首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D3 and H pictures of prominences were obtained with a 21-in. Lyot coronograph and a Fabry-Perot etalon used as a narrow band filter. The monochromatic images of quiescent, quasiquiescent and loop-prominences were studied. The comparison of the isophotes of quiescent and quasi-quiescent prominences in D3 with those in H shows the similarity of the prominence structure at both wavelength, although there is a strong tendency for an increase in the intensity ratio D3/H in the upper region of prominences. It seems that it is due to lower temperature in the upper regions of prominences. Probably, the relaxation processes establishing ionization equilibrium play some role. Measurements of the knot intensities of the loop-prominence show strong variations of the intensity ratio D3/H (more than one order of magnitude).  相似文献   

2.
H. Zirin 《Solar physics》1978,58(1):95-120
I have studied a number of flares for which good X-ray and optical data were available. An average lag of 5.5 s between hard X-ray (HXR) start and H start, and HXR peak and Ha peak was found for 41 flares for which determination was possible. Allowing for time constants the time lag is zero. The peak H lasts until 5–6 keV soft X-ray (SXR) peak. The level of H intensity is determined by the SXR flux.Multiple spikes in HXR appear to correspond to different occurrences in the flare development. Flares with HXR always have a fast H rise. Several flares were observed in the 3835 band; such emission appears when the 5.1–6.6 keV flux exceeds 5 × 104 ph cm-2 s-1 at the Earth. Smaller flares produce no 3835 emission; we conclude that coronal back conduction cannot produce the bright chromospheric network of that wavelength.The nearly simultaneous growth of H emission at distant points means an agent travelling faster than 5 × 103 km s-1 is responsible, presumably electrons.In all cases near the limb an elevated Ha source is seen with the same time duration as HXR flux; it is concluded that this H source is almost always an elevated cloud which is excited by the fast electrons. A rough calculation is given. Another calculation of H emission from compressed coronal material shows it to be inadequate.In several cases homologous flares occur within hours with the same X-ray properties.Radio models fit, more or less, with field strengths on the order of 100G. A number of flares are discussed in detail.  相似文献   

3.
In this letter, we bring attention to prominences which show different morphology in H and Heii 304 Å, as observed simultaneously by BBSO and EIT on board SOHO. Those two lines have been thought to represent similar chromospheric structures although they are formed at significantly different temperatures. We give two examples representing two kinds of anomaly: (1) prominences showing strong H emissions in the lower part and strong Heii emissions in the upper part, and (2) erupting prominences showing extensive Heii emission, but nothing in H. Our results indicate that a part or the whole of a prominence may be too hot to emit H radiation, possibly due to heating or thermal instability. Please note that these are not just two isolated cases, many other prominences show the similar differences in H and Heii 304 Å.  相似文献   

4.
The H observations of a limb flare, which were associated with exceptional gamma-ray and hard X-ray emission, are presented and discussed. The good spatial and temporal resolution of the H data allow us to investigate the detailed structure of the elevated flare loops and the intensity variations of the loops, footpoints and surrounding chromosphere during each phase of the flare event. A delay time of 12 s was found between at least one of the hard X-ray (28–485 keV) peaks and corresponding H intensity maximum at a loop footpoint. A comparison is made between this event and another well-observed limb flare with many similar characteristics to seek evidence for the large difference in their levels of energy release.  相似文献   

5.
A detailed study of the evolution and cooling process of post-flare loops is presented for a large X9.2 solar flare of 2 November 1992 by using H images obtained with Domeless Solar Telescope at Hida Observatory and soft X-ray images of Yohkoh Soft X-ray Telescope (SXT). The detailed analysis with a new method allows us to determine more precise values of the cooling times from 107 K to 104 K plasma in the post-flare loops than in previous works. The subtraction of sequential images shows that soft X-ray dimming regions are well correlated to the H brightening loop structure. The cooling times between 107 K and 104 K are defined as the time difference between the start of soft X-ray intensity decrease and the end of H intensity increase at a selected point, where the causal relation between H brightening and soft X-ray dimming loops is confirmed. The obtained cooling times change with time; about 10 min at the initial stage and about 40 min at the later stage. The combined conductive and radiative cooling times are also calculated by using the temperature and density obtained from SXT data. Calculated cooling times are close to observed cooling times at the beginning of the flare and longer in the later stage.  相似文献   

6.
T. Hirayama 《Solar physics》1974,34(2):323-338
A theoretical model of flare which explains observed quantities in H, EUV, soft X-ray and flare-associated solar wind is presented. It is assumed that large mass observed in the soft X-ray flare and the solar wind comes from the chromosphere by the process like evaporation while flare is in progress. From mass and pressure balance in the chromosphere and the corona, the high temperature in the soft X-ray flare is shown to be attained by the larger mass loss to the solar wind compared with the mass remained in the corona, in accord with observations. The total energy of 1032 erg, the electron density of 1013.5 cm–3 in H flare, the temperature of the X-ray flare of 107.3K and the time to attain maximum H brightness (600 s) are derived consistent with observations. It is shown that the top height of the H flare is located about 1000 km lower than that of the active chromosphere because of evaporation. So-called limb flares are assigned to either post-flare loops, surges or rising prominences.The observed small thickness of the H flare is interpreted by free streaming and/or heat conduction. Applications are suggested to explain the maximum temperature of a coronal condensation and the formation of quiescent prominences.  相似文献   

7.
Yngve Öhman 《Solar physics》1973,28(2):399-402
Some comments are presented on the important observations of faint prominences made recently by Dr Jean-Louis Leroy at the Pic du Midi Observatory. The writer draws attention to the very probable connection with faintly luminous H obscuring prominences which appear sometimes as dark lanes and markings in ordinary prominences.  相似文献   

8.
We have studied the evolution of two dark H filaments as prominences during their disk passage from 12 to 19 February, 1992 and 6 to 17 March, 1992, using Kodaikanal Observatory H and Caii K spectroheliograms. Both the filaments were well outside the spot regions. However, they were connected to sunspots by small threads. Outside the spot regions, the filaments were also anchored between opposite polarity plage regions. Both the filaments were almost straight in the beginning. However, they acquired a curved shape (inverted U-shape) as the spot and plages underwent rotation. It is shown that rotation of the plage and spot plays an important role in the evolution of prominences, one serving as the anchor and the other imparting necessary shear. Once the shear reaches a critical value it starts unwinding the filaments, resulting in the fine structure of the two prominences studied.  相似文献   

9.
Denker  C.  Johannesson  A.  Marquette  W.  Goode  P.R.  Wang  H.  Zirin  H. 《Solar physics》1999,184(1):87-102
The Big Bear Solar Observatory (BBSO) has a long tradition of synoptic full-disk observations. Synoptic observations of contrast enhanced full-disk images in the Caii K-line have been used with great success to reproduce the Hi L irradiance variability observed with the Upper Atmosphere Research Satellite (UARS). Recent improvements in data calibration procedures and image- processing techniques enable us now to provide contrast enhanced H full-disk images with a spatial resolution of approximately 2 and a temporal resolution of up to 3 frames min–1.In this first paper in a series, we describe the instruments, the data calibration procedures, and the image-processing techniques used to obtain our daily H full-disk observations. We also present the final data products such as low- and high-contrast images, and Carrington rotation charts. A time series of an erupting mini- filament further illustrates the quality of our H full-disk observations and motivate one of the future research projects. This lays a solid foundation for our subsequent studies of solar activity and chromospheric fine structures. The high quality and the sunrise- to-sunset operation of the H full-disk observations presented in this paper make them an ideal choice to study statistical properties of mini-filament eruptions, chromospheric differential rotation, and meridional flows within the chromosphere, as well as the evolution of active regions, filaments, flares, and prominences.  相似文献   

10.
The eruptive prominence observed on 27 May 1999 in H at Ondejov Observatory is analyzed using image-processing techniques. To understand the physical processes behind the prominence eruption, heated structures inside the cold H prominence material are sought. Two local minima of intensity (holes), the first above and the second below the erupting H prominence, have been found in the processed H images. A comparison of H images with the SOHO/EIT and Yohkoh/SXT images showed: (a) the cold H prominence is visible as a dark feature in the EIT images, (b) the upper local minimum of intensity in the H image corresponds to a hot structure seen in EIT, (c) the lower minimum corresponds to a hot loop observed by SXT. The physical significance of the H intensity minima and their relation to the hot structures observed by EIT and SXT is discussed. The time sequence of observed processes is in favor of the prominence eruption model with the destabilization of the loop spanning the prominence. For comparison with other events the velocities of selected parts of the eruptive prominence are determined.  相似文献   

11.
The intensity ratios E(H)/E(D3) and E(H)/E(D3) in prominences depend on the total optical thickness in H of the layer. The emission of the He D3 line appears relatively enhanced in thin layers and in outer parts of the prominences.  相似文献   

12.
Chae  Jongchul  Denker  Carsten  Spirock  Tom J.  Wang  Haimin  Goode  Philip R. 《Solar physics》2000,195(2):333-346
There have been two different kinds of explanations for the source of cool material in prominences or filaments: coronal condensations from above and cool plasma injections from below. In this paper, we present observational results which support filament mass injection by chromospheric reconnection. The observations of an active filament in the active region NOAA 8668 were performed on 17 August 1999 at a wavelength of H–0.6 Å using the 65 cm vacuum reflector, a Zeiss H birefringent filter, and a 12-bit SMD digital camera of Big Bear Solar Observatory. The best image was selected every 12 s for an hour based on a frame selection algorithm. All the images were then co-aligned and corrected for local distortion due to the seeing. The time-lapse movie of the data shows that the filament was undergoing ceaseless motion. The H flow field has been determined as a function of time using local correlation tracking. Time-averaged flow patterns usually trace local magnetic field lines, as inferred from H fibrils and line-of-sight magnetograms. An interesting finding is a transient flow field in a system of small H loops, some of which merge into the filament. The flow is associated with a cancelling magnetic feature which is located at one end of the loop system. Initially a diverging flow with speeds below 10 km s–1 is visible at the flux cancellation site. The flow is soon directed along the loops and accelerated up to 40 km s–1 in a few minutes. Some part of the plasma flow then merges into and moves along the filament. This kind of transient flow takes place several times during the observations. Our results clearly demonstrate that reconnection in the photosphere and chromosphere is a likely way to supply cool material to a filament, as well as re-organizing the magnetic field configuration, and, hence, is important in the formation of filaments.  相似文献   

13.
Duchlev  Peter I. 《Solar physics》2001,199(1):107-113
The results from a detailed study of the prominences associated with faint H emission objects in the solar corona are given. The frequency distribution of the prominences by their lifetime, as well as for the prominence groups with and without `disparition brusque' (DB), is presented. The systematic comparison of the time of the prominence DBs and the observation time of the objects with faint H emission, as well as the positions of the faint H emissions and the associated filaments at the limb and on the disk of the Sun, suggests that in the most cases these coronal emissions are probably closely connected with the instability processes operating in the prominence magnetic field configurations and leading to prominence final or temporary DBs.  相似文献   

14.
Covas  Eurico  Tworkowski  Andrew  Tavakol  Reza  Brandenburg  Axel 《Solar physics》1997,172(1-2):3-9
In a recent work (Covas et al., 1996), the behaviour and the robustness of truncated dynamos with a dynamic were studied with respect to a number of changes in the driving term of the dynamic equation, which was considered previously by Schmalz and Stix (1991) to be of the form AB. Here we review and extend our previous work and consider the effect of adding a quadratic quenching term of the form |B|2. We find that, as before, such a change can have significant effects on the dynamics of the related truncated systems. We also find intervals of (negative) dynamo numbers, in the system considered by Schmalz and Stix (1991), for which there is sensitivity with respect to small changes in the dynamo number and the initial conditions, similar to what was found in our previous work. This latter behaviour may be of importance in producing the intermittent type of behaviour observed in the Sun.  相似文献   

15.
Brajša  R.  Ruždjak  V.  Vršnak  B.  Wöhl  H.  Pohjolainen  S.  Urpo  S. 《Solar physics》1999,184(2):281-296
Daily full-disk solar maps obtained at 37 GHz in the years 1979, 1980, 1981, 1982, 1987, 1988, 1989, 1990, and 1991 are analysed and compared with full-disk solar maps in H. A search for a difference in the measured angular rotation velocity for two classes of microwave low-brightness-temperature regions (LTRs), associated and not associated with H filaments, is performed. Procedures with and without statistical weights, assigned to angular rotation velocities according to the tracing time, are applied and the statistical significance of the results is discussed. A higher angular rotation velocity is measured for LTRs associated with H filaments than for the not-associated ones. This angular velocity difference is interpreted as a consequence of a height difference between these two types of LTR tracers. Changes of the solar differential rotation velocity during the activity cycle measured using LTRs as tracers are explained by the measured cycle-dependence of the association rate between LTRs and H filaments. Similarly, the north–south asymmetry in the solar rotation velocity measured tracing LTRs is explained by the measured north–south asymmetry in the association rate between LTRs and H filaments. The rotation velocity of LTRs and H filaments is on the average more rigid in comparison with sunspots.  相似文献   

16.
High spatial resolution spectral observations of five hedgerow prominences were made in H, He i D3 and Ca ii H and K.The observed relations between the lines were not the same in all prominences. The Ca ii H and K lines were 2–4 times brighter relative to H and D3 than predicted theoretically. The optical thickness of H was less than for the H and K lines, the H was optically thin in medium faint prominence structures. Faint structures appeared slightly hotter than bright structures.On leave from Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, Oslo 3, Norway.  相似文献   

17.
FIRSTOVA  N. M.  HÉNOUX  J.-C.  KAZANTSEV  S. A.  BULATOV  A. V. 《Solar physics》1997,171(1):123-144
Measurements of linear polarization in hydrogen H and H lines, made with the Large Solar Vacuum Telescope of Baikal Astrophysical Observatory and Automated Solar Telescope of Sayan Solar Observatory, affiliated with the Russian Institute of Solar and Terrestrial Physics, are reported in this paper. Short-term polarization associated with solar flares is found to be present in active regions. There is a significant tendency for the H polarization vector to be radial, i.e., in the flare-to-disk-center direction. This polarization may be due to atmospheric bombardment by hecta keV protons. On the other hand, the polarization vector is found to be perpendicular to the radial direction at some locations where the line profile has a typical mustache shape suggesting a bombardment by energetic electrons. The H line is also linearly polarized. However, no preferential direction of polarization is found in this line, which is formed more deeply in the solar atmosphere.  相似文献   

18.
We consider the effect that coherent motion has on the observed brightness of moving clouds above the photosphere. We find that steady state clouds (constant N e and T e ) that are moving perpendicular to the line of sight will appear brighter in H for speeds between 8 and 100 km/sec and dimmer for speeds greater than 135 km/sec. The brightening and dimming are due to apparent Doppler shifts of the respective H absorption and the Lyman- emission profiles seen by the absorption profile of the moving cloud.We apply this analysis, along with optical depth and geometrical considerations, to the observed brightness variations of the 1 March 1969 limb eruptive prominence. We find that all of the observed brightening and dimming can be explained by the motions, and that no significant change in the prominence N e or T e was necessary during the observed H event. This conclusion is significant in interpreting an X-ray burst that began as the prominence velocity increased abruptly at the time of maximum H intensity. The thermal X-ray peak occurred 150 sec later when the prominence had become faint again. There was no associated flare that was visible in H. We discuss the relative brightness of H and D 3 in a specific moving prominence knot.We note that the observed range of limb speeds (30–150 km/sec) may be due to the combined H Doppler brightening and Lyman- dimming effects. We also discuss generally the H brightness of disk surges (bright and dark) and flares, and sprays and puffs that occur at or near the limb.Now at the Dept. of Physics and Astrophysics, University of Colorado, and High Altitude Observatory (NCAR) Boulder, Colo., U.S.A.  相似文献   

19.
The 2B/X2.8 double-ribbon flare of 30 March, 1982 is investigated using H, white light, X-rays, and microwaves. The X-ray burst seems to consist of two components, i.e., an impulsive component showing a long chain of peaks and a thermal component (T 2 × 107 K).In the early phase, the source images for the impulsive component were available simultaneously at soft (7–14 keV) and hard (20–40 keV) X-rays. Both sources are elongated along a neutral line. The core of the source for the hard X-rays is located at one end which seems to be a footpoint (or a leg) of a loop or arcade, while the core for the soft X-rays is located at the center of the elongated source which would be the center of the loop. The core for the hard X-rays shifted to this center in the main and later phase, accompanied by decrease in the source size in the later phase.A peak of one-directional intensity distribution at 35 GHz always lies on the core of the hard X-ray source, showing a shift of the position synchronous with the hard X-ray core. This may imply a common source for the radio waves and the hard X-rays.The source of the thermal component observed at the soft X-rays (7–14 keV) after the early phase covers a whole H patches. This may imply a physical relation between the thermal X-ray loops and the H brightening.  相似文献   

20.
Taeil Bai 《Solar physics》1979,62(1):113-121
The X-ray line at 6.4 keV has been observed from solar flares. It is found that K-fluorescence of neutral iron in the photosphere due to thermal (T 107 K) X-rays of the gradual phase is its dominant production mechanism. For a given flux and energy spectrum of incident X-rays, the flux at 1 AU of iron K-photons depends on the photospheric iron abundance, the height of the X-ray source, and the helio-centric angle between the flare and the observer. Therefore, the flux of iron K-photons, when measured simultaneously with the flux and energy spectrum of the X-ray continuum and the flare location, can give us information on the height of the X-ray source and the photospheric iron abundance. Here we present our Monte Carlo calculations of iron K-fluorescence efficiencies, so that they might be useful for interpretations of future measurements of the 6.4 keV line (e.g., by a detector to be flown on the Solar Maximum Mission).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号