首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The surface wind field is an important factor controlling the surface mass balance of Antarctica. This paper focuses on the observed atmospheric circulation during summer of an Antarctic blue ice area in Queen Maud Land. Blue ice areas are characterised by a negative surface mass balance and henceforth provide an interesting location to study the influence of meteorological processes on large local mass balance gradients. During lapse conditions, synoptic forcing determines the surface-layer flow. No significant horizontal temperature gradient with coastal stations could be detected along isobaric surfaces, indicating weak or absent thermal wind. Observations performed at the coastal stations Halley and Georg von Neumayer show the pronounced effects of synoptic forcing. The surface winds in the valley of the blue ice area could be divided into two distinct flow patterns, occurring with about equal frequency during the experiment. Flow type I is associated with cyclonic activity at the coast, resulting in strong easterly winds, precipitation and drifting snow. Flow characteristics inside and outside of the valley are similar during these conditions. Flow type II occurs when a high pressure system develops in the Weddell Sea, weakening the free atmosphere geostrophic winds. A local circulation is able to develop inside the valley of the blue ice area during these tranquil conditions. The transition from flow type II to flow type I is associated with front-like phenomena inside the valley. Some simple theoretical considerations show that surface-layer stability and the upper air geostrophic wind determine the surface flow direction in the valley. Finally, the influence of the observed circulation on the energy and mass balance of the blue ice area is discussed.  相似文献   

2.
Boundary-layer measurements made from the Swedish icebreaker Oden during the Arctic Ocean Experiment 2001 (AOE-2001) are analysed. They refer mainly to ice drift in the central Arctic during the period 2–21 August 2001. On board Oden a remote sensing array with a wind profiler, cloud radar and a scanning microwave radiometer, and a regular weather station operated continuously; soundings were also released during research stations. Turbulence and profile measurements on an 18-m mast were deployed on the ice, along with two sodar systems, a microbarograph array and a tethered sounding system. Surface flux and meteorological stations were also deployed on nearby ice floes. There is a clear diurnal cycle in radiation and also in wind speed, cloud base and visibility. It is absent in temperature and humidity, probably due to the very strong control by melting/ freezing ice and snow. In the advection of warm air, latent heat of melting maintains the surface temperature at 0 °C, while with a negative energy balance the latent heat of freezing of the salty ocean water acts to maintain the surface temperature > −2 °C. The constant presence of water at the surface maintains a relative humidity close to 100%, and this is also often facilitated by an increasing specific humidity through the capping inversion, making entrainment a moisture source. This ensures cloudy conditions, with low cloud and fog prevailing most of the time. Intrusions of warm and moist air from beyond the ice edge are frequent, but the local Arctic boundary layer remains at a relatively constant temperature, and is shallow and well mixed with strong capping inversions. Power spectra of surface-layer wind speed sometimes show large variance at low frequency. A scanning radiometer provides a monitoring of the vertical thermal structure with a spatial and temporal resolution not seen before in the Arctic. There are often two inversions, an elevated main inversion and a weak surface inversion, and occasionally additional inversions occur. Enhanced entrainment across the main inversion appears to occur during frontal passages. Variance of the scanning radiometer temperatures occurs in large pulses rather than varying smoothly, and the height to the maximum variance appears to be a reasonable proxy for the boundary-layer depth.  相似文献   

3.
Abstract

Analysis of current, temperature and salinity records in the nearshore region of the Scotian Shelf during the Canadian Atlantic Storms Program (CASP), reveals that the inertial wave field is highly intermittent, with comparable amplitudes in the surface and deep layers. Clockwise current energy in the surface layer is concentrated at a frequency slightly below inertial, consistent with Doppler shifting by the strong mean current and/or straining by the mean flow shear, whereas the spectral peak in deep water is at the local inertial frequency. Clockwise coherence is high (γ2 ≥ 0.8) horizontally over the scale of the array (60 km × 120 km) and in the vertical, with upward phase propagation rates of 0.15–0.50 × 10?12 ms?1, inversely proportional to the local value of the Brunt Väisälä frequency. Clockwise current energy decreases in the onshore direction and appears to be completely inhibited on the 60‐m isobath.

A case study of the response to the CASP IOP 14 storm indicates that the inertial waves may be generated by a strong wind shift propagating onshore at a speed of 10 ms?1. On the eastern side of the array (Liscomb line), clockwise current oscillations propagate onshore in the surface layer at a rate (8.1 ± 0.9 m s?1) comparable with the speed of the atmospheric front, while waves in the pycnocline move offshore at a lower (internal wave) speed (1.8 m s?1). Furthermore the temperature and salinity fluctuations are in (out) of phase with longshore current in the deep (surface) layer. However, on the western side of the array (Halifax line), the inertial waves are more complex. A sharp steepening of phase lines at the coast indicates that the phase speed of clockwise current oscillations is considerably reduced and the evidence for offshore propagation of internal waves is less clear. The discrepancies between observations on the two lines suggest that the internal wave field is three‐dimensional.

Results of simple mixed‐layer models indicate that the inertial response near the surface is sensitive to the accurate definition of the local wind field, but not to certain model physics, such as the form of the decay term. The observations also show some qualitative similarities with models for two‐dimensional response to a moving front (e.g. Kundu, 1986), but the actual forcing terms are more complicated, based on IOP 14 wind measurements.  相似文献   

4.
导线积冰的云雾特征观测研究   总被引:11,自引:2,他引:9       下载免费PDF全文
导线积冰在贵州山区是常见的气象灾害, 导线积冰增长率与气象云雾因子密切相关。研究选择贵州西部、北部、中部3个积冰区进行了专门外场观测, 观测项目有:云滴谱、含水量、气温、风向、风速、导线上积冰的长径、短径。观测分析表明:贵州云滴浓度、特征平均直径没有显著性地区差异; 云滴平均浓度140~312个/cm3, 云滴算术平均直径、均立方根直径、中值体积直径分别为7.5 μm, 11.3 μm和20 μm; 14 μm以上大云滴浓度平均占云滴总浓度的12.5%, 但对含水量的贡献高达78%, 大滴与导线碰撞效率高, 大滴是导线积冰的关键因子; 云雾含水量平均0.20 g/m3; 在0~-6 ℃之间, 含水量随温度的降低而降低; 南北向导线积冰比东西向的积冰多; 导线积冰增长率与含水量的大小成正比, 风速超过3 m/s时, 积冰增长率与风速有较明显的正比关系。  相似文献   

5.
The air–water exchange of momentum and scalars (temperature and water vapour) is investigated using the Lake-Atmosphere Turbulent EXchange (LATEX) dataset. The wind waves and swell are found to affect the coupling between the water surface and the air differently. The surface-stress vector aligns with the wind velocity in the presence of wind waves, but a wide range of stress–wind misalignment angles is observed during swell. The momentum transport efficiency decreases when significant stress–wind misalignment is present, suggesting a strong influence of surface wave properties on surface drag. Based on this improved understanding of the role of wave–wind misalignment, a new relative wind speed for surface-layer similarity formulations is proposed and tested using the data. The new expression yields a value of the von Kármán constant (\(\kappa \)) of 0.38, compared to 0.36 when using the absolute wind speed, as well as reduced data fitting errors. Finally, the ratios of aerodynamic to scalar roughness lengths are computed and various existing models in the literature are tested using least-square fitting to the observed ratios. The tests are able to discriminate between the performance of various models; however, they also indicate that more investigations are required to understand the physics of scalar exchanges over waves.  相似文献   

6.
To estimate the sublimation rate of snow during relocation by wind, sizes and concentration of ice crystal fragments were measured at 6 levels in the lowest 1 m, during ten 10-min runs, in a nocturnal blizzard. Power-law functions of height described the decrease in mean particle diameter and concentration. The vertical gradient of water vapor, measured with a thermocouple psychrometer, was approximately linear from 0.2 to 1.0m above the surface. Evaporation of blowing snow over 3 km of transport distance was estimated to be 39% of transport rate, under conditions of the experiment.  相似文献   

7.
The aircraft-based experiment KABEG97 (Katabatic wind and boundary-layer front experiment around Greenland) was performed in April/May 1997. During the experiment, surface stations were installed at five positions on the ice sheet and in the tundra near Kangerlussuaq, West Greenland. A total of nine katabatic wind flights were performed during quite different synoptic situations and surface conditions, and low-level jets with wind speeds up to 25m s-1 were measured under strong synoptic forcing of the katabatic wind system. The KABEG data represent a unique data set for the investigation of katabatic winds. For the first time, high-resolution and accurate aircraft measurements can be used to investigate the three-dimensional structure of the katabatic wind system for a variety of synoptic situations.Surface station data show that a pronounced daily cycle of the near-surface wind is present for almost all days due to the nighttime development of the katabatic wind. In a detailed case study the stably-stratified boundary layer over the ice and the complex boundary-layer structure in the transition zone ice/tundra are investigated. The katabatic wind system is found to extend about 10 km over the tundra area and is associated with strong wind convergence and gravity waves. The investigation of the boundary-layer dynamics using the concept of a two-layer katabatic wind model yields the results that the katabatic flow is always a shooting flow and that the pure katabatic force is the main driving mechanism for the flow regime, although a considerable influence of the large-scale synoptic forcing is found as well.  相似文献   

8.
TheWesterlyAnomaliesovertheTropicalPacificandTheirDynamicalEfectontheENSOCyclesduring1980-1994①HuangRonghui(黄荣辉),ZangXiaoyun(...  相似文献   

9.
In this paper, the zonal wind anomalies in the lower troposphere over the tropical Pacific during 1980–1994 are analyzed by using the observed data. The results show that during the formation of the 1982/83, 1986/87 and 1991 / 92 ENSO events, there were the larger westerly anomalies in the lower troposphere over the equatorial Pacific. Moreover, it is explained by using the correlation analyses that the westerly anomalies over the equatorial Pacific could cause the warm episodes of the equatorial central and eastern Pacific. A simple air-sea coupled model is used to discuss theoretically the dynamical effect of the observed westerly anomalies of wind stress near the sea surface of the equatorial Pacific on the ENSO cycle occurred in the period of 1981–1983. It is shown by using the theoretical calculations of the equatorial oceanic Kelvin wave and Rossby waves responding to the forcing of the observed anomalies of zonal wind stress near the sea surface of the equatorial Pacific that the westerly anomalies of wind stress near the sea surface of the equatorial Pacific make significant dynamical effect on the ENSO cycles occurred in the period of 1982–1983.  相似文献   

10.
采用NCEP/NCAR逐月再分析资料、广西北部43个气象台站的温度、湿度、风、降水、导线覆冰等观测资料以及广西输电线路覆冰资料,建立雨凇覆冰厚度计算模型,并得出气象台站的历史覆冰厚度序列。采用数理统计和合成分析等方法研究典型覆冰年份的时空特征、环流背景及气象要素变化特征,结果发现:广西输电线路覆冰主要出现在冬季的桂北,并有逐年减轻的趋势,MannKendall突变检验表明,存在1个明显的突变点,出现在1985年;广西典型覆冰年份,500 hPa欧亚大陆中高纬地区呈明显的"两槽一脊"型,广西高空处于南支槽前,地面受冷高压脊控制;赤道中东太平洋,从夏季到秋季,海温由偏高转为偏低,到冬季SSTA维持为负距平,说明广西输电线路覆冰与LA NINA事件有较密切的关系。当日最低气温在0.2℃以下,风速5 m·s-1,并伴有雨凇和弱降水,低温寡照天气时容易出现覆冰。  相似文献   

11.
Summary Asa step in the development of a fully coupled regional model of the atmosphere-ice-ocean system, atmospheric and sea ice models have been adapted to a western Arctic domain centered on the Bering Strait. Lateral boundary conditions derived from operational analyses drive the models through simulations on grids having horizontal resolutions of 21 km and 7 km. Sensitivities to the presence of sea ice are large after only 48 hours, by which time the surface temperatures in the Bering and Chukchi Seas are 10–15°C higher without sea ice than with sea ice. The temperatures, in turn, modify the fields of sea level pressure, surface wind and precipitation. By influencing the surface wind stress through the static static stability, the surface state feeds back to the surface momentum exchange, ice/ocean transport, and the rate of formation of new ice. The results also show a resolution-dependence of the surface winds, precipitation rates and new ice formation rates, particularly in areas in which the coastal configuration and topography are spatially complex. The experiments will be augmented by the implementation of an ocean model on the same grids.With 12 Figures  相似文献   

12.
Profiles of wind and temperature have been observedabove the Greenland ice sheet, 90 km from its westernmargin, in July 1991. The terrain slopes downward tothe west. Measurements were performed with instrumentson a 30 m mast, combined with a Doppler SODAR and aRASS. Whereas the surface is usually at the meltingpoint, the temperatures in the free atmosphere areabove freezing. The depth of the boundary layer, in whichthe wind turns to the free atmosphere direction, is notmuch more than 100 m. The surface wind is always aboutfrom the southeast (hence with a downslope component),whereas winds from the southwest (with an upslopecomponent) often occur at the 100 m level.Mixing length profiles for momentum were estimatedby comparison of calculated and observed windprofiles. A good accordance between calculated andobserved wind speed was obtained. The neutralmixing length had a maximum of only a few metres, whichwas approached already at low height. The limiting valueis proportional to the 0.7-th power of the Froudenumber times a length scale obtained from thetemperature profile.  相似文献   

13.
A comprehensive planetary boundary-layer (PBL) and synoptic data set is used to isolate the mechanisms that determine the vertical shear of the horizontal wind in the convective mixed layer. To do this, we compare a fair-weather convective PBL with no vertical shear through the mixed layer (10 March 1992), with a day with substantial vertical shear in the north-south wind component (27 February). The approach involves evaluating the terms of the budget equations for the two components of the vertical shear of the horizontal wind; namely: the time-rate-of-change or time-tendency term, differential advection, the Coriolis terms (a thermal wind term and a shear term), and the second derivative of the vertical transport of horizontal momentum with respect to height (turbulent-transport term). The data, gathered during the 1992 STorm-scale Operational and Research Meteorology (STORM) Fronts Experiments Systems Test (FEST) field experiment, are from gust-probe aircraft horizontal legs and soundings, 915-MHz wind profilers, a 5-cm Doppler radar, radiosondes, and surface Portable Automated Mesonet (PAM) stations in a roughly 50 × 50 km boundary-layer array in north-eastern Kansas, nested in a mesoscale-to-synoptic array of radiosondes and surface data.We present evidence that the shear on 27 February is related to the rapid growth of the convective boundary layer. Computing the shear budget over a fixed depth (the final depth of the mixed layer), we find that the time-tendency term dominates, reflecting entrainment of high-shear air from above the boundary layer. We suggest that shear within the mixed layer occurs when the time-tendency term is sufficiently large that the shear-reduction terms – namely the turbulent-transport term and differential advection terms – cannot compensate. In contrast, the tendency term is small for the slowly-growing PBL of 10 March, resulting in a balance between the Coriolis terms and the turbulent-transport term. Thus, the thermal wind appears to influence mixed-layer shear only indirectly, through its role in determining the entrained shear.  相似文献   

14.
The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer(MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.  相似文献   

15.
利用PW1979海冰热力模式,考虑渤海的地理特点和气候特征,假设渤海为薄层海洋,引入二分法求解海冰表面温度。用该地区气候平均的云量、湿度、海平面气压和风速以及附近4站的月平均气温资料作为强迫场,模拟了渤海海冰的气候变化。模拟结果与逐年的海冰级数资料具有一致的变率,表明气温对海冰年际变化有重要影响。  相似文献   

16.
王丽吉  杨程 《气象学报》2018,76(1):62-77
利用太平洋地区台风过境期间6个热带气象站的高分辨率无线电探空资料,结合扩展经验正交函数(EEOF)展开,对热带下平流层行星波和重力波扰动进行了分离,给出了一种热带地区提取重力波扰动的新方案。对观测数据做EEOF展开后,选择表征行星尺度波动模态的特征向量和相应权重进行气象要素场的重建。结果显示,在不同的台风过程期间,温度、纬向风和经向风的重建扰动量显示出不同的动力学偏振关系:在准两年振荡(QBO)东风位相时与赤道开尔文波的偏振关系一致,而在准两年振荡西风位相时与混合罗斯贝-重力波(MRG)的偏振关系一致。把行星尺度波动模态从原始观测中剔除,得到新的扰动廓线,对其进行重力波垂直波数谱的谱型拟合。结果发现,与以往方法提取的重力波扰动相比,新方法所得谱型参数中特征垂直波长λ*在不同时期不同站点变化很小,稳定在1.7 km左右,且低频波数段谱斜率s的数值与理论假设1十分接近。综合其研究结果可以推测,用新方法提取的热带重力波扰动更加符合当前的理论垂直波数谱模型。   相似文献   

17.
Partitioning of volatile chemicals among the gas, liquid, and solid phases during freezing of liquid water in clouds can impact trace chemical distributions in the troposphere and in precipitation. We describe here a numerical model of this partitioning during the freezing of a supercooled liquid drop. Our model includes the time-dependent calculation of the coupled processes of crystallization kinetics, heat transport, and solute mass transport, for a freezing hydrometeor particle. We demonstrate the model for tracer partitioning during the freezing of a 1000 μm radius drop on a 100 μm ice substrate, under a few ambient condition scenarios. The model effectively simulates particle freezing and solute transport, yielding results that are qualitatively and quantitatively consistent with previous experimental and theoretical work. Results suggest that the ice shell formation time is governed by heat loss to air and not by dendrite propagation, and that the location of ice nucleation is not important to freezing times or the effective partitioning of chemical solutes. Even for the case of nucleation at the center of the drop, we found that dendrites propagated rapidly to form surface ice. Freezing then proceeded from the outside in. Results also indicate that the solid-liquid interfacial surface area is not important to freezing times or the effective partitioning of chemical solutes, and that the rate aspects of trapping are more important than equilibrium solid-liquid partitioning to the effective partitioning resulting from freezing.  相似文献   

18.
Radon is an excellent tracer for the study of transport processes in the lower atmospheric boundary layer. Analyses of the radon data measured on a 300-m meteorological tower at Philadelphia show that the diurnal variation of atmospheric turbulence is closely related to the meteorological variables. A model of variation of radon concentration with mean wind speed and low-level vertical temperature difference is derived. It indicates that radon concentration is inversely proportional to the mean wind speed and directly proportional to the temperature difference. These predictions are in good agreement with the measurements.  相似文献   

19.
The temporal and spatial variations in the surface albedo of the Vatnajökull ice cap, Iceland, are investigated. A time series of the surface albedo is composed for the summer of 1996 using satellite radiance measurements from the Advanced Very High Resolution Radiometer (AVHRR). This time series is compared with ground measurements carried out during a glacio-meteorological experiment during the same summer on the ice cap. The AVHRR is able to reproduce the development in time of the surface albedo fairly well. The large systematic differences found for some of the stations on the ice are attributed to sub-pixel-scale variations in the albedo. An attempt is made to confirm this hypothesis using satellite radiance measurements carried out by the Thematic Mapper (TM) and measurements made with a portable albedometer. The TM has a pixel size of 30 × 30 m whereas the pixel size of the AVHRR is 1 × 1 km. Although the TM measurements show greater variability in the albedo than do the AVHRR measurements, the large systematic difference remains. Measurements with the portable albedometer show a large spread in the albedo at sites with large systematic differences. This implies that the scale of the albedo variations is smaller than the scale of the AVHRR and TM pixels.  相似文献   

20.
 A coupled ocean-sea ice-atmosphere model is used to study interdecadal variability (∼40 years) of sea ice depth and concentration in the Greenland-Iceland-Norwegian Sea. This oceanic region is represented by a meridionally aligned channel on a β-plane with open zonal boundaries at 60 °N and 80 °N. The model consists of a one and a half layer reduced gravity ocean model, a thermodynamic/dynamic sea ice model and an energy balance model of the atmosphere. The coupled model is driven by prescribed surface wind stress, fluxes of heat, salt and ice at inflow points on the northern and southern open zonal boundaries and annual distribution of solar radiation. It is shown that the coupled model supports unforced modes of interdecadal oscillation resulting from a form of hydraulic control which regulates the total fluid volume in the oceanic active layer. The mechanism for the oscillations relies on the presence of three key features: (1) a region of intense oceanic entrainment located in the eastern part of the domain, (2) a vigorous southward flowing western boundary current, representing the East Greenland Current (EGC), which supports most of the meridional transport across the domain, and (3) a marked buoyancy contrast between the relatively salty domain interior and the much fresher western boundary region. During an oscillation excess water is pumped into the domain via entrainment, thereby creating an active layer depth anomaly, which then propagates westward via long baroclinic Rossby waves until it reaches the EGC where it is subsequently drained out of the domain across the southern open zonal boundary. As the depth anomaly traverses the basin, an anomalous geostrophic circulation is established in which cold fresh Arctic water enters the domain interior, and this eventually promotes enhanced thermodynamic sea ice growth. Consequently, the interdecadal oscillations of the coupled model are characterised by pulse periods, typically spanning 20 years, during which there is an abnormally large winter sea ice cover, separated by interpulse periods, lasting another 20 years, during which the winter sea ice extent is nearly uniform and significantly smaller than in a pulse maximum. The duration of the interpulse periods is dictated by the time it takes for the Rossby waves to traverse the basin. In addition to the interdecadal oscillation solution, the coupled ocean-sea ice-atmosphere model is found to also have a stable cyclostationary state, with no interannual variability. Stochastic forcing, in the form of randomly specified interannual anomalies of salinity (of maximum amplitude 0.1 ppt) or ice inflow (of maximum amplitude 0.1 Sv) at the northern open zonal boundary, in both cases is capable of driving the model from the cyclostationary state solution to the interdecadal variability one. Received: 16 August 1996 / Accepted: 27 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号