首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An analytical model for oscillating pair creation above the pulsar polar cap is presented in which the parallel electric field is treated as a large amplitude, superluminal, electrostatic wave. An exact formalism for such wave is derived in one dimension and applied to both the low-density regime in which the pair plasma density is much lower than the corotating charge density and the high-density regime in which the pair plasma density is much higher than the corotating charge density. In the low-density regime, which is relevant during the phase leading to a pair cascade, a parallel electric field develops resulting in a rapid acceleration of particles. The rapid acceleration leads to bursts of pair production and the system switches to the oscillatory phase, corresponding to the high-density regime, in which pairs oscillate with net drift motion in the direction of wave propagation. Oscillating pairs lead to a current that oscillates with large amplitude about the Goldreich–Julian current. The drift motion can be highly relativistic if the phase speed of large amplitude waves is moderately higher than the speed of light. Thus, the model predicts a relativistic outflow of pairs, a feature that is required for avoiding overheating of the pulsar polar cap and is also needed for the pulsar wind.  相似文献   

2.
Under a fully electromagnetic treatment, the threshold for excitation of the lower hybrid instability driven by solar wind electron heat flux is found to be much higher than that predicted by electrostatic approximation. For average solar wind conditions at 1 AU, the fully electromagnetic lower hybrid instability is excited when the core electron drift speed is about 8V A, whereV A is the Alfvén speed. The region between the Sun and 1 AU is expected to be more favourable than 1 AU for this instability.  相似文献   

3.
4.
We present a kinetic theory for boundary layers associated with MHD tangential discontinuities in a collisionless magnetized plasma such as those observed in the solar wind. The theory consists of finding self-consistent solutions of Vlasov's equation and Maxwell's equation for stationary, one-dimensional boundary layers separating two Maxwellian plasma states. Layers in which the current is carried by electrons are found to have a thickness of the order of a few electron gyroradii, but the drift speed of the current-carrying electrons is found to exceed the Alfvén speed, and accordingly such layers are not stable. Several types of layers, in which the current is carried by protons are discussed; in particular, we considered cases in which the magnetic field intensity and/or direction changed across the layer. In every case, the thickness was of the order of a few proton gyroradii and the field changed smoothly, although the characteristics depended somewhat on the boundary conditions. The drift speed was always less than the Alfvén speed, consistent with stability of such structures. Our results are consistent with the observations of boundary layers in the solar wind near 1 AU.  相似文献   

5.
Drag Instability     
With the ionization rate of neutral particles caused by cosmic rays and balanced by the recombination rate of ions for a cold, weakly ionized fluid threaded by stressed magnetic fields, we show that a local perturbation can evolve to a traveling wave with its perturbed quantities growing with time so long as the drift velocity between neutrals and ions is comparable to the Alfven speed of the fluid. Since the large drift velocity is one of the key assumptions to drive this instability, we name it the “drag instability”. We suggest that the drag instability might occur in the regions where magnetic fields are highly stressed such as a C-shock front or a collapsing proto-stellar cloud.  相似文献   

6.
A short summary of recent progress in measuring and understanding turbulence during magnetic reconnection in laboratory plasmas is given. Magnetic reconnection is considered as a primary process to dissipate magnetic energy in laboratory and astrophysical plasmas. A central question concerns why the observed reconnection rates are much faster than predictions made by classical theories, such as the Sweet–Parker model based on MHD with classical Spitzer resistivity. Often, the local resistivity is conjectured to be enhanced by turbulence to accelerate reconnection rates either in the context of the Sweet–Parker model or by facilitating setup of the Pestchek model. Measurements at a dedicated laboratory experiment, called MRX or Magnetic Reconnection Experiment, have indicated existence of strong electromagnetic turbulence in current sheets undergoing fast reconnection. The origin of the turbulence has been identified as right-hand polarized whistler waves, propagating obliquely to the reconnecting field, with a phase velocity comparable to the relative drift velocity. These waves are consistent with an obliquely propagating electromagnetic lower-hybrid drift instability driven by drift speeds large compared to the Alfven speed in high-beta plasmas. Interestingly, this instability may explain electromagnetic turbulence also observed in collisionless shocks, which are common in energetic astrophysical phenomena.  相似文献   

7.
Possible trajectories of passive balloons in Titan's troposphere are simulated with the instantaneous wind field predicted by a GCM (general circulation model). In most areas the basic motion of a balloon is a predominantly eastward or westward drift, depending on altitude, latitude and season of the balloon release point. Some meridional oscillation is always superposed on this basic motion, resulting in a wavy trajectory, with a maximum extent (of 40°) at high latitudes of the winter hemisphere. As a general rule, the meridional oscillation can be maximised if a balloon is deployed in altitudes and latitudes where the mean zonal wind is eastward and smaller than the phase speed of Saturn's gravitational tide on Titan. A balloon's groundtrack does not repeat as it makes successive circuits around Titan, but rather makes a spiral or braided pattern. The summer pole is rather difficult to access for a balloon not directly introduced there because of small meridional oscillation, while the winter pole can be readily accessed and left several times. A preferred zonal drift direction can be achieved by choosing a proper altitude and hemisphere, but choosing a preferred meridional direction is not possible.  相似文献   

8.
The properties of adiabatic potential transitions in a current carrying plasma are investigated and classified. It is shown that it is important to include pressure effects since the character of the transition (e.g. whether or not it behaves as a particle accelerator) is determined by whether the speed of a streaming species on entering the transition is less or greater than the “sound speed” of that species. If electrons are the main current carriers in the field aligned current systems associated with the polar ionosphere and magnetosphere we find that, under typical conditions, their drift speed is less than their thermal speed with the implication that if they enter a potential transition their pressure gradient will overcome the electrostatic field so that they are decelerated and heated by the transition. Under disturbed conditions when the field aligned current densities are exceptionally high, potential transitions act as particle accelerators.  相似文献   

9.
From individual ILS data in a homogeneous system, we derived a new sequence of the coordinates of the pole. This was then used in an analysis of the secular polar motion. We found: 1) At a confidence level of 95%, the linear drift of the ILS mean pole over the last 80 years is along 63° 3 longitude West, at an average speed of 0″.00305/yr. 2) The libration of the mean pole is rather regular, with a prominent term of about 30 yr, and detectable terms of 18.6 yr and 9.3 yr. 3) Station Ukiah is drifting northwards at a speed of 0″.00276/yr, while all the other stations are quite stable. Hence the ILS data cannot be taken as showing an anti-clockwise rotation of the Pacific coast at present.  相似文献   

10.
P. A. Robinson 《Solar physics》1992,137(2):307-315
The parameters of type-III sources have been observed to vary as powers of the distance of the source from the Sun. Here, the values of the observed exponents are reviewed and theoretical relationships between them are discussed and extended. It is shown that 11 observed exponents can be derived from a four-element subset. A least-squares fit is carried out by varying these four exponents and it is shown that the results are consistent with observaton to within the observational uncertainties. Best-fit expressions are given for the plasma density and temperature, the solar wind speed, beam velocity and density, frequency drift rate, peak Langmuir fields, brightness temperature, volume emissivity, beam duration and burst decay time.  相似文献   

11.
Linear and nonlinear propagation of dust drift waves are investigated in the presence of Cairns and Kappa distributed ion population and Boltzmannian electrons. It is found the frequency of the dust drift wave is greatest for the Cairns, intermediate for Kappa and the least for the Maxwellian distributed ions. Using the drift approximation, a nonlinear equation is derived for the dust drift shock waves which reduces to a Korteweg-de Vries-Burgers (KdVB)-like equation in the comoving frame of reference. The solution of the KdVB-like equation is obtained using the tanh method. It is found that the non-Maxwellian ion population, dust neutral collision frequency as well as the inverse dust density scale length inhomogeneity alter the propagation characteristics of the nonlinear dust drift shock waves. Interestingly, it is found that the non-Maxwellian ion population modifies the scale lengths over which the nonlinear structures are formed. The work presented here may be useful to understand the low frequency electrostatic shock waves in inhomogeneous dusty plasmas such as those found in planetary environments.  相似文献   

12.
It is shown that the sheared flow of electrons and ions in the presence of heavy stationary dust gives rise to unstable Alfvén waves. The coupling of newly studied low frequency electrostatic current-driven mode with the electromagnetic Alfvén and drift waves is investigated. The instability conditions and the growth rates of both inertial and kinetic Alfvén waves are estimated. The theoretical model is applied to the night side boundary regions of Jupiter’s magnetosphere which contain positive dust. The growth rates increase with increase in sheared flow speed. In the nonlinear regime, both inertial and kinetic Alfvén waves form dipolar vortices whose speed and amplitude depend upon the magnitude of the zero-order current.  相似文献   

13.
Linear and nonlinear dust drift waves are investigated in the presence of kappa distributed electrons and ions. The dispersion characteristics of linear waves show that the phase velocity decreases with the inclusion of highly energetic particles in the tail of the distribution. In the nonlinear regime, a nonlinear partial differential equation is obtained in the long wave length limit. A stationary solution of this equation in the form of solitary waves is discussed and noticed that the amplitude of the solitary pulse decreases with the increase of superthermal particle’s effect, and its width expands. Further, it is found that speed limit of the nonlinear structures is also modified in the non-Maxwellian plasma. Theoretically obtained results are applied to Saturn’s’ dusty plasma environment. It is also pointed out that the present results can be helpful for further understanding of space plasmas.  相似文献   

14.
The simple form of Ohm's law (SI units)J = (E+ v × B)is valid for high density magnetofluids (where the mean free path for collisions is less than the Larmor radius) but is not strictly valid for the tenuous solar corona. We examine the nonlinear evolution of a magnetic disturbance using a more general form of Ohm's law which includes the Hall term. The Hall term dominates MHD development in the corona when the product of the magnetic scale length and the square root of the density is small enough; in particular when (1) the electron density is less than about 1013 m-3 and (2) the scale length is less than a few hundred meters. For these parameters, a magnetic disturbance may carry electrons at a drift speed in excess of the Alfvén speed. We believe this nonlinear phenomenon may be important for the impulsive acceleration of charged particles in the solar corona.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

15.
Time-varying solutions of the full continuity equation for electrons in the F2-region are obtained. The effects of production, loss, diffusion and electrodynamic ‘E × B’ drift are taken into account. The ‘E × B’ drift term consists of a solar and a lunar component. The solar component of drift is assumed diurnal with 14.6m/sec maximum upward speed at mid-day. The lunar component is assumed sinusoidal with period of half lunar day and amplitude one tenth of the solar drift; the phase is assumed to remain constant in lunar time, in accordance with Chapman's phase law.The results show that the lunar variations in the F2-region are markedly dependent on solar time and latitude. It is also shown that the average semi-diurnal lunar variations in NmF2 and hmF2 at any particular lunar time are almost opposite in phase to each other (i.e. out of phase by 6 hr) in the magnetic equatorial zone, and out of phase by 2 hr at moderate latitudes. The phase of δhmF2 is 10 hr at low latitudes and 9 hr at moderate latitudes. The phase of δNmF2 is 4 hr at low latitudes and 11 lunar hr at moderate latitudes.The results also show that the phase of the lunar semi-monthly oscillations in NmF2 undergoes a rapid shift of about 5 lunar hr in going from 8 to 12° and the so called phase reversal occurs at about 10° lat at which the amplitude of NmF2. becomes extremely small.These and other results are in good agreement with observations. Thus it is shown that the main features of the observed lunar tidal variations of the F2-region within 20° of the magnetic equator can be explained satisfactorily by the superposition of a small lunar drift on a large solar drift.  相似文献   

16.
Storms of type III solar radio bursts observed from 5.4 ot 0.2 MHz consist of a quasi-continuous production of type III events observable for half a solar rotation but persisting in some cases for well over a complete rotation (Fainberg and Stone, 1970). The observed burst drift rates are a function of the heliographic longitude of the associated active region. This apparent drift rate dependence is a consequence of the radio emission propagation time from source to observer. Based on this dependence, a least squares analysis of 2500 drift rates between frequencies in the 2.8 to 0.7 MHz range yields an average exciter speed of 0.38 c for the height range from approximately 11 to 30 R . In conjunction with the available determinations of exciter speeds of 0.33 c close to the sun, i.e. less than 3 R , and with in situ measurements of 40 keV solar electrons by space probes, the present results suggest that the exciters are electron packets which propagate with little deceleration over distances of at least 1 AU.  相似文献   

17.
Cassini Langmuir probe measurements in the inner magnetosphere of Saturn   总被引:1,自引:0,他引:1  
In the inner magnetosphere of Saturn, the plasma density and drift velocity are high enough, and the photoelectron current low enough, for a Langmuir probe to produce useful data on ion parameters. Plasma density and velocity are found by analyzing the current due to collected ions and emitted photoelectrons for a negative probe potential. In order to correctly analyze the data, the current caused by photoelectrons emitted from the probe must be known. For a spherical probe at negative bias this should be a constant current, but for Cassini's probe it varies with attitude. A likely cause of this is a leakage current from the stub to the probe. The plasma drift velocities derived from Langmuir probe measurements did not agree with those found by the Cassini plasma spectrometer in the inner magnetosphere, but did so elsewhere. A possible solution to this is a two-component plasma where the components have different drift velocities.  相似文献   

18.
W. K. Yip 《Solar physics》1972,24(1):197-209
Combination scattering of the Cerenkov plasma waves generated by a fast electron beam on the electron density fluctuations in a magnetoactive plasma is assumed to be the cause of the emission of the drift pair (or the hook burst) from the solar corona. The features of the combination emission are studied numerically with parameters appropriate to the solar corona condition. It is found that the major properties of the drift pair and the hook burst can be accounted for.  相似文献   

19.
The spatial structure and stability properties of the coupled Alfvén and drift compressional modes in a space plasma are studied in a gyrokinetic framework in a model taking into account field-line curvature and plasma and magnetic field inhomogeneity across the magnetic shells. The perturbation is found to be localized in two transparent regions, the Alfvén and drift compressional transparent regions, where the wave vector radial component squared is positive. Both regions are bounded by the resonance and cut-off surfaces, where the wave vector radial component turns into infinity and zero, respectively. An existence of the drift compressional resonance is one of the most important results of this work. It is argued that on the surface of this resonance the longitudinal and azimuthal components of the wave's magnetic field have a pole and logarithmic singularities, respectively. The instability conditions and expressions for the growth rate of the coupled modes have been obtained. In the Alfvénic transparent region, an instability occurs in the presence of the negative plasma temperature gradient. This instability does not lead to a non-stationary wave behavior: all the energy gained from the resonance particles was finally absorbed owing to any dissipation process. In a drift compressional transparent region, a necessary condition for the instability is the growth of the temperature with the radial coordinate. The growth rate is almost independent of the radial coordinate, which means that the wave energy gained from the particles cannot disappear. It will lead to an ever increasing wave amplitude, and no stationary picture for the unstable drift compressional mode is possible.  相似文献   

20.
The review addresses transitions into regimes with improved confinement. The E × B paradigm is tested on the example of L–H transitions. It is demonstrated that L–H transitions may emerge either due to an amplification of the diamagnetic drift term caused by enhanced pressure gradient or due to an increase poloidal rotation velocity at the separatrix. In general, it is asserted that the emergence and dynamics of transitions is very sensitive to fine details of prelude plasma profiles. The L–H transition occurs provided the ambipolar electric field changes dramatically within a few centimeters. The dynamics of interest consists of threshold conditions for barrier formation, barrier propagation speed, and profile steepening rates, barrier limits and mechanisms for their relaxation and termination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号