmospheric and the hydrological modeling is hugely constrained by the spatial and temporal scales of data used for the analysis. Apart from this, study also highlighted the regular occurrence of cloudburst events over this region in the recent past. Most of such events go unreported due to lack of monitoring mechanisms in the region and weaken our ability to understand these events in complete perspective.  相似文献   

20.
The total area of debris flow territories of the Russian Federation accounts for about 10% of the area of the country. The highest debris flow activity areas located in Kamchatka-Kuril, North Caucasus and Baikal debris flow provinces. The largest debris flow events connected with volcano eruptions. Maximum volume of debris flow deposits per one event reached 500 × 106 m3 (lahar formed during the eruption of Bezymyanny volcano in Kamchatka in 1956). In the mountains of the Greater Caucasus, the maximum volume of transported debris material reached 3 × 106 m3; the largest debris flows here had glacial reasons. In the Baikal debris flow province, the highest debris flow activity located in the ridges of the Baikal rift zone (the East Sayan Mountains, the Khamar-Daban Ridge and the ridges of the Stanovoye Highland). Spatial features of debris flow processes within the territory of Russia are analyzed, and the map of Debris Flow Hazard in Russia is presented. We classified the debris flow hazard areas into 2 zones, 6 regions and 15 provinces. Warm and cold zones are distinguished. The warm zone covers mountainous areas within the southern part of Russia with temperate climate; rain-induced debris flows are predominant there. The cold zone includes mountainous areas with subarctic and arctic climate; they are characterized by a short warm period, the occurrence of permafrost, as well as the predominance of slush flows. Debris flow events are described for each province. We collected a list of remarkable debris flow events with some parameters of their magnitude and impact. Due to climate change, the characteristics of debris flows will change in the future. Availability of maps and information from previous events will allow to analyze the new cases of debris flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号