首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
Hualalai Volcano, Hawaii, is best known for the abundant and varied xenoliths included in the historic 1800 Kaupulehu alkalic basalt flow. Xenoliths, which range in composition from dunite to anorthosite, are concentrated at 915-m elevation in the flow. Rare cumulate ultramafic xenoliths, which include websterite, olivine websterite, wehrlite, and clinopyroxenite, display complex pyroxene exsolution textures that indicate slow cooling. Websterite, olivine websterite, and one wehrlite are spinel-bearing orthopyroxene +olivine cumulates with intercumulus clinopyroxene +plagioclase. Two wehrlite samples and clinopyroxenite are spinel-bearing olivine cumulates with intercumulus clinopyroxene+orthopyroxene + plagioclase. Two-pyroxene geothermometry calculations, based on reconstructed pyroxene compositions, indicate that crystallization temperatures range from 1225° to 1350° C. Migration or unmixing of clinopyroxene and orthopyroxene stopped between 1045° and 1090° C. Comparisons of the abundance of K2O in plagioclase and the abundances of TiO2 and Fe2O3in spinel of xenoliths and mid-ocean ridge basalt, and a single 87Sr/ 86Sr determination, indicate that these Hualalai xenoliths are unrelated to mid-ocean ridge basalt. Similarity between the crystallization sequence of these xenoliths and the experimental crystallization sequence of a Hawaiian olivine tholeiite suggest that the parental magma of the xenoliths is Hualalai tholeiitic basalt. Xenoliths probably crystallized between about 4.5 and 9 kb. The 155°–230° C of cooling which took place over about 120 ka — the age of the youngest Hualalai tholeiitic basalt — yield maximum cooling rates of 1.3×10–3–1.91×10–3 °C/yr. Hualalai ultramafic xenoliths with exsolved pyroxenes crystallized from Hualalai tholeiitic basalt and accumulated in a magma reservoir located between 13 and 28 km below sealevel. We suspect that this reservoir occurs just below the base of the oceanic crust at about 19 km below sealevel.  相似文献   

2.
We found fine-grained Fe-rich orthopyroxene-rich xenoliths (mainly orthopyroxenite) containing partially digested dunite fragments of Group I from Takashima, Southwest Japan. Orthopyroxenite veinlets, some of which contain plagioclase at the center, also replace olivine in dunite and wehrlite xenoliths of Group I. This shows high reactivity with respect to olivine of the melt involved in orthopyroxenite formation, indicating its high SiO2 activity. The secondary orthopyroxene of this type is characterized by low Mg# [= Mg/(Mg + total Fe) atomic ratio] (down to 0.73) and high Al2O3 contents (5–6 wt%). It is different in chemistry from other secondary orthopyroxenes found in peridotite xenoliths derived from the mantle wedge. Clinopyroxenes in the Fe-rich orthopyroxenite show a convex-upward REE pattern with a crest around Sm. This pattern is strikingly similar to that of clinopyroxenes of Group II pyroxenite xenoliths and of phenocrystal and xenocrystal clinopyroxenes, indicating involvement of similar alkali basaltic melts. The Fe-rich orthopyroxenite xenoliths from Takashima formed by reaction between evolved alkali basalt melt and mantle olivine; alkali basalt initially slightly undersaturated in silica might have evolved to silica-oversaturated compositions by fractional crystallization at high-pressure conditions. The Fe-rich orthopyroxenites occur as dikes within the uppermost mantle composed of dunite and wehrlite overlying pockets of Group II pyroxenites. The orthopyroxene-rich pyroxenites of this type are possibly common in the uppermost mantle beneath continental rift zones where alkali basalt magmas have been prevalent.  相似文献   

3.
Granulite xenoliths within alkali olivine basalts of the Pali-Aike volcanic field, southern Chile, contain the mineral assemblage orthopyroxene + clinopyroxene + plagioclase + olivine + green spinel. These granulites are thought to be accidental inclusions of the lower crust incorporated in the mantle-derived basalt during its rise to the surface. Symplectic intergrowths of pyroxene and spinel developed between olivine and plagioclase imply that the reaction olivine+plagioclase = Al-orthopyroxene + Al-clinopyroxene + spinel (1) occurred during subsolidus cooling and recrystallization of a gabbroic protolith of the granulites.Examination of fluid inclusions in the granulites indicates the ubiquitous presence of an essentially pure CO2 fluid phase. Inclusions of three different parageneses have been recognized: Type I inclusions occur along exsolution lamellae in clinopyroxene and are thought to represent precipitation of structurally-bound C or CO2 during cooling of the gabbro. These are considered the most primary inclusions present. Type II inclusions occur as evenly distributed clusters not associated with any fractures. These inclusions probably represent entrapment of a free fluid phase during recrystallization of the host grains. IIa inclusions are found in granoblastic grains and have densities of 0.68–0.88 g/cm3. Higher density (=0.90–1.02 g/cm3) IIb inclusions occur only in symplectite phases. Secondary Type III CO2+glass inclusions with =0.47–0.78 g/cm3 occur along healed fractures where basalt has penetrated the xenoliths. Type III inclusions appear related to exsolution of CO2 from the host basalt during its ascent to the surface. These data suggest that CO2 is an important constituent of the lower crust under conditions of granulite facies metamorphism, indicated by Type I and II fluid inclusions, and of the mantle, as indicated by Type III inclusions.Correlation of fluid inclusion densities with P-T conditions calculated from both two-pyroxene geothermometry and reation (1) indicate emplacement of a gabbroic pluton at 1,200–1,300° C, 4–6 kb; cooling was accompanied by a slight increase in pressure due to crustal thickening, and symplectite formation occurred at 850±35° C, 5–7 kb. Capture of the xenoliths by the basalt resulted in heating of the granulites, and CO2 from the basalt was continuously entrapped by the xenoliths over the range 1,000–1,200° C, 4–6 kb. Examination of fluid inclusions of different generations can thus be used in conjunction with other petrologic data to place tight constraints on the specific P-T path followed by the granulite suite, in addition to indicating the nature of the fluid phase present at depth.  相似文献   

4.
We have studied melt and fluid inclusions in minerals from alkali basalts, mantle xenoliths, and dawsonite-bearing sandstones from the Shuangliao volcanic field in southern Songliao Basin, Northeast China. The inclusions have been investigated using petrographic, geochemical, and laser Raman spectroscopic techniques. Volcanic rocks of the Shuangliao field are predominantly alkali olivine basalts that contain rare mantle xenoliths. Silicate melt and fluid inclusions are common in both olivine phenocrysts and the mantle xenoliths. The fluid inclusions are mainly composed of CO2 with small amounts of CO, CH4, N2, and H2O, which is consistent with an upper mantle origin. CO2 gas reservoirs in the southern Songliao Basin are mostly derived from a mantle–magmatic source. Coeval fluid-inclusion homogenization temperatures, coupled with the thermal burial history, show that the CO2 gas reservoirs in the southern Songliao Basin are Cenozoic (40–63 Ma) and coeval with the magmatism in the Shuangliao volcanic field. Despite the relatively small scale of this volcanic activity, it released large amounts of CO2. Much of the magma was not erupted, and CO2- and H2O-rich magma was probably intruded into the basin along deep faults, acting as a major source of inorganic CO2 gas in the southern Songliao Basin.  相似文献   

5.
Two picrite flows from the SW rift zone of Mauna Loa containxenoliths of dunite, harzburgite, lherzolite, plagioclase-bearinglherzolite and harzburgite, troctolite, gabbro, olivine gabbro,and gabbronorite. Textures and olivine compositions precludea mantle source for the xenoliths, and rare earth element concentrationsof xenoliths and clinopyroxene indicate that the xenolith sourceis not old oceanic crust, but rather a Hawaiian, tholeiitic-stagemagma. Pyroxene compositions, phase assemblages and texturalrelationships in xenoliths indicate at least two different crystallizationsequences. Calculations using the pMELTS algorithm show thatthe two sequences result from crystallization of primitive MaunaLoa magmas at 6 kbar and 2 kbar. Independent calculations ofolivine Ni–Fo compositional variability in the plagioclase-bearingxenoliths over these crystallization sequences are consistentwith observed olivine compositional variability. Two parentsof similar bulk composition, but which vary in Ni content, arenecessary to explain the olivine compositional variability inthe dunite and plagioclase-free peridotitic xenoliths. Xenolithsprobably crystallized in a small magma storage area beneaththe rift zone, rather than the large sub-caldera magma reservoir.Primitive, picritic magmas are introduced to isolated rift zonestorage areas during periods of high magma flux. Subsequenteruptions reoccupy these areas, and entrain and transport xenolithsto the surface. KEY WORDS: xenolith; Hawaii; volcano plumbing; mineral composition; picrite  相似文献   

6.
Seventeen upper-mantle ultramafic xenoliths from the Lower Quaternary Tal Khodr Imtan cinder cone in southern Syria have revealed a dominant protogranular texture of nine spinel lherzolites, two spinel harzburgites, four spinel dunites, one spinel olivine websterite, and one spinel clinopyroxenite. The lherzolites, harzburgites, and dunites contain Cr-diopside and brown-red picotite, with a basanitic host rock; the websterite and clinopyroxenite contain Ti-Al-augite and Cr-hercynite. A lherzolite to dunite depletion trend is shown in the abundance of intermediate- and lightrare-earth elements (IREE and LREE) and from analytical data of dunitic olivine, with Ca, Al, Fe, Cr, and Si being the most depleted elements. The depletion probably resulted from successive partial melting. The scoriaceous basanite shows enrichments in REE and trace elements from a plume; the basanitic coating (around ultramafic xenoliths) increases in Mg/Mg+Fe+2 and concentrations of Al2O3, TiO2, and Na2O by contamination from peridotitic olivine, and also from eclogite-gabbro and nephelinite near the bottom of the rifted crust.

Differences in the REE and trace-element concentrations among the peridotite xenoliths, the basanite host rock, and websterite indicate at least three different depths for their parent sources. The ultramafic inclusions in the basanitic host rock, as well as xenoliths in a carbonatite dike, suggest a deeper source for the carbonatite magma. At least part of the enrichment of the plume probably was accomplished by the subducted Tethys oceanic crust, suboceanic litho-sphere, and eclogite-gabbro. The thick plateau basalt in southern Syria indicates heavy and deep fracturing, and the extrusions of successive magmas from the upper mantle created a stretching and thinning in the continental crust. The proximity of this plateau basalt area to the Dead Sea-Jordan River Valley Rift, together with the source of the ultramafic xenoliths, points to a possible close relationship between the Red Sea Rift and the fracturing (offshoot rifting) in southern Syria.  相似文献   

7.
Spinel-lherzolite xenoliths in alkali basalts from eastern China have porphyroclastic to equigranular textures displaying varying degrees of deformation and subsolidus re-equilibration. The proportions of minerals in these xenoliths vary from 52 to 72% homogeneous olivine (Fo88-91); 11 to 26% orthopyroxene (Wo0.9.1.6; En88-90; Fs8.7.10.7), with minor discontinuous variations of Al2O3, FeO, and CaO; 6 to 19% clinopyroxene (Wo43.47; En49.51; Fs3.7.6.7); and 1 to 5% spinel, with similar Mg# (79.6 to 82.6), but wider variations of Al2O3 and Cr2O3 (100Cr/(Cr + Al + Fe3+) = 8.1 to 23.6). Although previous trace-element and isotopic studies have shown that at least two distinctly different mantle sources were sampled by Cenozoic basalts, mineralogical heterogeneities seem to be minor within the spinel-peridotite-facies lithosphere beneath eastern China.

These xenoliths experienced limited interaction with the host basaltic magma during eruption. Symplectites of secondary, minute silicates, titanomagnetite, and sulfide have replaced orthopyroxene—and to a lesser extent olivine—at the contact with the basalt. The spinel in the margin of the xenolith is continuously zoned by substitutions of Fe3O4 (magnetite) and Fe2TiO4 (ulvospinel) for MgAl2O3 (spinel), and is rimmed by titanomagnetite with a sharp boundary. However, the compositions of the interior clinopyroxenes were commonly modified by metasomatic partial melting, which resulted in “spongy-textured” rinds on primary clinopyroxene. This secondary assemblage is composed mainly of a refractory, jadeite-poor clinopyroxene, which is largely in optica! continuity with the primary clinopyroxene in addition to interstitial feldspars, with minor titanomagnetite and Fe-Ni sulfides. This assemblage was produced by the introduction of K-rich fluids from the enclosing basaltic magma. The intensity of these secondary reactions appears to have been a function of the residence time of the xenolith in the host basalt. Therefore, all secondary alteration of both external and internal primary minerals in these xenoliths are the result of near-surface metasomatic processes, rather than of mantle phenomena.  相似文献   

8.
Fe-rich dunite xenoliths within the Kimberley kimberlites compriseolivine neoblasts with minor elongated, parallel-oriented ilmenite,and rarely olivine porphyroclasts and spinel. Compared withtypical mantle peridotites, olivines in the Fe-rich duniteshave lower forsterite (Fo87–89) and NiO contents (1300–2800ppm), which precludes a restitic origin for the dunites. Chrome-richspinels are remnants of a metasomatic reaction that producedilmenite and phlogopite. Trace element compositions differ betweenporphyroclastic and neoblastic olivine, the latter having higherTi, V, Cr and Ni and lower Zn, Zr and Nb contents, documentingtheir different origins. The dunites have high 187Os/ 188Osratios (0·11–0·15) that result in youngmodel ages for most samples, whereas three samples show isotopicmixtures between Phanerozoic neoblasts and ancient porphyroclasticmaterial. Most Fe-rich dunite xenoliths are interpreted to berecrystallized cumulates related to fractional crystallizationof Jurassic Karoo flood basalt magmatism, whereas the porphyroclastsare interpreted to be remnants from a much earlier (probablyArchaean Ventersdorp) magmatic episode. The calculated parentalmagma for the most primitive olivine neoblasts in the Fe-richdunites is similar to low-Ti Karoo basalts. Modelling the crystalfractionation of the inferred parental magma with pMELTS yieldselement fractionation trends that mirror the element variationof primitive low-Ti Karoo basalts. KEY WORDS: dunite xenoliths; fractional crystallization; Karoo; large igneous province; pMELTS; Re–Os; trace elements  相似文献   

9.
The chemical compositions of melt inclusions in a primitive and an evolved basalt recovered from the mid-Atlantic ridge south of the Kane Fracture Zone (23°–24°N) are determined. The melt inclusions are primitive in composition (0.633–0.747 molar Mg/(Mg+Fe2+), 1.01–0.68 wt% TiO2) and are comparable to other proposed parental magmas except in having higher Al2O3 and lower CaO. The primitive melt inclusion compositions indicate that the most primitive magmas erupted in this region are not near primary magma compositions. Olivine and plagioclase microphenocrysts are close to exchange equilibrium with their respective basalt glasses, whose compositions are displaced toward olivine from 1 atm three phase saturation. The most primitive melt inclusion compositions are close to exchange equilibrium with the anorthitic cores of zoned plagioclases (An78.3-An83.1; the hosts for the melt inclusions in plagioclase) and with olivines more forsteritic (Fo89-Fo91) than the olivine microphenocrysts (the hosts for the melt inclusions in olivine). Xenocrystic olivine analyzed is Fo89 but contains no melt inclusions. These observations indicate that olivines have exchanged components with the melt after melt inclusion entrapment, whereas plagioclase compositions have remained the same since melt inclusion entrapment. Common denominator element ratio diagrams and oxide versus oxide variation diagrams show that the melt inclusion compositions, which represent liquids higher along the liquid line of descent, are related to the glass compositions by the fractionation of olivine, plagioclase and clinopyroxene (absent from the mincral assemblage), probably occurring at elevated pressures. A model is proposed whereby clinopyroxene segregates from the melt at elevated pressures (to account for its absence in the erupted lavas that have the chemical imprint of clinopyroxene fractionation). Zoned plagioclases in the erupted lavas are thought to be survivors of decompressional melting during magma ascent. Since similar primitive melt inclusions occur in olivine microphenocrysts and in the cores of zoned plagioclases, any model must account for all phases present.  相似文献   

10.
Large pyroclastic rhyolites are snapshots of evolving magma bodies, and preserved in their eruptive pyroclasts is a record of evolution up to the time of eruption. Here we focus on the conditions and processes in the Oruanui magma that erupted at 26.5 ka from Taupo Volcano, New Zealand. The 530 km3 (void-free) of material erupted in the Oruanui event is comparable in size to the Bishop Tuff in California, but differs in that rhyolitic pumice and glass compositions, although variable, did not change systematically with eruption order. We measured the concentrations of H2O, CO2 and major and trace elements in zoned phenocrysts and melt inclusions from individual pumice clasts covering the range from early to late erupted units. We also used cathodoluminescence imaging to infer growth histories of quartz phenocrysts. For quartz-hosted inclusions, we studied both fully enclosed melt inclusions and reentrants (connecting to host melt through a small opening). The textures and compositions of inclusions and phenocrysts reflect complex pre-eruptive processes of incomplete assimilation/partial melting, crystallization differentiation, magma mixing and gas saturation. ‘Restitic’ quartz occurs in seven of eight pumice clasts studied. Variations in dissolved H2O and CO2 in quartz-hosted melt inclusions reflect gas saturation in the Oruanui magma and crystallization depths of ∼3.5–7 km. Based on variations of dissolved H2O and CO2 in reentrants, the amount of exsolved gas at the beginning of eruption increased with depth, corresponding to decreasing density with depth. Pre-eruptive mixing of magma with varying gas content implies variations in magma bulk density that would have driven convective mixing. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

11.
About 12.3 km3 of basaltic magma were erupted from the Lakagigar fissure in Iceland in 1783, which may have been derived from the high-level reservoir of Grimsvotn central volcano, by lateral flow within the rifted crust. We have studied the petrology of quenched, glassy tephra from sections through pyroclastic cones along the fissure. The chemical composition of matrix glass of the 1783 tephra is heterogeneous and ranges from olivine tholeiite to Fe–Ti rich basalt, but the most common magma erupted is quartz tholeiite (Mg#43.6 to 37.2). The tephra are characterized by low crystal content (5 to 9 vol%). Glass inclusions trapped in plagioclase and Fo86 to Fo75 olivine phenocrysts show a large range of compositions, from primitive olivine tholeiite (Mg#64.3), quartz tholeiite (Mg#43–37), to Fe–Ti basalts (Mg#33.5) which represent the most differentiated liquids and are trapped as rare melt inclusions in clinopyroxene. Both matrix glass and melt inclusion data indicate a chemically heterogeneous magma reservoir, with quartz tholeiite dominant. LREE-depleted olivine-tholeiite melt-inclusions in Mg-rich olivine and anorthitic-plagioclase phenocrysts may represent primitive magma batches ascending into the reservoir at the time of the eruption. Vesicularity of matrix glasses correlates with differentiation, ranging from 10 to 60 vol.% in evolved quartz-tholeiite glasses, whereas olivine-tholeiite glasses contain less than 10 vol.% vesicles. FTIR analyses of olivine-tholeiite melt-inclusions indicate concentrations of 0.47 wt% H2O and 430 to 510 ppm for CO2. Chlorine in glass inclusions and matrix glasses increases from 50 ppm in primitive tholeiite to 230 ppm in Fe–Ti basalts, without clear evidence of degassing. Melt inclusion analyses show that sulfur varies from 915 ppm to 1970 ppm, as total FeO* increases from 9 to 13.5 wt%. Sulfur degassing correlates both with vesicularity and magma composition. Thus sulfur in matrix glasses decreases from 1490 ppm to 500 ppm, as Mg # decreases from 47 to 37 and vesicularity of the magma strongly increases. These results indicate loss of at least 75% of sulfur during the eruption. The correlation of low sulfur content in matrix glasses with high vesicularity is regarded as evidence of the control of a major exsolving volatile phase on the degassing efficiency of the magma. Our model is consistent a quasi-permanent CO2 flux through the shallow-level magmatic reservoir of Grimsvotn. Following magma withdrawal from the reservoir and during eruption from the Lakagigar fissure, sulfur degassing was controlled by inherent CO2-induced vesicularity of the magma.  相似文献   

12.
The rocks of the Manu'a Islands are predominantly olivine basalt with lesser amounts of picrite basalt (both ankaramite and oceanite), basalt, hawaiite, olivine gabbro, basaltic lapilli tuff, and ash. Alkali silica ratios obtained from chemical analyses of twenty widely selected samples place the rocks in the alkali basalt suite. All of the samples are also high in titanium. Plots of the chemical analyses, including samples from nearby Tutuila Island, show a progressive enrichment in alkalis. The occurrence of hawaiite and picrite basalt indicates that a primitive alkalic olivine basalt magma was undergoing differentiation. The most important factor in this process was crystal settling, especially of olivine. The dunite xenoliths in the late-stage rocks of Ta'u Island probably came from a residual olivine layer near the bottom of the magma chamber. The magma did not become sufficiently silicic to produce the trachytic end-member of the series, which probably would have contained normative and possibly some modal quartz, as on Tutuila Island. With increasing silica content, iron and titanium generally decrease slightly, whereas alkalis increase.Hawaii Institute of Geophysics Contribution No. 237.  相似文献   

13.
Olivine clinopyroxenite xenoliths in the Oslo Rift,SE Norway   总被引:1,自引:0,他引:1  
Olivine clinopyroxenite xenoliths in a basalt flow at Krokskogen in the Oslo rift consist mainly of Al-Ti-rich clinopyroxene and alteration products after olivine (possibly also orthopyroxene). The clinopyroxene contains primary inclusions of Cr-Al-bearing titanomagnetite, pyrite and devitrified glass, and secondary fluid inclusions rich in CO2. On the basis of petrography, mineral compositions and bulk major and trace element chemistry, it is concluded that the xenoliths represent cumulates with about 5% trapped liquid, formed from a mildly alkaline basaltic magma. Microthermometrical analysis of secondary or pseudosecondary fluid inclusions give a minimum pressure of formation of 5.5 to 6 kbars, that is a depth greater than 16–17 km. The host lava has initial Nd=+4.16±0.17 and Sr=–5.50±0.26, which is believed to reflect the isotopic composition of the lithospheric mantle source region under south Norway in early Permian time. The isotopic character of the magma which gave rise to the xenoliths is preserved in clinopyroxenes which have Nd t =+1.9 to +2.6 and Sr t = –1.1 to –1.8. The isotopic differences between the host magma and the xenoliths reflect some degree of crustal contamination of the xenolith's parent magma.The xenoliths of this study represent an important source of information about the large masses of dense cumulates found at depth in the crust under the Oslo rift.  相似文献   

14.
Group II xenoliths, corresponding to the lithology of dunite, wehrlite to olivine clinopyroxenite and olivine websterite to websterite, occur in Pleisto-Holocene alkali basalts from Jeju Island, South Korea. The large grain size (up to 5?mm), moderate mg# [=100?×?Mg/(Mg?+?Fetotal) atomic ratio] of olivine (79–82) and pyroxenes (77–83), and absence of metamorphic textural features indicate that they are cumulates of igneous origin. Based on textural features, mineral equilibria and major and trace element variations, it can be inferred that the studied xenoliths were crystallized from basaltic melts enriched in incompatible trace elements and belong to the Jeju Pleisto-Holocene magma system. They appear to have been emplaced near the present Moho, an estimated 5–8?kbars beneath Jeju Island. Consolidation of cumulates was followed by infiltration of silica-enriched metasomatic melt, producing secondary orthopyroxenes at the expense of olivine. The metasomatic agent appears to have been a silica-enriched residual melt evolved from an initially slightly silica-undersaturated alkali basalt to silica-saturated compositions by fractional crystallization under relatively high pressure conditions. The result of this study indicates that relatively young olivine-bearing cumulates could have been metasomatized by a silica-enriched melt within underplates, suggesting that silica enrichment can occur in intraplate Moho-related rocks as well as in the upper mantle of the subarc area.  相似文献   

15.
Peridotite xenoliths from Grenada,Lesser Antilles Island Arc   总被引:2,自引:2,他引:0  
Ultramafic xenoliths comprising harzburgite, lherzolite (reacted harzburgite) and spinel-rich dunite, occur in alkali olivine basalts (M series) of Grenada in the Lesser Antilles island arc. Textures are protogranular, porphyroclastic and granular; the latter are restricted to dunites and areas of the harzburgites/lherzolites where interaction with host magma has occurred. Primary mineralogy comprises olivine, orthopyroxene, clinopyroxene, and spinel. Harzburgites are residual from a fractional partial melting event totaling ~22%. Infiltration of harzburgite by (and reaction with) basalt has produced: a wehrlite, with partial dissolution of primary spinel, an increase in the oxygen fugacity (ƒO2) from primary values 1–2 log ƒO2 units above the fayalite-magnetite-quartz (FMQ) buffer, to 2–2.5 log units above the buffer; reaction of orthopyroxene to form patches of intergrown olivine and clinopyroxene, and bronzite andesite glass (60 wt%, SiO2 18–20 wt% Al2O3 and 3–4 wt% Na2O) with flat to light rare earth element-depleted, chondrite-normalized abundances. Refertilisation of the mantle by reacting melts, producing a clinopyroxene-rich lithology, may form a source of ankaramitic (high-Ca) arc basalts.Editorial responsibility: T.L. Grove  相似文献   

16.
西藏罗布莎蛇绿岩中不同产出的纯橄岩及成因探讨   总被引:2,自引:2,他引:0  
罗布莎蛇绿岩中的纯橄岩有三种产出情况,除了与豆荚状铬铁矿伴生的薄壳状纯橄岩外,还有产在方辉橄榄岩底部被认为是堆晶岩的厚层状纯橄岩和方辉橄榄岩中的透镜状纯橄岩。厚层状纯橄岩约700~1000m厚,以橄榄石富镁(Fo93~95),单斜辉石低铝富镁(Al2O30.47%~0.85%,Mg#95~97),铬尖晶石高铬低镁(Cr#值平均77,Mg#平均51)为特征。该纯橄岩中的浸染状铬铁矿也是高铬低镁型,但Mg#值(平均59)高于厚层状纯橄岩的副矿物铬尖晶石。薄壳状纯橄岩与厚层状纯橄岩成分相近,其橄榄石Fo92~94,单斜辉石Al2O3<1%和Mg#95~97;铬尖晶石的Cr#值平均71,Mg#值平均52。与薄壳状纯橄岩伴生的块状铬铁矿为高镁高铬型,但Mg#值(平均68)相对更高些,Cr#值平均79。透镜状纯橄岩的特征是橄榄石Fo(91~92)和铬尖晶石Cr#(60左右)均低于前两类纯橄岩,但单斜辉石的Al2O3(1.41%~1.71%)则高于前两者。透镜状纯橄岩的矿物成分与方辉橄榄岩重叠,两者为渐变过渡关系。研究对比表明,罗布莎厚层状纯橄岩不同于经典的蛇绿岩的超镁铁质堆晶岩,认为将其成因解释为拉斑玄武质熔体与地幔橄榄岩的反应较为合理。透镜状纯橄岩与方辉橄榄岩存在成生联系,可能是地幔橄榄岩高度部分熔融的产物,或熔体和方辉橄榄岩在原位发生反应的产物;薄壳状纯橄岩成因与厚层状纯橄岩相同,但与其相伴的块状铬铁矿是否由拉斑玄武质熔体与方辉橄榄岩反应形成,值得商榷。  相似文献   

17.
The 1800 Kaupulehu flow on Hualalai Volcano, Hawaii, containsabundant xcnoliths of dunitc, wehrlite, and olivine clinopyroxenitewith minor gabbro, troctolite, anorthosite, and wcbstcrite.The petrography and mineral compositions of 41 dunite, wehrlite,and olivine clinopyroxenite xenoliths have been studied, andclinopyroxene separates from eight of these have been analyzedfor Ba, K, Rb, Sr, rare earth elements, 87Sr/86Sr, and 143Nd/144Nd.Temperatures of equilibration obtained by olivine-spinel andpyroxene geothermometry range from 1000 to 1200 C. Mineralogicaldata combined with published fluid inclusion data indicate depthsof origin in the range of 8–30 km. The rarity of orthopyroxene, the presence of Fe-rich olivine(Fo8189) and clinopyroxene (Fs512), and the occurrenceof high TiO2 in spinel (0.9–2.8 wt.%) and clinopyroxene(035–1.33 wt%) all indicate that the xenoliths are cumulates,not residues from partial fusion. The separated clinopyrox-eneshave 87Sr/86Sr (0-70348.0-70367) and 143Nd/144Nd (0.51293–0.51299)values that are different from Sr and Nd isotope ratios of Pacificabyssal basalts (>0.7032 and >0-5130, respectively). Also,clinopyroxenes and spinels in the xenoliths have generally higherTiO2 contents (>O.35 and >0.91 wt.%, respectively) thantheir counterparts in abyssal cumulates (<0.40 and <0.70wt%,respectively). These differences indicate that the xenolithsare not a normal component of oceanic crust. Because the xenoliths and alkalic to transitional Hualalai lavashave similar values for Cr/(Cr + Al) and Cr/(Cr + Al + Fe3+)of spinels, 87Sr/86Sr of clinopyroxenes, and whole-rock 3He/4He,we conclude that the xenoliths are cumulates from such magmas.Multiple parental magmas for the xenoliths are indicated byslightly heterogeneous 87Sr/86Sr of clinopyroxene separates.Depths of formation of the xenoliths are estimated to be {smalltilde}8–30 km. Extensive crystallization of olivine in the absence of pyroxenesand plagioclase is a characteristic and prominent feature ofHawaiian tholeiitic magmatism. Dunite xenoliths crystallizedfrom alkalic magmas have previously been reported from MaunaKea Volcano (Atwill & Garcia, 1985) and Loihi Seamount (Clague,1988). Our finding of an alkalic signature for dunite xenolithsfrom a third Hawaiian volcano, Hualalai, shows that early olivinecrystallization should be considered a characteristic not justof Hawaiian tholeiitic magmatism but also of Hawaiian alkalicmagmatism.  相似文献   

18.
The Nandewar Mountains, N.S.W., Australia, are the remains of a Miocene continental alkaline volcano whose products range from olivine basalts to comendites and alkali rhyolites. Intermediate hawaiites, mugearites and benmoreites predominate in the shield, in which olivine basalts are rare, and the trachytic rocks form many intrusions into the shield. The Nandewar alkaline series shows extreme fractionation of a relatively differentiated alkali olivine basalt magma, saturated with silica, to yield extremely oversaturated peralkaline comendites and peraluminous alkali rhyolites. The nature of the ferromagnesian phases forming was controlled by low oxygen fugacities. Throughout the series clinopyroxenes range from diopsidic augite, through sodic ferrohedenbergites to hedenbergite-acmite solid solutions. Riebeckite-arfvedsonite solid solutions appear in the trachytes and comendites, and aenigmatite appears in some of the peralkaline rocks. The feldspars in the series fractionate from calcic labradorite through potash oligoclase and calcic anothoclase towards the minimum melting alkali feldspar composition, Ab65Or35. The compositions of the alkali rhyolites approach the minimum in the system SiO2-KAlSi3O8-NaAlSi3O8. All the mineralogical and chemical evidence points to the development of the Nandewar series by the processes of extreme crystallization differentiation of an alkali olivine basalt parent magma. No significant contamination occurred, xenoliths and xenocrysts are absent, and volatile transfer and metasomatism played a minor role.  相似文献   

19.
A variety of alkaline lavas from the Dunedin Volcano have been analyzed for the rare earth elements (REE) La-Yb. The compositions analyzed were: basalt-hawaiite-mugearite-benmoreite; basanite, nepheline hawaiite, nepheline trachyandesite and nepheline benmoreite; trachyte; phonolite. The series from basalt to mugearite shows continuous enrichment in the REE, consistent with a crystal fractionation model involving removal of olivine and clinopyroxene. From mugearite to benmoreite there is a depletion in the REE which is explained by the appearance of apatite as a liquidus phase. The chondrite normalized REE patterns for the phonolites are characterized by strong enrichment and fractionation coupled with a sharp depletion in Eu. Removal of plagioclase from benmoreite magma is suggested for the derivation of the phonolites. The series basanite-nepheline hawaiite, and basanite-nepheline hawaiite-nepheline benmoreite appear to be high pH2O analogues of the series basalt-ben-moreite, with enrichment of the REE being achieved by removal of clinopyroxene, kaersutite and olivine. Compared with other lavas the trachyte has low REE abundances and is characterized by a striking positive Eu anomaly.  相似文献   

20.
 We have investigated new samples from the Gees mantle xenolith suite (West Eifel), for which metasomatism by carbonatite melt has been suggested. The major metasomatic change is transformation of harzburgites into phlogopite-rich wehrlites. Silicate glasses are associated with all stages of transformation, and can be resolved into two major groups: a strongly undersaturated alkaline basanite similar to the host magma which infiltrated the xenoliths during ascent, and Si-Al-enriched, variably alkaline glass present exclusively within the xenoliths. Si-Al-rich glasses (up to 72 wt% SiO2 when associated with orthopyroxene (Opx) are usually interpreted in mantle xenoliths as products of decompressional breakdown of hydrous phases like amphibole. In the Gees suite, however, amphibole is not present, nor can the glass be related to phlogopite breakdown. The Si-Al-rich glass is compositionally similar to glasses occurring in many other xenolith suites including those related to carbonatite metasomatism. Petrographically the silicate glass is intimately associated with the metasomatic reactions in Gees, mainly conversion of harzburgite orthopyroxene to olivine + clinopyroxene. Both phases crystallize as microlites from the glass. The chemical composition of the Si-Al-enriched glass shows that it cannot be derived from decompressional melting of the Gees xenoliths, but must have been present prior to their entrainment in the host magma. Simple mass-balance calculations, based on modal analyses, yield a possible composition of the melt prior to ascent of the xenoliths, during which glass + microlite patches were modified by dissolution of olivine, orthopyroxene and spinel. This parental melt is a calc-alkaline andesite (55–60 wt% SiO2), characterized by high Al2O3 (ca. 18 wt%). The obtained composition is very similar to high-alumina, calc-alkaline melts that should form by AFC-type reactions between basalt and harzburgite wall rock according to the model of Kelemen (1990). Thus, we suggest that the Si-Al-enriched glasses of Gees, and possibly of other suites as well, are remnants of upper mantle hybrid melts, and that the Gees suite was metasomatized by silicate and not carbonatite melts. High-Mg, high-Ca composition of metasomatic olivine and clinopyroxene in mantle xenoliths have been explained by carbonatite metasomatism. As these features are also present in the Gees suite, we have calculated the equilibrium Ca contents of olivine and clinopyroxene using the QUI1F thermodynamical model, to show that they are a simple function of silica activity. High-Ca compositions are attained at low a SiO2 and can thus be produced during metasomatism by any melt that is Opx-undersaturated, irrespective of whether it is a carbonatite or a silicate melt. Such low a SiO2 is recorded by the microlites in the Gees Si-Al-rich glasses. Our results imply that xenolith suites cannot confidently be related to carbonatite metasomatism if the significance of silicate glasses, when present, is not investigated. Received: 2 March 1995 / Accepted: 12 June 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号