首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 608 毫秒
1.
The distributions of the trace metals iron (Fe), copper (Cu) and cadmium (Cd) along with hydrological parameters (salinity, temperature and reactive phosphate) across the New Zealand continental shelf near Otago Peninsula have been studied. This is a region in which the Subtropical Convergence (STC), a major oceanic front separating subtropical and subantarctic waters, is uniquely located close to land, permitting an examination of the influence of terrestrial sources of Fe and Cu on oceanic waters containing excess micronutrients. Acid-soluble (110 nmol kg−1) and dissolved (6.3 nmol kg−1) Fe concentrations were highest over the central shelf, and decreased rapidly across the mixing zone of the STC to about 5 nmol kg−1 for both forms. The distribution of acid-soluble and dissolved Cu were similar to their counterparts for Fe. Depth-concentration profiles for acid-soluble Fe and Cu suggest resuspension of shelf sediments is the main source. The ratio of oxine-labile to acid-soluble Fe varied from 0.03 to 0.26, with the highest values found in the near surface waters. Oxine-labile Fe and Cu also decreased in concentration in a seawards direction, and with depth, indicating the influence of near surface processes on the reactivity of these elements. Cd concentrations across the continental shelf were very low (<200 pmol kg−1) and exhibited no clear spatial trend and no correlation with phosphate. Comparison of the Cd/P ratio across the shelf indicated that the waters in this region were strongly depleted in Cd relative to P. Phosphate concentrations were lowest in neritic water and increased in the seawards direction because of mixing with nutrient-rich Subantarctic Surface Water.  相似文献   

2.
We present an overview of the spatial distributions of phytoplankton pigments along transects between the UK and the Falkland Islands. These studies, undertaken as a component of the UK Atlantic Meridional Transect (AMT) programme, provided the first post-launch validation data for the NASA SeaWiFS satellite. Pigment data are used to characterise basin-scale variations in phytoplankton biomass and community composition over 100° of latitude, and to compliment the definition of hydrographic oceanic provinces. A summary of the key pigment characteristics of each province is presented.Concentrations of total chlorophyll a (totCHLa = chlorophyll a, CHLa + divinyl CHLa, dvCHLa) were greatest in high latitude temperate waters (>37°N and >35°S), and in the Canary Current Upwelling system. In these regions, the total carotenoid (totCAR) budget was dominated by photosynthetic carotenoids (PSCs). High accessory pigment diversity was observed of which fucoxanthin (FUC), 19'–hexanoyloxyfucoxanthin (HEX), and diadinoxanthin (DIAD) were most abundant, indicating proliferation of large eukaryotes and nanoflagellates. In contrast, tropical and sub-tropical waters exhibited concentrations of totCHLa below 500 ng l−1, with the North Atlantic Sub-tropical East gyre (NASE, 26.7–35°N), South Equatorial Current (SeqC, 7–14.6°S) and South Atlantic tropical Gyre (SATG, 14.6–26°S) characterised by totCHLa of <100 ng−1. These waters exhibited relatively limited pigment diversity, and the totCAR budget was dominated by photoprotecting pigments (PPCs) of which zeaxanthin (ZEA), a marker of prokaryotes (cyanobacteria and prochlorophytes), was most abundant. DvCHLa, a marker of prochlorophytes was detected in waters at temperatures >15°C, and between the extremes of 48°N and 42°S. DvCHLa accounted for up to two-thirds of totCHLa in oligotrophic provinces demonstrating the importance of prochlorophytes to oceanic biomass.Overall, HEX was the dominant PSC, contributing up to 75% of totCAR. HEX always represented >2% of totCAR and was the only truly ubiquitous carotenoid. Since HEX is a chemotaxonomic marker of prymnesiophytes, this observation reflects the truly cosmopolitan distribution of this algal class. ZEA was found to be the most abundant PPC contributing more than one third of the total carotenoid budget in each transect.Greatest seasonality was observed in highly productive waters at high latitudes and in shallow continental shelf waters and attributed to proliferation of large eukaryotes during spring. Concentrations of the prokaryote pigments (ZEA + dvCHLa) also exhibited some seasonality, with elevated concentrations throughout most of the transect during Northern Hemisphere spring.  相似文献   

3.
To quantify recent sediment accumulation, carbon fluxes and cycling, three N.W. European Continental Margin transects on Goban Spur and Meriadzek Terrace were extensively studied by repeated box- and multicore sampling of bottom sediments. The recent sediment distribution and characteristics appear directly related to the near-bed hydrodynamic regime on the margin, which at the upper slope break on the Goban Spur results in along-slope and periodic off-slope directed transport of particles, possibly by entrainment of particles in a detached bottom or intermediate nepheloid layer. From the shelf to the abyssal plain the surface sediments on the Goban Spur change from terrigenous sandy shelf sediments into clayey silts. 210Pb activity decreases exponentially down core, reaching a stable background value at 10 cm (shallower stations) to 5 cm (deeper stations) sediment depth. 210Pb profiles of repeatedly sampled stations indicate negligible annual variability of mixing and flux. The 210Pbxs flux to the sediment shows a decreasing trend with increasing water depth. Below about 2000 m the average 210Pbxs flux is about 0.3 dpm cm−2 y−1, a third of the fluxes measured on the shelf and upper slope stations. Sediment mixing rates (Db) correlate with macro- and meiofaunal density changes and are within the normal oceanic ranges. Lower mixing rates on the lower slope likely reflect lower organic carbon fluxes there. Mass accumulation rates on Meriadzek Terrace are at maximum 80 g m−2 y−1, almost twice as high as at Goban Spur stations of comparable depth. A minimum accumulation rate of 16.6 g m−2 y−1 is found at the Goban Spur upper slope break. Organic carbon burial rates are low compared to other margins and range from a lowest value of 0.05 g m−2 y−1 at the upper slope break to 0.11 g m−2 y−1 downslope. A maximum organic carbon burial rate of 0.41 g m−2 y−1 is found on Meriadzek Terrace. Carbonate burial rates increase along the northern transect from the shelf (13 g m−2 y−1) via a low (9.3 g m−2 y−1) on the upper slope break to the deep sea (30.7 g m−2 y−1). Carbonate burial is highest on Meriadzek Terrace (44.5 g m−2 y−1). The N.W. European Margin at Goban Spur and Meriadzek Terrace cannot be considered a major carbon depocenter.  相似文献   

4.
The spatial and temporal distribution of cadmium (Cd) and phosphate in the Southern Ocean are related to biology and hydrography. During a period of 18 days between transects 5/6 and 11, a phytoplankton spring bloom developed in the Polar Frontal region. Upper water Cd concentrations were not depleted and ranged from 0.2 to 0.8 nM at about 10 m depth. These relatively high Cd concentrations are attributed to upwelling of Upper Circumpolar Deep Water (0.5–1.2 nM in the core) in combination with low biological productivity (0.2 to 0.3 mg m−3 chlorophyll-a, 0.3 g C m−2 d−1). Total particulate Cd concentrations at 40 m depth were between 0.02 and 0.14 nM with the maximum in concentration in the Polar Frontal region. Most of the particulate Cd at this depth (85–94%) was detected in the first phase of a sequential chemical leaching treatment which includes adsorbed Cd as well as Cd incorporated in algae. The Polar Frontal region was characterized by minima in Cd concentration and Cd/phosphate ratio of seawater at both transects; values were the lowest at transect 11 after development of the spring bloom which was dominated by diatoms. This decreasing Cd/phosphate ratio in seawater during spring bloom development was attributed to preferential Cd gross uptake which more than compensated the process of preferential Cd recycling. Within the Upper Circumpolar Deep Water, Cd showed a maximum in concentration similar to that of the major nutrients. Both the Cd concentration and the Cd/phosphate ratio of the deeper water increased in southern direction, from 0.4 to 0.7 nM and from 0.2 to 0.3 nM/μM, respectively. Antarctic Intermediate Water has a Cd concentration of 0.21 nM with a Cd/phosphate ratio of 0.10 nM/μM. In Antarctic Bottom Water, Cd concentrations ranged from 0.60 to 0.82 nM.  相似文献   

5.
In January and February 1998, when an unprecedented fourth repetition of the zonal hydrographic transect at 24.5°N in the Atlantic was undertaken, carbon measurements were obtained for the second time in less than a decade. The field of total carbon along this section is compared to that provided by 1992 cruise which followed a similar path (albeit in a different season). Consistent with the increase in atmospheric carbon levels, an increase in anthropogenic carbon concentrations of 8±3 μmolkg−1 was found in the surface layers. Using an inverse analysis to determine estimates of absolute velocity, the flux of inorganic carbon across 24.5° is estimated to be −0.74±0.91 and −1.31±0.99 PgCyr−1 southward in 1998 and 1992, respectively. Estimates of total inorganic carbon flux depend strongly upon the estimated mass transport, particularly of the Deep Western Boundary Current. The 1998 estimate reduces the large regional divergence in the meridional carbon transport suggested by previous studies and brings into question the idea that the tropical Atlantic constantly outgasses carbon, while the subpolar Atlantic sequesters it. Uncertainty in the carbon transports themselves, dominated by the uncertainty in the total mass transport estimates, are a hindrance to determining the “true” picture.The flux of anthropogenic carbon (CANTH) across the two transects is estimated as northward at 0.20±0.08 and 0.17±0.06 PgCyr−1 for the 1998 and 1992 sections, respectively. The net transport of CANTH across 24.5°N is strongly affected by the difference in concentrations between the northward flowing shallow Florida Current and the mass balancing, interior return flow. The net northward transport of CANTH is opposite the net flow of total carbon and suggests, as has been found by others, that the pre-industrial southward transport of carbon within the Atlantic was stronger than it is today. Combining these flux results with estimates of atmospheric and riverine inorganic carbon input, it is determined that today's oceanic carbon system differs from the pre-industrial system in that today there is an uptake of anthropogenic carbon to the south that is advected northward and stored within the North Atlantic basin.  相似文献   

6.
Climatological variability of picophytoplankton populations that consisted of >64% of total chlorophyll a concentrations was investigated in the equatorial Pacific. Flow cytometric analysis was conducted along the equator between 145°E and 160°W during three cruises in November–December 1999, January 2001, and January–February 2002. Those cruises were covering the La Niña (1999, 2001) and the pre-El Niño (2002) periods. According to the sea surface temperature (SST) and nitrate concentrations in the surface water, three regions were distinguished spatially, viz., the warm-water region with >28 °C SST and nitrate depletion (<0.1 μmol kg−1), the upwelling region with <28 °C SST and high nitrate (>4 μmol kg−1) water, and the in-between frontal zone with low nitrate (0.1–4 μmol kg−1). Picophytoplankton identified as the groups of Prochlorococcus, Synechococcus and picoeukaryotes showed a distinct spatial heterogeneity in abundance corresponding to the watermass distribution. Prochlorococcus was most abundant in the warm-water region, especially in the nitrate-depleted water with >150×103 cells ml−1, Synechococcus in the frontal zone with >15×103 cells ml−1, and picoeukaryotes in the upwelling region with >8×103 cells ml−1. The warm-water region extended eastward with eastward shift of the frontal zone and the upwelling region during the pre-El Niño period. On the contrary, these regions distributed westward during the La Niña period. These climatological fluctuations of the watermass significantly influenced the distribution of picophytoplankton populations. The most abundant area of Prochlorococcus and Synechococcus extended eastward and picoeukaryotes developed westward during the pre-El Niño period. The spatial heterogeneity of each picophytoplankton group is discussed here in association with spatial variations in nitrate supply, ambient ammonium concentration, and light field.  相似文献   

7.
The absorption of anthropogenic CO2 and atmospheric deposition of acidity can both contribute to the acidification of the global ocean. Rainfall pH measurements and chemical compositions monitored on the island of Bermuda since 1980, and a long-term seawater CO2 time-series (1983–2005) in the subtropical North Atlantic Ocean near Bermuda were used to evaluate the influence of acidic deposition on the acidification of oligotrophic waters of the North Atlantic Ocean and coastal waters of the coral reef ecosystem of Bermuda. Since the early 1980's, the average annual wet deposition of acidity at Bermuda was 15 ± 14 mmol m− 2 year− 1, while surface seawater pH decreased by 0.0017 ± 0.0001 pH units each year. The gradual acidification of subtropical gyre waters was primarily due to uptake of anthropogenic CO2. We estimate that direct atmospheric acid deposition contributed 2% to the acidification of surface waters in the subtropical North Atlantic Ocean, although this value likely represents an upper limit. Acidifying deposition had negligible influence on seawater CO2 chemistry of the Bermuda coral reef, with no evident impact on hard coral calcification.  相似文献   

8.
Cadmium is a biologically important trace metal that co-varies with phosphate (PO43− or Dissolved Inorganic Phosphate, DIP) in seawater. However, the exact nature of Cd uptake mechanisms and the relationship with phosphate and other nutrients in global oceans remain elusive. Here, we present a time series study of Cd and PO43− from coastal Antarctic seawater, showing that Cd co-varies with macronutrients during times of high biological activity even under nutrient and trace metal replete conditions. Our data imply that Cd/PO43− in coastal surface Antarctic seawater is higher than open ocean areas. Furthermore, the sinking of some proportion of this high Cd/PO43− water into Antarctic Bottom Water, followed by mixing into Circumpolar Deep Water, impacts Southern Ocean preformed nutrient and trace metal composition. A simple model of endmember water mass mixing with a particle fractionation of Cd/P (αCd–P) determined by the local environment can be used to account for the Cd/PO43− relationship in different parts of the ocean. The high Cd/PO43− of the coastal water is a consequence of two factors: the high input from terrestrial and continental shelf sediments and changes in biological fractionation with respect to P during uptake of Cd in regions of high Fe and Zn. This implies that the Cd/PO43− ratio of the Southern Ocean will vary on glacial–interglacial timescales as the proportion of deep water originating on the continental shelves of the Weddell Sea is reduced during glaciations because the ice shelf is pinned at the edge of the continental shelf. There could also be variations in biological fractionation of Cd/P in the surface waters of the Southern Ocean on these timescales as a result of changes in atmospheric inputs of trace metals. Further variations in the relationship between Cd and PO43− in seawater arise from changes in population structure and community requirements for macro- and micronutrients.  相似文献   

9.
Short-term iron enrichment experiments were carried out with samples collected in areas with different phytoplankton activity in the northern North Sea and northeast Atlantic Ocean in the summer of 1993. The research area was dominated by high numbers of pico-phytoplankton, up to 70,000 ml−1. Maximum chlorophyll a concentrations varied from about 1.0 μg l−1 in a high-reflectance zone (caused by loose coccoliths, remnants from a bloom of Emiliania huxleyi) and about 3.5 μg l−1 in a zone in which the phytoplankton were growing, to about 0.5 μg l−1 in the northeast Atlantic Ocean. From the high-reflectance zone to the northeast Atlantic Ocean, nitrate concentrations increased from 0.5 μM to 6.0 μM. Concentrations of reactive iron in surface water showed an opposite trend and decreased from about 2.6 nM in the high-reflectance zone to <1.0 nM in the northeast Atlantic Ocean. In the research area, no signs of true iron deficiency were found, but iron enrichments in the high-reflectance zone, numerically dominated by Synechococcus sp., resulted in increased nitrate uptake. Ammonium uptake was hardly affected. Strong support for the effect of Fe on cell physiology is given by the increase in the f-ratio. Net growth rates of the phytoplankton (changes in cell numbers over 24 h) were almost unchanged. Phytoplankton collected from the northeast Atlantic Ocean, did not show changes in the nitrogen metabolism upon addition of iron. Net growth rates in these incubations were low or negative, with only slightly higher values with additional iron.  相似文献   

10.
Copper concentrations have been measured in more than 200 samples collected from an Alaskan fjord and continental shelf and slope regions in the northwestern Gulf of Alaska. Concentrations were lowest (2·1 nmol kg−1) at depths of 400–1000 m in the continental slope waters of the Gulf of Alaska. Copper increased systematically with decreasing salinities shoreward to concentrations >30 nmol kg−1 in fjord surface waters during summer months of high freshwater runoff. Copper concentrations increased with depth at an inner fjord station where deep basin waters have restricted circulation, and these data together with surface (<5 cm) pore water copper concentrations (mean=122 nmol kg−1) about an order of magnitude higher than bottom water copper concentrations are indicative of a flux of copper across the sediment-seawater interface. This latter was estimated at 32±12 nmol cm−2 annually, and represented less than 20% of the annual input to fjord surface water (228–411 nmol cm−2) added during summer months. Mass balances in bottom waters indicate a vigorous recycling of copper with a residence time estimated at 21±11 days. Most copper that is remobilized in surface sediments is returned to bottom waters and little (3%) is removed by subsequent diagenetic reaction in the buried sediments. However, an estimate of copper accumulating in anoxic fjord sediments was comparable with copper added to fjord surface waters suggesting that input-removal reactions rather than internal cycling controls copper geochemistry in this estuary.  相似文献   

11.
Natural iron fertilization processes are occurring around the Crozet Islands (46°26′S–52°18′E), thus relieving the water masses from the normally encountered High Nutrients Low Chlorophyll (HNLC) conditions of the Southern Ocean. During austral summers 2004/2005 and 2005/2006, iron and aluminium concentrations were investigated in large particles (> 53 µm) collected from just below the mixed layer at stations under the influence of island inputs, and also in adjacent HNLC waters. These large particles are anticipated to sink out of the mixed layer, and to reflect the net effects of input and cycling of these elements in the overlying mixed layer. Labile and refractory fractions were determined by a two-stage leaching technique. Data showed that water masses downstream of the islands were enriched in total iron and aluminium (0.25–2.68 nmol L− 1 and 0.34–3.28 nmol L− 1 respectively), relative to the southern HNLC control sites (0.15–0.29 nmol L− 1 for Fe and 0.12–0.29 nmol L− 1 for Al), with only a small fraction (typically < 1%) being acid leachable in both environments. Particulate iron predominantly derived from the island system represents a significant fraction of the total water column iron inventory and may complement dissolved Fe inputs that help support the high summer productivity around the Crozet islands.  相似文献   

12.
This paper reports the initial results of a study of groundwater and coastal waters of southern Brazil adjacent to a 240 km barrier spit separating the Patos Lagoon, the largest coastal lagoon in South America, from the South Atlantic Ocean. The objective of this research is to assess the chemical alteration of freshwater and freshwater–seawater mixtures advecting through coastal permeable sands, and the influence of the submarine discharge of these fluids (SGD) on the chemistry of coastal waters. Here we focus on dissolved iron in this system and use radium isotopic tracers to quantify SGD and cross-shelf fluxes. Iron concentrations in groundwaters vary between 0.6 and 180 μM. The influence of the submarine discharge of these fluids into the surf zone produces dissolved Fe concentrations as high as several micromolar in coastal surface waters. The offshore gradient of dissolved Fe, coupled with results for Ra isotopes, is used to quantify the SGD flux of dissolved Fe from this coastline. We estimate the SGD flux to be 2 × 106 mol day− 1 and the cross-shelf flux to be 3.2 × 105 mol day− 1. This latter flux is equal to about 10% of the soluble atmospheric Fe flux to the entire South Atlantic Ocean. We speculate on the importance of this previously unrecognized iron input to regional ocean production and on the potential significance of this source to understanding variations in glacial–interglacial ocean production.  相似文献   

13.
Concentrations of Hg0 in surface waters and atmosphere of the Scheldt estuary and the North Sea are presented and their relationship with biological processes is discussed. Hg0 concentrations in the Scheldt estuary range from 0.1 to 0.38 pmol·l−1 in the winter and from 0.24 to 0.65 pmol·l−1 in the summer and show a positive relationship with phytoplankton pigments. In the North Sea Hg0 concentrations range from 0.06 to 0.8 pmol·l−1 and are higher in coastal stations. Transfer velocities across the air–sea interface were calculated using a classical shear turbulence model. Volatilization fluxes of Hg0 were calculated for the Scheldt estuary and the North Sea. For the Scheldt estuary the fluxes range from 226–284 pmol·m−2·d−1 in winter and 500–701 pmol·m−2·d−1 in summer and for the North Sea the fluxes range from 59–1110 pmol·m−2·d−1 for an average windspeed of 8.1 m·s−1. These fluxes are comparable to the wet and dry depositional fluxes to the North Sea. Hg0 formation rates necessary to balance the volatilization fluxes vary from 0.2 to 4% d−1.  相似文献   

14.
As part of the 2002 Western Arctic Shelf–Basin Interactions (SBI) project, spatio-temporal variability of dissolved inorganic carbon (DIC) was employed to determine rates of net community production (NCP) for the Chukchi and western Beaufort Sea shelf and slope, and Canada Basin of the Arctic Ocean. Seasonal and spatial distributions of DIC were characterized for all water masses (e.g., mixed layer, halocline waters, Atlantic layer, and deep Arctic Ocean) of the Chukchi Sea region during field investigations in spring (5 May–15 June 2002) and summer (15 July–25 August 2002). Between these periods, high rates of phytoplankton production resulted in large drawdown of inorganic nutrients and DIC in the Polar Mixed Layer (PML) and in the shallow depths of the Upper Halocline Layer (UHL). The highest rates of NCP (1000–2850 mg C m−2 d−1) occurred on the shelf in the Barrow Canyon region of the Chukchi Sea and east of Barrow in the western Beaufort Sea. A total NCP rate of 8.9–17.8×1012 g for the growing season was estimated for the eastern Chukchi Sea shelf and slope region. Very low inorganic nutrient concentrations and low rates of NCP (<15–25 mg C m−2 d−1) estimated for the mixed layer of the adjacent Arctic Ocean basin indicate that this area is perennially oligotrophic.  相似文献   

15.
The concentration of carbon disulfide (CS2) in surface water and relevant hydrographic parameters were determined in coastal waters of the eastern USA (Delaware Bay and Chesapeake Bay, including the Potomac River; 7–11 September 1986). The CS2 concentration varied extensively along the cruise track, from 4 to 510 pmol S(CS2) l−1 (n = 103). The average values in estuarine, shelf, and oceanic waters were found to be 118 ± 100 pmol S(CS2) l−1 (n = 54), 51 ± 34 pmol S(CS2) l−1 (n = 14), and 28 ± 12 pmol S(CS2) l−1 (n = 35), respectively. To help interpret the geochemical behavior of CS2, we analyzed the depth distribution of CS2 in the North Atlantic Ocean during an earlier cruise (23 April–2 May 1986). In most cases, these depth profiles show a near-surface maximum at about 10–20 m depth and a relatively steep gradient below this maximum. Based on the distribution pattern in the water column and evidence provided by earlier workers, we propose that diffusion of CS2 from bottom sediments may contribute to CS2 levels in surface seawater. The atmospheric concentration of CS2 was also investigated at some locations during the September cruise. Except during periods when there was a significant anthropogenic input, the concentration of CS2 in air was generally in the range of 4–15 pptv (parts per trillion by volume) with a mean of 10.4 ± 4.0 pptv (n = 10). The calculated sea-to-air emission rates of CS2 at each of our sampling stations show a decreasing trend across estuarine, shelf, and oceanic areas, in agreement with the trend in surface water concentrations.  相似文献   

16.
Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans   总被引:2,自引:0,他引:2  
Within the eastern tropical oceans of the Atlantic and Pacific basin vast oxygen minimum zones (OMZ) exist in the depth range between 100 and 900 m. Minimum oxygen values are reached at 300–500 m depth which in the eastern Pacific become suboxic (dissolved oxygen content <4.5 μmol kg−1) with dissolved oxygen concentration of less than 1 μmol kg−1. The OMZ of the eastern Atlantic is not suboxic and has relatively high oxygen minimum values of about 17 μmol kg−1 in the South Atlantic and more than 40 μmol kg−1 in the North Atlantic. About 20 (40%) of the North Pacific volume is occupied by an OMZ when using 45 μmol kg−1 (or 90 μmol kg−1, respectively) as an upper bound for OMZ oxygen concentration for ocean densities lighter than σθ < 27.2 kg m−3. The relative volumes reduce to less than half for the South Pacific (7% and 13%, respectively). The abundance of OMZs are considerably smaller (1% and 7%) for the South Atlantic and only 0% and 5% for the North Atlantic. Thermal domes characterized by upward displacements of isotherms located in the northeastern Pacific and Atlantic and in the southeastern Atlantic are co-located with the centres of the OMZs. They seem not to be directly involved in the generation of the OMZs.OMZs are a consequence of a combination of weak ocean ventilation, which supplies oxygen, and respiration, which consumes oxygen. Oxygen consumption can be approximated by the apparent oxygen utilization (AOU). However, AOU scaled with an appropriate consumption rate (aOUR) gives a time, the oxygen age. Here we derive oxygen ages using climatological AOU data and an empirical estimate of aOUR. Averaging oxygen ages for main thermocline isopycnals of the Atlantic and Pacific Ocean exhibit an exponential increase with density without an obvious signature of the OMZs. Oxygen supply originates from a surface outcrop area and can also be approximated by the turn-over time, the ratio of ocean volume to ventilating flux. The turn-over time corresponds well to the average oxygen ages for the well ventilated waters. However, in the density ranges of the suboxic OMZs the turn-over time substantially increases. This indicates that reduced ventilation in the outcrop is directly related to the existence of suboxic OMZs, but they are not obviously related to enhanced consumption indicated by the oxygen ages. The turn-over time suggests that the lower thermocline of the North Atlantic would be suboxic but at present this is compensated by the import of water from the well ventilated South Atlantic. The turn-over time approach itself is independent of details of ocean transport pathways. Instead the geographical location of the OMZ is to first order determined by: (i) the patterns of upwelling, either through Ekman or equatorial divergence, (ii) the regions of general sluggish horizontal transport at the eastern boundaries, and (iii) to a lesser extent to regions with high productivity as indicated through ocean colour data.  相似文献   

17.
The concentration of dissolved glycolate in sea water was measured by high performance liquid chromatography in the eastern tropical Atlantic Ocean during the Eumeli 4 oceanographic cruise in June 1992. Diurnal concentrations of glycolate reached 74 kg 1−1 1−1 in mesotrophic waters and 17 μg 1−1 1 in oligotrophic waters. At midday total dissolved glycolate exceeded 1 g of carbon per m2 of ocean, decreasing strongly during the night (less than 0.1 g of carbon per m2). At the three stations studied, glycolate carbon difference between night and day in the water column was of the same order as the daily primary production estimated by incorporation of 14C02. Disappearance of this compound at night suggested a rapid consumption by heterotrophic organisms. These data suggest that glycolate excretion by phytoplankton may be important, and possibly influenced by ambient nutrient concentrations. Further, with glycolate representing up to 50% of daily productivity, our estimates of the total biological reduction of C02 need to be re-examined.  相似文献   

18.
Dissolved Al carried in river water apparently undergoes a fractional removal at the early stages of mixing in the Conway estuary. On the other hand, dissolved Al behaves almost conservatively in high salinity (>13) estuarine waters. In order to understand the geochemistry of Al in these estuarine waters, simple empirical sorption models have been used. Partitioning of Al occurs between solid and solution phases with a distribution coefficient, Kd, which varies from 0.67 × 105 to 3.38 × 106 ml g−1 for suspended particle concentrations of 2–64 mg l−1. The Kd values in general decrease with increasing suspended particulate matter and this tendency termed the “particle concentration effect” is quite pronounced in these waters. The sorption model derived by previous workers for predicting concentrations of dissolved Al with changing suspended sediment loads has been applied to these data. Reasonable fits are obtained for Kd values of 105, 106 and 107 ml g−1 with various values of α. Further, a sorption model is proposed for particulate Al concentrations in these waters that fits the data extremely well defined by a zone with Kd value 107 ml g−1 and C0 values 16 × 10−6 mg ml−1 and 92 × 10−6 mg ml−1. These observations provide strong evidence of sorption processes as key mechanisms influencing the distribution of dissolved and particulate Al in the Conway estuary and present new insight into Al geochemistry in estuaries.  相似文献   

19.
Radiolabelled experiments were carried out to measure necessary parameters in the development of a biodynamic ecotoxicological simulation model of Cd accumulation in the barnacle biomonitor Balanus amphitrite. The Cd uptake rate constant from the dissolved phase, the Cd assimilation efficiency (AE) from suspended particulate matter (SPM) and the efflux rate constant were obtained using 109Cd. A Cd uptake rate constant from the dissolved phase (ku) of 0.0072 L g−1 h−1 was determined for the barnacle under environmentally realistic dissolved Cd concentrations (maximum of 400 ng L−1). Cd AE from SPM was determined from the barnacle feeding on SPM with low and high chl a concentrations, resulting in AEs of 39.0% and 48.7%, respectively, and an efflux rate of 0.0072 d−1. The difference between the AEs resulted from differences in chl a:SPM ratios suggesting a general tendency of higher AE when SPM is enriched with chl a. These results reinforce that the accuracy of ecotoxicological models for metal accumulation in organisms depends on how representative the selected food items are of the organism’s natural diet.  相似文献   

20.
Analyses of the concentration product (Ca2+) × (CO32−) in the pore waters of marine sediments have been used to estimate the apparent solubility products of sedimentary calcite (KSPc) and aragonite (KSPa) in seawater. Regression of the data gives the relation In KPSPc = 1.94 × 10−3 δP − 14.59 The 2°C, 1 atm value of KSPc is, then, 4.61 × 10−7 mol2 l−2. The pressure coefficient yields a at 2°C of −43.8 cm3 atm−1. A single station where aragonite is present in the sediments gives a value of KSPa = 9.2 × 10−7 (4°C, 81 atm). The calcite data are very similar to those determined experimentally by Ingle et al. (1973) for KSPc at 2°C and 1 atm. The calculated is also indistinguishable from the experimental results of Ingle (1975) if is assumed to be independent of pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号