首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 In order to characterize the hydraulic properties of an aquifer in Finland comprising two subvertical fracture zones, observation-well responses were matched with generalized radial flow (GRF) type curves. The responses in six wells out of seven are consistent with the GRF model. The fractional flow dimensions (1–1.2 and 1.5) were determined by regression analysis of straight-line slopes and type-curve matching. In each test, the flow dimensions in the neighboring fracture zone range from 2–2.25. Comparisons of the late-time responses with the asymptotic GRF solution and the flow dimensions obtained by reversing the pumping and observation points suggest homogeneous hydraulic properties. Deviations in responses can be explained by flow-path tortuosity. After assessments of the extent of the flow and radial distances along the fracture system, hydraulic conductivities and storativities were determined from the results of the type-curve matching procedure. The obtained hydraulic conductivities are 1.3×10–5 to 7.9×10–5 m/s and 5.0×10–6 to 2.5×10–5 m/s for the western and the eastern fracture zones, respectively. The results were verified by applying them to analytical solutions for pumping wells. The calculated pumping-well responses are consistent with the observations. The analysis of flow dimension also enhances qualitative interpretations on the hydrogeology of fracture zones. Received, April 1997 · Revised, September 1997 · Accepted, May 1998  相似文献   

2.
Physical and hydraulic properties of sediment from two karst aquifers were measured to determine (1) the similarity of sediment between karst aquifer systems and (2) the importance of sediment in modeling flow through karst aquifers. The sediment from the two systems was similar in size and composition. Within both aquifers, the silt-sized sediment was composed primarily of quartz, with minor amounts of plagioclase and clays. Hydraulic conductivity of the sediment measured directly (falling-head test) ranged from 1.61×10−7 to 1.33×10−6 m s–1 and estimated using the Campbell equation ranged from 8.30×10−8 to 8.98×10−7 m s–1. These values of hydraulic conductivity fall within the span of hydraulic conductivities for carbonate rocks, indicating that the sediment and carbonate matrix could be represented as one mathematical unit in modeling flow through karst aquifers. Statistical agreement in the hydraulic conductivity values generated by the two methods indicates that the estimation technique could be used to calculate hydraulic conductivities; thus allowing karst scientist to collect bulk sediment samples instead of having to collect cores from within karst aquifers. Electronic Publication  相似文献   

3.
Recent work in southern Ontario, Canada, demonstrates anomalously high vertical groundwater flow velocities (>1 m/year) through a thick (as much as 60 m), sandy silt till aquitard (Northern till), previously assumed to be of very low permeability (hydraulic conductivity <10–10 m/s). Rapid recharge is attributed to the presence of fractures and sedimentary heterogeneities within the till, but the field-scale flow regime is poorly understood. This study identifies the nature of physical groundwater pathways through the till and provides estimates of the associated groundwater fluxes. The aquitard groundwater flow system is characterized by integrating details of the outcrop and subsurface sedimentary characteristics of the till with field-based hydrogeologic investigation and numerical modeling. Outcrop and subsurface data identify a composite internal aquitard stratigraphy consisting of tabular till beds (till elements) separated by laterally continuous sheet-like sands and gravels (interbeds) and boulder pavements. Individual till elements contain sedimentary heterogeneities, including discontinuous sand and gravel lenses, vertical sand dikes, and zones of horizontal and vertical fractures. Hydrogeologic field investigations indicate a three-layer aquitard flow system, consisting of upper and lower zones of more hydraulically active and heterogeneous till separated by a middle unit of relatively lower hydraulic conductivity. Groundwater pathways and fluxes in the till were evaluated using a two-dimensional aquitard/aquifer flow model which indicates a step-wise flow mechanism whereby groundwater moves alternately downward along vertical pathways (fractures, sedimentary dikes) and laterally along horizontal sand interbeds within the till. This model is consistent with observed hydraulic-head and isotope profiles, and the presence of tritiated pore waters at various depths throughout the till. Simulations suggest that a bulk aquitard vertical hydraulic conductivity on the order of 1×10–9 m/s is required to reproduce observed hydraulic-head and tritium profiles. Electronic Publication  相似文献   

4.
 Rock and flow parameters of three karstic-fissured-porous aquifers in the Krakow-Silesian Triassic formations were measured using various methods and compared. Though cavern and fissure porosities are shown to be very low (cavern porosity below 0.5% and fracture porosity below 0.2%), they contribute dominantly to the hydraulic conductivity (from about 1.3×10–6 to about 11×10–6 m/s). Matrix porosity (2–11%) is shown to be the main water reservoir for solute transport and the main or significant contributor to the specific yield (<2%). Though the matrix porosity is shown to be much larger than the sum of the cavern and fissure porosities, its contribution to the total hydraulic conductivity is practically negligible (hydraulic conductivity of the matrix is from about 5×10–11 m/s to about 2×10–8 m/s). On the other hand, the matrix porosity (for neglected cavern and fissure porosities) when combined with tracer ages (or mean travel times) is shown to yield proper values of the hydraulic conductivity (K) by applying the following formula: K≅(matrix porosity×mean travel distance)/(mean hydraulic gradient×mean tracer age). Confirming earlier findings of the authors, this equation is shown to be of great practical importance because matrix porosity is easily measured in the laboratory on rock samples, whereas cavern and fracture porosities usually remain unmeasurable. Received: 21 February 1997 · Accepted: 13 May 1997  相似文献   

5.
Hydraulic properties of the crystalline basement   总被引:1,自引:1,他引:1  
Hydraulic tests in boreholes, up to 4.5 km deep, drilled into continental crystalline basement revealed hydraulic conductivity (K) values that range over nine log-units from 10−13−10−4 m s−1. However, K values for fractured basement to about 1 km depth are typically restricted to the range from 10−8 to 10−6 m s−1. New data from an extended injection test at the KTB research site (part of the Continental Deep Drilling Program in Germany) at 4 km depth provide K=5 10−8 m s−1. The summarized K-data show a very strong dependence on lithology and on the local deformation history of a particular area. In highly fractured regions, granite tends to be more pervious than gneiss. The fracture porosity is generally saturated with Na–Cl or Ca–Na–Cl type waters with salinities ranging from <1 to >100 g L−1. The basement permeability is well within the conditions for advective fluid and heat transport. Consequently, fluid pressure is hydrostatic and a Darcy flow mechanism is possible to a great depth. Topography-related hydraulic gradients in moderately conductive basement may result in characteristic advective flow rates of up to 100 L a−1 m−2 and lead to significant advective heat and solute transfer in the upper brittle crust. An erratum to this article can be found at  相似文献   

6.
Pico, the youngest island of the Azores archipelago, is composed of basaltic volcanic deposits less than 300,000 years old. The principal aquifer system consists mainly of recent lava flows that are very permeable and whose head is influenced by tidal fluctuations. Groundwater abstraction is almost entirely by drilled wells. The hydraulic gradient is very low, about 10–4, which agrees with observations made on similar volcanic islands. Groundwater also occurs in perched-water bodies, but the spring discharge from them is very low, about 10–3 L/s. The transmissivity of the volcanic rocks ranges from 9.44×10–3 to 3.05×10–1 m2/s, indicating the heterogeneity of the aquifers. The hydraulic diffusivity, estimated from observations of the effects of tidal fluctuations, also confirms the high permeability of the aquifer system; the average value is higher than published values for other volcanic islands. A mixing process for fresh water and seawater, often coupled with ion-exchange mechanisms, explains the groundwater composition, which is mainly of the sodium-chloride type. The water salinity influences the groundwater quality, resulting in a chloride content that exceeds the recommended chloride limit in 91% of the wells . Water–rock interactions are dominant in the chemical evolution of the perched water, which is characterized by bicarbonate-anion type water. Electronic Publication  相似文献   

7.
Internal surface, formation factor, Nuclear Magnetic Resonance (NMR)-T2 relaxation times and pore radius distributions were measured on representative core samples for the estimation of hydraulic permeability. Permeability is estimated using various versions of the classic Kozeny–Carman-equation (K–C) and a further development of K–C, the fractal PaRiS-model, taking into account the internal surface. In addition to grain and pore size distribution, directly connected to permeability, internal surface reflects the internal structure (“micro morphology”). Lithologies could be grouped with respect to differences in internal surface. Most melt rich impact breccia lithologies exhibit large internal surfaces, while Tertiary post-impact sediments and Cretaceous lithologies in displaced megablocks display smaller internal surfaces. Investigations with scanning electron microscopy confirm the correlation between internal surface and micro morphology. In addition to different versions of K–C, estimations by means of NMR, pore radius distributions and some gas permeability measurements serve for cross-checking and calibration. In general, the different estimations from the independent methods and the measurements are in satisfactory accordance. For Tertiary limestones and Suevites bulk with very high porosities (up to 35%) permeabilites between 10−14 and 10−16 m2 are found, whereas in lower Suevite, Cretaceous anhydrites and dolomites, bulk permeabilites are between 10−15 and 10−23 m2.  相似文献   

8.
 Two multitracer tests performed in one of the major cross-fault zones of the Lange Bramke basin (Harz Mountains, Germany) confirm the dominant role of the fault zone in groundwater flow and solute transport. Tracers having different coefficients of molecular diffusion (deuterium, bromide, uranine, and eosine) yielded breakthrough curves that can only be explained by a model that couples the advective–dispersive transport in the fractures with the molecular diffusion exchange in the matrix. For the scale of the tests (maximum distance of 225 m), an approximation was used in which the influence of adjacent fractures is neglected. That model yielded nearly the same rock and transport parameters for each tracer, which means that the single-fracture approximation is acceptable and that matrix diffusion plays an important role. The hydraulic conductivity of the fault zone obtained from the tracer tests is about 1.5×10–2 m/s, whereas the regional hydraulic conductivity of the fractured rock mass is about 3×10–7 m/s, as estimated from the tritium age and the matrix porosity of about 2%. These values show that the hydraulic conductivity along the fault is several orders of magnitude larger than that of the remaining fractured part of the aquifer, which confirms the dominant role of the fault zones as collectors of water and conductors of fast flow. Received, April 1997 Revised, January 1998, August 1998 Accepted, August 1998  相似文献   

9.
In porous sediments of the Ishikari Lowland, there is a gradual increase in the background geothermal gradient from the Ishikari River (3–4 °C 100 m–1) to the southwest highland area (10 °C 100 m–1). However, the geothermal gradient at shallow depths differs in detail from the background distribution. In spite of convective heat-flow loss generally associated with groundwater flow, heat flow remains high (100 mW m–2) in the recharge area in the southwestern part of the Ishikari basin, which is part of an active geothermal field. In the northeastern part of the lowland, heat flow locally reaches 140 mW m–2, probably due to upward water flow from the deep geothermal field. Between the two areas the heat flow is much lower. To examine the role of hydraulic flow in the distortion of the isotherms in this area, thermal gradient vs. temperature analyses were made, and they helped to define the major components of the groundwater-flow system of the region. Two-dimensional simulation modeling aided in understanding not only the cause of horizontal heat-flow variations in this field but also the contrast between thermal properties of shallow and deep groundwater reservoirs. Electronic Publication  相似文献   

10.
Few hydrology studies have investigated glacial till older than Illinoian time (> 300,000 BP) despite these older tills overlying a large portion of North America. An 8- and 6-well monitoring well nest installed into a 31 m thick pre-Illinoian till sequence near Cedar Rapids, Iowa was characterized using traditional hydrologic methods and chemical tracers. The aquitard system consists of about 9 m of fine-grained oxidized pre-Illinoian till overlying 22 m of unoxidized till and Devonian dolomite bedrock. Hydraulic conductivity ranged from 10−7 m/s in oxidized till and 10−10 m/s in unoxidized till. Hydraulic head relations indicated downward groundwater flow through the till profile with hydraulic gradients steepest near the unoxidized till/bedrock interface. Tritium and nitrate concentrations indicated recent (< 50 years old) recharge to a depth of 9–12 m below land surface. 18O and 2H results ranged between −6.2 to −7.9% and −38.0 to −50.9%, respectively, and plotted near the local Meteoric Water Line. A 1 per mil shift toward less negative 18O values with depth may suggest a climate change signal contained in the till water but more data are needed to verify this trend. Vertical groundwater velocity through the unoxidized till was estimated to range from 0.4 to 5.7 cm/year. The thickness of unoxidized pre-Illinoian till in Linn County was estimated from available records and contoured against vertical travel times to evaluate the effectiveness of pre-Illinoian till in preventing nitrate migration to underlying bedrock aquifers.  相似文献   

11.
Heat flow and the origin of helium in natural gases from fault basins of the continental rift-valley in eastern China are discussed in terms of helium isotope geochemistry.3He/4He ratios in natural gases from the rift-valley range from 2.23 × 10−7 to 7.21 × 10−6, which are directly proportional to the concentration of helium and ΣNHC/ΣHC ratio in natural gases. Geological and isotope geochemical data suggest that helium in natural gases consists predominantly of crustal radio-genic and upper mantle-derived helium. In a simple mixing pattern between crustal He and mantle-derived He, mantle-derived helium in natural gases would account for 10–60%. Calculated values for heat flow (Q) range from 59.7 to 82.4mWm−2, of which about 60 percent in the rift-valley is derived from the upper mantle. Natural helium reservoirs would be found in the areas where the upper mantle uplifted greatly and heat flow is large in the continental rift-valley. The project is financially supported by the National Natural Science Foundation of China.  相似文献   

12.
Sulfate transport in a Coastal Plain confining unit, New Jersey, USA   总被引:1,自引:0,他引:1  
 A transient 1-D, two-pathway non-equilibrium deterministic advective dispersion model was used to examine the distribution of chloride (43–100 mg/L) and sulfate (57–894 mg/L) concentrations in the 35-m-thick section of the Lower confining unit, Atlantic Coastal Plain, New Jersey, USA. The model was used to constrain hypotheses about how pore-water chemistry changed over time. Explanations of the solute concentrations were explored by inverse and direct methods given a few known constraints, including concentrations of pore-water constituents from 12 core samples, reported simulated flow rates, and estimated hydrogeologic properties. The hypothesis that is best supported by the model results is that the distribution of chloride and sulfate concentrations in the confining unit reflect the history of the aquifer system since it was filled with seawater at the last eustatic high, about 84×103yr BP. The model simulates fresh-water flushing of the seawater-permeated silts at a steady upward pore-water flow velocity of 8.8×10–6 m/d, with a dispersion coefficient of 9.2×10–7 m2/d, a dimensionless partition expression for chloride, βCl=0.981, and a dimensionless exchange coefficient, ωCl=0.31×10–2. Sulfate concentrations were simulated over the flow path using flow and dispersion values calculated for chloride transport plus a retardation term. Parameters for sulfate transport include retardation coefficient=4.51, βSO4=0.994, and ωSO4=0.31×10–2. Sensitivity analysis indicates that the model is most sensitive to flow velocity, and that fresh-water flushing of the confining unit is best simulated by having seawater concentration levels at the inflow boundary of the confining unit exponentially decrease with a concentration half-life rate of 825 yr. Received, January 1997 / Revised, April 1998, October 1998, January 1999 / Accepted, January 1999  相似文献   

13.
Formation and failure of the Tsatichhu landslide dam, Bhutan   总被引:1,自引:1,他引:1  
At 00:30 (local time) on the 10th September 2003 a joint and foliation defined wedge of material with an estimated volume of 7–12×106 m3 slid into the narrow Tsatichhu River Valley, in Jarrey Geog, Lhuentse, eastern Bhutan. The Tsatichhu River, a north–easterly flowing tributary of the Kurichuu River, was completely blocked by the landslide. During its movement, the landslide transitioned into a rock avalanche that travelled 580 m across the valley before colliding with the opposite valley wall. The flow then moved down valley, travelling a total distance of some 700 m. The rock avalanche was accompanied by an intense wind blast that caused substantial damage to the heavily forested valley slopes. The resulting geomorphologically-typical rock-avalanche dam deposit created a dam that impounded a water volume of 4–7×106 m3 at lake full level. This lake was released by catastrophic collapse of the landslide, which occurred at 16:20 (local time) on 10th July 2004, after reported smaller failures of the saturated downstream face. The dam failure released a flood wave that had a peak discharge of 5900 m3 s−1 at the Kurichhu Hydropower Plant 35 km downstream.  相似文献   

14.
The Oramiriukwa River is within the sandy coastal plain strata of the Benin formation (Miocene–Recent). The base flow is very high ranging from 79.13–98.56%, which is caused by the excellent hydraulic interconnection between the river and the adjacent unconfined aquifer. Recharge rates are high, estimated to range from 1.8×1012–2.5×1012 m3/year. Coastal sands are medium-to-coarse grained, moderately-to-poorly sorted, angular to subangular, with lenses of clay and clayey fine-grained sands. The coastal sands and clay lenses form aquifer and aquitard systems, which are unconfined to semi-confined. Groundwater recharge potential is high. Runoff from precipitation is low. Groundwater and surface water are fairly acidic; pH ranges from 5.5–6.1 (groundwater) and 5.8–6.5 (surface water), and hardness is generally low. Chemical analysis and percentage sodium show that groundwater and surface water are somewhat potable after some pH modification of the surface water. The waters are good for agricultural use, especially for irrigation and poultry water supply. However, pollution from landfill leachate is serious. Electronic Publication  相似文献   

15.
Kinmen Island is a small, tectonically stable, granitic island that has been suffering from a scarcity of fresh water resources due to excessive annual evapotranspiration over annual precipitation. Recent studies further indicate that shallow (0–70 m) sedimentary aquifers, the major sources of groundwater supply, have already been over-exploited. Therefore, this preliminary study is to investigate the existence of exploitable water resources that can balance the shortage of fresh water on this island. Site characterization data are obtained from island-wide geophysical surveys as well as small-scale tests performed in a study area formed by three deep (maximum depth to 560 m) vertical boreholes installed in mid-east Kinmen northeast to Taiwu Mountain. Vertical fracture frequency data indicate that the rock body is fractured with a spatially correlated pattern, from which three major fracture zones (depths 0–70, 330–360, and below 450 m) can be identified. Geologic investigations indicate that the deepest fracture zone is caused by the large-scale, steeply dipping Taiwushan fault. This fault may have caused a laterally extensive low-resistivity zone, a potential fractured aquifer, near Taiwu Mountain. The middle fracture zone is induced by the Taiwushan fault and intersects the fault approximately 21 m southeast of the study area below a depth of 350 m. Slug testing results yield fracture transmissivity varying from 4.8 × 10−7 to 2.2 × 10−4 m2/s. Cross-hole tests have confirmed that hydraulic connectivity of the deeper rock body is controlled by the Taiwushan fault and the middle fracture zone. This connectivity may extend vertically to the sedimentary aquifers through high-angle joint sets. Despite the presence of a flow barrier formed by doleritic dike at about 300 m depth, the existence of fresh as well as meteoric water in the deeper rock body manifests that certain flow paths must exist through which the deeper fractured aquifers can be connected to the upper rock body. Therefore, groundwater stored within the Taiwushan fault and the associated low-resistivity zone can be considered as additional fresh water resources for future exploitation.  相似文献   

16.
17.
 This paper presents a site-specific conceptual model of groundwater flow in fractured damage zones associated with faulting in a package of sedimentary rocks. The model is based on the results of field and laboratory investigations. Groundwater and methane gas inflows from fault-fracture systems in the West Elk coal mine, Colorado, USA, have occurred with increasing severity. Inflows of 6, 160 and 500 L s−1 discharged almost instantaneously from three separate faults encountered in mine workings about 460 m below ground level. The faults are about 600 m apart. The δ 2H and δ 18O compositions of the fault-related inflow waters and the hydrodynamic responses of each fault inflow indicate that the groundwaters discharge from hydraulically isolated systems. 14C data indicate that the groundwaters are as much as 10,500 years old. Discharge temperatures are geothermal (≈30°C), which could indicate upwelling from depth. However, calculations of geothermal gradients, analysis of solute compositions of groundwater in potential host reservoirs, geothermometer calculations, and results of packer testing indicate that the fractured groundwater reservoir is the Rollins Sandstone (120 m thick) directly beneath the coal seams. The packer test also demonstrates that the methane gas is contained in the coal seams. A geothermal gradient of 70–80°C km−1, related to an underlying intrusion, is probably responsible for the slightly elevated discharge temperatures. Large discharge volumes, as great as 8.2×105 m3 from the 14 South East Headgate fault (14 SEHG), rapid declines in discharge rates, and vertical and horizontal permeability (matrix permeability generally <0.006 Darcy) indicate fracture flow. An in-mine pumping test demonstrates that the 14 SEHG fault has excellent hydraulic communication with fractures 50 m from the fault. Aeromagnetic data indicate that the faults are tectonically related to an igneous body that is several thousand meters below the coal seams. Exploratory drilling has confirmed a fourth fault, and two additional faults are projected, based on the aeromagnetic data. The conceptual model describes a series of parallel, hydraulically separate groundwater systems associated with fault-specific damage zones. The faults are about 600 m apart. Groundwater stored in fractured sandstone is confined above and below by clayey layers. Received March 1999 / Revised, November 1999 / Accepted, December 1999  相似文献   

18.
 Foresighted and determined local authorities, purposeful exploration (i.e. by seismic reflection) and extensive testing led to the discovery of a substantial groundwater resource near the community of Seon (Switzerland) at a depth of 268–305 m. Production tests revealed a hydraulic conductivity of ∼5.10–5 m/s, transmissivity of ∼5.10–4 m2/s and a storage coefficient of ∼2% in the aquifer. Pumping up to 1500 l/min is sustainable; the water quality complies chemically and bacteriologically with drinking-water requirements. The residence time of several 103 years, determined by isotope techniques, guarantees protection from surface contamination. The elevated temperature of 19.5  °C of the produced water enables combined use for drinking water and space heating. The environmental benefits are substantial: the emission reduction amounts up to 780 tons/year CO2 and 1 ton/year SO2. Received: 21 September 1998 · Accepted: 10 February 1999  相似文献   

19.
Modeling of groundwater flow for Mujib aquifer, Jordan   总被引:4,自引:0,他引:4  
Jordan is an arid country with very limited water resources. Groundwater is the main source for its water supply. Mujib aquifer is located in the central part of Jordan and is a major source of drinking water for Amman, Madaba and Karak cities. High abstraction rates from Mujib aquifer during the previous years lead to a major decline in water levels and deterioration in groundwater quality. Therefore, proper groundwater management of Mujib aquifer is necessary; and groundwater flow modeling is essential for proper management. For this purpose, Modflow was used to build a groundwater flow model to simulate the behavior of the flow system under different stresses. The model was calibrated for steady state condition by matching observed and simulated initial head counter lines. Drawdown data for the period 1985–1995 were used to calibrate the transient model by matching simulated drawdown with the observed one. Then, the transient model was validated by using drawdown data for the period 1996–2002. The results of the calibrated model showed that the horizontal hydraulic conductivity of the B2/A7 aquifer ranges between 0.001 and 40m/d. Calibrated specific yield ranges from 0.0001 to 0.15. The water balance for the steady state condition of Mujib aquifer indicated that the total annual direct recharge is 20.4 × 106m3, the total annual inflow is 13.0 × 106 m3, springs discharge is 15.3 × 106 m3, and total annual outflow is 18.7 × 106 m3. Different scenarios were considered to predict aquifer system response under different conditions. The results of the sensitivity analysis show that the model is highly sensitive to horizontal hydraulic conductivity and anisotropy and with lower level to the recharge rates. Also the model is sensitive to specific yield  相似文献   

20.
We used enclosures to quantify wetland-water column nutrient exchanges in a dwarf red mangrove, (Rhizophora mangle L.) system near Taylor River, an important hydraulic linkage between the southern Everglades and eastern Florida Bay, Florida, USA. Circular enclosures were constructed around small (2.5–4 m diam) mangrove islands (n=3) and sampled quarterly from August 1996 to May 1998 to quantify net exchanges of carbon, nitrogen, and phosphorus. The dwarf mangrove wetland was a net nitrifying environment with consistent uptake of ammonium (6.6–31.4 μmol m−2 h−1) and release of nitrite +nitrate (7.1–139.5 μmol m−2 h−1) to the water column. Significant flux of soluble reactive phosphorus was rarely detected in this nutrient-poor, P-limited environment. We did observe recurrent uptake of total phosphorus and nitrogen (2.1–8.3 and 98–502 μmol m−2 h−1, respectively), as well as dissolved organic carbon (1.8–6.9 μmol m−2 h−1) from the water column. Total organic carbon flux shifted unexplainably from uptake, during Year 1, to export, during Year 2. The use of unvegetated (control) enclosures during the second year allowed us to distinguish the influence of mangrove vegetation from soil-water column processes on these fluxes. Nutrient fluxes in control chambers typically paralleled the direction (uptake or release) of mangrove enclosure fluxes, but not the magnitude. In several instances, nutrient fluxes were more than twofold greater in the absence of mangroves, suggesting an influence of the vegetation on wetland-water column processes. Our findings characterize wetland nutrient exchanges, in a mangrove forest type that has received such little attention in the past, and serve as baseline data for a system undergoing hydrologic restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号