首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In many parts of the world, the repetition of medium–strong intensity earthquake ground motions at brief intervals of time has been observed. The new design philosophies for buildings in seismic areas are based on multi‐level design approaches, which take into account more than a single damageability limit state. According to these approaches, a sequence of seismic actions may produce important consequences on the structural safety. In this paper, the effects of repeated earthquake ground motions on the response of single‐degree‐of‐freedom systems (SDOF) with non‐linear behaviour are analysed. A comparison is performed with the effect of a single seismic event on the originally non‐damaged system for different hysteretic models in terms of pseudo‐acceleration response spectra, behaviour factor q and damage parameters. The elastic–perfect plastic system is the most vulnerable one under repeated earthquake ground motions and is characterized by a strong reduction of the q‐factor. A moment resisting steel frame is analysed as well, showing a reduction of the q‐factor under repeated earthquake ground motions even larger than that of an equivalent SDOF system. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
震害资料显示,场地条件对地震动特性以及工程结构破坏程度影响显著。为减少因场地效应而造成的经济损失和社会影响,在进行场地地震反应分析时,需最大限度地减小因场地土层模型参数的不确定性引起的地震动评估偏差,为工程结构地震反应分析选取并生成适当的地震动输入。随着强震动观测技术的逐渐发展,大量可靠的钻井台阵记录为地震过程中场地观测点的动力反应提供了直接数据。以美国加州地区La Cienega钻井台阵强震动观测数据为基础,利用互相关函数,对不同强度地震作用下场地土层的平均剪切波速进行分析,并在此基础上,以Cyclic 1D为模拟平台,建立一维自由场地地震反应有限元分析模型。分析结果表明:通过钻井台阵地震动观测数据识别,得到场地平均剪切波速,能够反映该场地的动力特性,数值模拟计算结果和台阵地震动记录基本吻合,可为数值模型参数选取提供依据。  相似文献   

3.
The seismic response of the Mexico City Cathedral built of very soft soil deposits is evaluated by using motions recorded in various parts of the structure during several moderate earthquakes. This unique set of records provides significant insight into the seismic response of this and other similar historic stone masonry structures. Free‐field ground motions are carefully compared in time and frequency domains with motions recorded at building basement. The dynamic characteristics of the structure are inferred from the earthquake records by using system identification techniques. Variation of seismic response for different seismic intensities is discussed. It is shown that, due to the soil–structure interaction, due to large differences between dominant frequencies of earthquake ground motions at the site and modal frequencies of vibration of the structure, and due to a particularly high viscous damping, seismic amplifications of ground motion in this and similar historic buildings erected on soft soil deposits are much smaller than that induced in most modern constructions. Nevertheless, earthquake records and analytical results show that several components of the structure such as its central dome and the bell towers may be subjected to local vibrations that significantly amplify ground motions. Overall, results indicate that in its present state the structure has an acceptable level of seismic safety. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Specially designed arrays of strong motion seismographs located near earthquake sources are required for engineering studies of the near-source properties and the spatial variation of seismic waves. The SMART-1 array in Taiwan provides good records for this type of study. Careful study of the observed strong motion data permits the identification of wave types, directions and apparent wave velocities. In this paper, a principal direction ratio R (f,α) is defined; this indicates the principal direction of the motion (along a nearly straight line) within the range 0 < R < 1. Vertical motion of the ground is also included in this study. Orbit spectrum analysis is used to verify the identification of wave directions and wave types. The spatial variation of seismic waves along the principal direction is studied. From frequency-domain analysis, mathematical models of the spatial variation of ground displacement are developed using a wave-number spectrum and the cross-spectral density function between two spatial coordinates; these models in turn can provide two alternative models for the random vibration analysis of extensive structures subject to multiple point seismic excitation. The SMART-1 array data gathered during the January 29, 1981 earthquake also are used to demonstrate calculation of the ground strains and differential movements of the array site. From time-domain analysis, the spatial variation of seismic waves is defined for ground motion along the identified principal direction. The time variation of evolutionary spectra characterized by frequency-dependent parameters is used for this formulation. The SMART-1 array data again form the basis for discussion of the spatial variation of model parameters.  相似文献   

5.
Coherency functions are used to describe the spatial variation of seismic ground motions at multiple supports of long span structures. Many coherency function models have been proposed based on theoretical derivation or measured spatial ground motion time histories at dense seismographic arrays. Most of them are suitable for modelling spatial ground motions on flat‐lying alluvial sites. It has been found that these coherency functions are not appropriate for modelling spatial variations of ground motions at sites with irregular topography (Struct. Saf. 1991; 10 (1):1–13). This paper investigates the influence of layered irregular sites and random soil properties on coherency functions of spatial ground motions on ground surface. Ground motion time histories at different locations on ground surface of the irregular site are generated based on the combined spectral representation method and one‐dimensional wave propagation theory. Random soil properties, including shear modulus, density and damping ratio of each layer, are assumed to follow normal distributions, and are modelled by the independent one‐dimensional random fields in the vertical direction. Monte‐Carlo simulations are employed to model the effect of random variations of soil properties on the simulated surface ground motion time histories. The coherency function is estimated from the simulated ground motion time histories. Numerical examples are presented to illustrate the proposed method. Numerical results show that coherency function directly relates to the spectral ratio of two local sites, and the influence of randomly varying soil properties at a canyon site on coherency functions of spatial surface ground motions cannot be neglected. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
A methodology for the investigation of the spatial variation of seismic ground motions is presented; data recorded at the SMART-1 dense instrument array in Lotung, Taiwan, during Events 5 and 39 are used in the analysis. The seismic motions are modeled as superpositions of sinusoidal functions, described by their amplitude, frequency, wavenumber and phase. For each event and direction (horizontal or vertical) analysed, the approach identifies a coherent, common component in the seismic motions at all recording stations, and variabilities in amplitudes and phases around the common component sinusoidal characteristics, that are particular for each recording station. It is shown that the variations in both the amplitudes and the phases of the motions at the station locations around the common component characteristics contribute significantly to the spatially variable nature of the motions, and, furthermore, they are correlated: increase in the variability of the amplitudes of the motions recorded at individual stations around the common amplitude implies increase in the variability of the phases around the common phase. The dispersion range of the amplitude and phase variability around their corresponding common components appear also to be associated with physical parameters. The spatially variable arrival time delays of the waveforms at the stations due to their upward travelling through the site topography, in addition to the wave passage delays identified from signal processing techniques, constitute another important cause for the spatial variation of the motions; their consideration in the approach facilitates also the identification of the correlation patterns in the amplitudes and phases. © 1997 by John Wiley & Sons, Ltd.  相似文献   

7.
This paper develops a procedure to select unscaled ground motions for estimating seismic demand hazard curves (SDHCs) in performance‐based earthquake engineering. Currently, SDHCs are estimated from a probabilistic seismic demand analysis, where several ensembles of ground motions are selected and scaled to a user‐specified scalar conditioning intensity measure (IM). In contrast, the procedure developed herein provides a way to select a single ensemble of unscaled ground motions for estimating the SDHC. In the context of unscaled motions, the proposed procedure requires three inputs: (i) database of unscaled ground motions, (ii) I M , the vector of IMs for selecting ground motions, and (iii) sample size, n; in the context of scaled motions, two additional inputs are needed: (i) a maximum acceptable scale factor, SFmax, and (ii) a target fraction of scaled ground motions, γ. Using a recently developed approach for evaluating ground motion selection and modification procedures, the proposed procedure is evaluated for a variety of inputs and is demonstrated to provide accurate estimates of the SDHC when the vector of IMs chosen to select ground motions is sufficient for the response quantity of interest. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
To achieve rational and precise seismic response predictions of large span spatial structures(LSSSs),the inherent non-uniformity and multidimensionality characteristics of earthquake ground motions should be properly taken into consideration.However,due to the limitations of available earthquake stations to record seismic rotational components,the effects of rocking and torsional earthquake components are commonly neglected in the seismic analyses of LSSSs.In this study,a newly developed method to extract the rocking and torsion components at any point along the area of a deployed dense array from the translational earthquake recordings is applied to obtain the rotational seismic inputs for a LSSS.The numerical model of an actual LSSS,the Dalian International Conference Center(DICC),is developed to study the influences of multi-support and multidimensional excitations on the seismic responses of LSSSs.The numerical results reveal that the non-uniformity and multidimensionality of ground motion input can considerably affect the dynamic response of the DICC.The specific degree of influence on the overall and local structural displacements,deformations and forces are comprehensively investigated and discussed.  相似文献   

9.
The performance‐based design of lifeline systems requires spatially variable seismic excitations at the structures' supports that are consistent with prescribed seismic ground motion characteristics and an appropriate spatial variability model—such motions can be obtained through conditional simulation. This work revisits the concept of conditional simulation and critically examines the conformity of the generated motions with the characteristics of the target random field and observations from data recorded at dense instrument arrays. Baseline adjustment processing techniques for recorded earthquake accelerograms are extended to fit the requirements of simulated and conditionally simulated spatially variable ground motions. Emphasis is placed on the use of causal vs acausal filtering in the data processing. Acceleration, velocity and displacement time histories are evaluated in two example applications of the approach. The first application deals with a prescribed synthetic time history that incorporates nonstationarity in the amplitude and frequency content of the motions and depends on earthquake magnitude, source–site distance and local soil conditions; this example results in zero residual displacements. The second application considers as prescribed time history a recording in the vicinity of a fault and yields nonzero residual displacements. It is shown that the conditionally simulated time histories preserve the characteristics of the prescribed ones and are consistent with the target random field. The results of this analysis suggest that the presented methodology provides a useful tool for the generation of spatially variable ground motions to be used in the performance‐based design of lifeline systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Although Singapore is located in a low‐seismicity region, huge but infrequent Sumatran subduction earthquakes might pose structural problems to medium‐ and high‐rise buildings in the city. Based on a series of ground motion simulations of potential earthquakes that may affect Singapore, the 1833 Sumatran subduction earthquake (Mw=9.0) has been identified to be the worst‐case scenario earthquake. Bedrock motions in Singapore due to the hypothesized earthquake are simulated using an extended reflectivity method, taking into account uncertainties in source rupture process. Random rupture models, considering the uncertainties in rupture directivity, slip distribution, presence of asperities, rupture velocity and dislocation rise time, are made based on a range of seismologically possible models. The simulated bedrock motions have a very long duration of about 250 s with a predominant period between 1.8 and 2.5 s, which coincides with the natural periods of medium‐ and high‐rise buildings widely found in Singapore. The 90‐percentile horizontal peak ground acceleration is estimated to be 33 gal and the 90‐percentile horizontal spectral acceleration with 5% damping ratio is 100 gal within the predominant period range. The 90‐percentile bedrock motion would generate base shear force higher than that required by the current design code, where seismic design has yet to be considered. This has not taken into account effects of local soil response that might further amplify the bedrock motion. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
A method is established to identify critical earthquake ground motions that are to be used in physical testing or subsequent advanced computational studies to enable seismic performance to be assessed. The ground motion identification procedure consists of: choosing a suitable suite of ground motions and an appropriate intensity measure; selecting a computational tool and modelling the structure accordingly; performing Incremental Dynamic Analysis on a non‐linear model of the structure; interpreting these results into 50th (median) and 90th percentile performance bounds; and identifying the critical ground motions that are close to these defining probabilistic curves at ground motion intensities corresponding to the design basis earthquake and the maximum considered earthquake. An illustrative example of the procedure is given for a reinforced concrete highway bridge pier designed to New Zealand specifications. Pseudodynamic tests and finite element based time history analyses are performed on the pier using three earthquake ground motions identified as: (i) a Design Basis Earthquake (10% probability in 50 years) with 90 percent confidence of non‐exceedance; (ii) a Maximum Considered Event (2% probability in 50 years) representing a median response; and (iii) a Maximum Considered Event representing 90 percent confidence of non‐exceedance. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
随着强震台网的密布及观测记录的增加,为研究各类局部场地地震反应预测模型的合理性提供了有效的参考依据,也使利用强震记录及场地条件研究地震动特征成为可能。选取场地地质参数资料和地震记录数据齐全的日本小田原(Ashigara Valley)盲测试验场地,通过对比不同地震动输入方式及场地反应分析模型,研究地震动特征,分析现有模型的优劣。基于1990年8月5日M5.1强震事件的地表基岩记录和地下基岩地震记录,采用地下台强震记录直接输入、地表基岩台强震记录减半为基底地震动输入、地表基岩台强震记录反演为基底地震动输入作为3种基岩地震动输入。基于局部场地条件分别建立一维等效线性模型、二维黏弹性模型及二维时域等效线性化模型等工程中常用的场地数值分析模型,进行局部场地地震反应分析,预测该盲测场地的地表地震动特征,并与对应的实测强震记录结果进行对比,分析不同基岩地震动输入方式对预测地震动特征及地表土层反应谱特征的影响,重点分析地震动输入、土体非线性、场地横向不均匀性及几何与非线性特征共同作用等因素对地表地震动特征的影响,以期为地表地震动的合理预测提供参考。  相似文献   

13.
本文基于随机地震动场的功率谱模型和多点地震激励,建立了大跨度桥梁在随机地震动场多点激励的地震反应分析方法,并数值模拟了某四跨预应力混凝土连续刚构桥的地震反应,考虑了行波效应、部分相干效应和局部场地效应等因素的影响,并与确定性地震一致激励下的计算结果进行了比较。对工程建设具有参考意义。  相似文献   

14.
This study analyzes data recorded at the dense array in the Parkway Valley, Wainuiomata, New Zealand, a small alluvial valley surrounded by graywacke outcrops. The array consisted of stations on both the sediment basin and the surrounding soft rock, with station separation distances pertinent for earthquake engineering applications. The array's configuration renders itself uniquely for the study of the spatial variation of seismic ground motions at sites with irregular topography for bridge response evaluations: the locations of the soft-rock stations surrounding the valley may be viewed as the locations of the bridge's abutments, and the locations of the stations in the basin as those of the bridge's intermediate piers. A further-away station, north-east of the valley, provided information on firm-rock data.  相似文献   

15.
Strong ground motions recorded in central Tokyo during the 1944 Tonankai Mw8.1 earthquake occurring in the Nankai Trough demonstrate significant developments of very large (>10 cm) and prolonged (>10 min) shaking of long-period (T > 10–12 s) ground motions in the basin of Tokyo located over 400 km from the epicenter. In order to understand the process by which such long-period ground motions developed in central Tokyo and to mitigate possible future disasters arising from large earthquakes in the Nankai Trough, we analyzed waveform data from a dense nation wide strong-motion network (K-NET and KiK-net) deployed across Japan for the recent SE Off-Kii Peninsula (Mw 7.4) earthquake of 5 September 2004 that occurred in the Nankai Trough. The observational data and a corresponding computer simulation for the earthquake clearly demonstrate that such long-period ground motion is primarily developed as the wave propagating along the Nankai Trough due to the amplification and directional guidance of long-period surface waves within a thick sedimentary layer overlaid upon the shallowly descending Philippine Sea Plate below the Japanese Island. Then the significant resonance of the seismic waves within the thick cover of sedimentary rocks of the Kanto Basin developed large and prolonged long-period motions in the center of Tokyo. The simulation results and observed seismograms are in good agreement in terms of the main features of the long-period ground motions. Accordingly, we consider that the simulation model is capable of predicting the long-period ground motions that are expected to occur during future Nankai Trough M 8 earthquakes.  相似文献   

16.
2013年7月22日,甘肃省定西市岷县发生MS6.6地震,造成了严重的人员伤亡和经济损失.地震发生于青藏高原东北部边缘与甘肃东南部地区的交界处,是该区域一百多年以来发生的最大地震.分析本次地震观测数据显示,岷县MS6.6地震产生的地震地面运动呈现出明显的区域变化特征.为了研究这种区域变化特征,本文使用全球CRUST1.0和SRTM30模型数据建立了甘肃岷县及周边地区的地下三维传播介质模型,使用并行的三维有限差分方法进行了岷县地震的区域地震波传播模拟,并与研究区内数字地震台网记录的地震观测资料进行对比.通过分析地面运动的峰值速度和持续时间的区域分布特征,发现:在青藏高原东北部边缘,较大的地形起伏对地面运动的峰值速度分布起主要影响作用;在青藏高原外围地区,地形起伏较小,而沉积层主要影响地面运动的峰值速度和持续时间,从而导致了明显的盆地效应,如地面运动的振幅放大和持续时间加长.因此,研究区剧烈的地形起伏和表层沉积层是影响地面运动的重要因素.  相似文献   

17.
水库诱发地震机制与抗震设防   总被引:2,自引:0,他引:2  
本文探讨了水库诱发震的机制、水库诱发地震动的特征以及设计地震动的选择,提出了诱发地震设计烈度确定方法和地震反应分析方法的选定原则。  相似文献   

18.
An array of 24 strong-motion accelerometers produced records for the New-Lian River Bridge, a five-span continuous bridge, during 25 February 1995 earthquake (weak motion) and 25 June 1995 earthquake (strong motion). This paper describes the application of linear discrete-time system identification methodology to the array of strong-motion measurements, in order to assess seismic response characteristics of the bridge. The structural system identification will concentrate not only on the global identification but also on the local structural system identification. Results of this application show that: (1) weak and strong ground excitation will induce significant differences on the dynamic response of the bridge; (2) linear models provide an excellent fit to the measured motions of the bridge from the records of these two seismic events; (3) the rigid-body rocking of the bridge pier during strong shaking is significant and cannot be ignored during identification; (4) the transverse motion at mid-span of the bridge is controlled by the quasi-static response from the boundary system and this phenomenon is quite significant during strong ground excitation. Also, systematic estimates of modal damping ratio and equivalent assessments of pier stiffness developed in the bridge during earthquake are discussed. © 1997 by John Wiley & Sons, Ltd.  相似文献   

19.
Seismic fragilities of buildings are often developed without consideration of soil-structure interaction (SSI), where base of the building is assumed to be fixed. This study highlights effect of SSI and uncertainty in soil properties such as friction angle, cohesion, density, shear modulus and Poisson's ratio and foundation parameters on seismic fragilities of non-ductile reinforced concrete frames resting in dense silty sand. Three-, five-, and nine-storey three-bay moment resisting reinforced concrete frames resting on isolated shallow foundation are studied and the numerical models for SSI are developed in OpenSees. Three sets of 10 ground motions, with mean spectrum of 100, 500, and 1000 yr return period hazard level (matching EC-8 design spectrum), are used for the nonlinear time history analyses. An optimized Latin Hyper Cube sampling technique is used to draw the sample of soil properties and foundation parameters. The fragilities are developed for the fixed base model and SSI models. However, the fragilities that incorporate the soil parameter and foundation uncertainties are only slightly different from those based solely on the uncertainty in seismic demand from earthquake ground motion, suggesting that fragilities that are developed under the assumption that all soil and foundation parameters at their median (or mean) values are sufficient for the purpose of earthquake damage or loose estimation of structures resting on dense silty sand. But the consideration of the SSI effect has the significant influence on the fragilities compare to the fixed base model. The structural parameter uncertainty and foundation modeling uncertainty are not considered in the study.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号