首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a rehabilitation technique developed under a design and construction scheme, termed minimal‐disturbance seismic rehabilitation. This scheme pursues enhancing the seismic performance of buildings with the intention of improving the continuity of business while minimizing obstruction of the visual and physical space of building users and the use of heavy construction equipment and hot work (welding/cutting). The developed rehabilitation technique consists of light‐weight steel elements and aims to decrease demands to beam‐ends of steel moment‐resisting frames. The behavior of the baseline model was verified through numerical analysis and proof‐of‐concept testing. Furthermore, the effectiveness of rehabilitation is studied through retrofitting a four‐story steel moment‐resisting frame originally designed with Japanese design guidelines. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The cured‐in‐place‐pipe (CIPP) liner technology involves installation of flexible polymeric composite liners coated with thermosetting resin to the inner surfaces of existing buried pipelines. This innovative technology provides an efficient, economic, and environmentally friendly alternative for rehabilitation of structurally compromised underground pipelines without expensive and disruptive excavation. However, the lack of analytical/numerical procedures to quantify the seismic performance of CIPP liner reinforced pipelines remains a barrier to the seismic design and rehabilitation of underground pipelines. This paper first develops an experimentally validated hysteretic model of ductile iron push‐on joints, reinforced with one particular type of CIPP liner under repeated axial loading. A numerical procedure is then proposed to systematically assess the seismic performance and fragility of straight buried pipelines incorporating push‐on joints and subjected to transient ground deformations. The numerical results indicate that CIPP liner‐reinforced pipelines exhibit favorable robust seismic performance with limited joint damage under high‐intensity transient ground deformations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This paper examines the potential development of a probabilistic design methodology, considering hysteretic energy demand, within the framework of performance‐based seismic design of buildings. This article does not propose specific energy‐based criteria for design guidelines, but explores how such criteria can be treated from a probabilistic design perspective. Uniform hazard spectra for normalized hysteretic energy are constructed to characterize seismic demand at a specific site. These spectra, in combination with an equivalent systems methodology, are used to estimate hysteretic energy demand on real building structures. A design checking equation for a (hypothetical) probabilistic energy‐based performance criterion is developed by accounting for the randomness of the earthquake phenomenon, the uncertainties associated with the equivalent system analysis technique, and with the site soil factor. The developed design checking equation itself is deterministic, and requires no probabilistic analysis for use. The application of the proposed equation is demonstrated by applying it to a trial design of a three‐storey steel moment frame. The design checking equation represents a first step toward the development of a performance‐based seismic design procedure based on energy criterion, and additional works needed to fully implement this are discussed in brief at the end of the paper. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Previous comparison studies on seismic isolation have demonstrated its beneficial and detrimental effects on the structural performance of high‐speed rail bridges during earthquakes. Striking a balance between these 2 competing effects requires proper tuning of the controlling design parameters in the design of the seismic isolation system. This results in a challenging problem for practical design in performance‐based engineering, particularly when the uncertainty in seismic loading needs to be explicitly accounted for. This problem can be tackled using a novel probabilistic performance‐based optimum seismic design (PPBOSD) framework, which has been previously proposed as an extension of the performance‐based earthquake engineering methodology. For this purpose, a parametric probabilistic demand hazard analysis is performed over a grid in the seismic isolator parameter space, using high‐throughput cloud‐computing resources, for a California high‐speed rail (CHSR) prototype bridge. The derived probabilistic structural demand hazard results conditional on a seismic hazard level and unconditional, i.e., accounting for all seismic hazard levels, are used to define 2 families of risk features, respectively. Various risk features are explored as functions of the key isolator parameters and are used to construct probabilistic objective and constraint functions in defining well‐posed optimization problems. These optimization problems are solved using a grid‐based, brute‐force approach as an application of the PPBOSD framework, seeking optimum seismic isolator parameters for the CHSR prototype bridge. This research shows the promising use of seismic isolation for CHSR bridges, as well as the potential of the versatile PPBOSD framework in solving probabilistic performance‐based real‐world design problems.  相似文献   

5.
Semi‐active dampers offer significant capability to reduce dynamic wind and seismic structural response. A novel resetable device with independent valve control laws that enables semi‐active re‐shaping of the overall structural hysteretic behaviour has been recently developed, and a one‐fifth scale prototype experimentally validated. This research statistically analyses three methods of re‐shaping structural hysteretic dynamics in a performance‐based seismic design context. Displacement, structural force, and total base‐shear response reduction factor spectra are obtained for suites of ground motions from the SAC project. Results indicate that the reduction factors are suite invariant. Resisting all motion adds damping in all four quadrants and showed 40–60% reductions in the structural force and displacement at the cost of a 20–60% increase in total base‐shear. Resisting only motion away from equilibrium adds damping in quadrants 1 and 3, and provides reductions of 20–40%, with a 20–50% increase in total base‐shear. However, only resisting motion towards equilibrium adds damping in quadrants 2 and 4 only, for which the structural responses and total base‐shear are reduced 20–40%. The spectral analysis results are used to create empirical reduction factor equations suitable for use in performance based design methods, creating an avenue for designing these devices into structural applications. Overall, the reductions in both response and base‐shear indicate the potential appeal of this semi‐active hysteresis sculpting approach for seismic retrofit applications—largely due to the reduction of the structural force and overturning demands on the foundation system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
A structure that has a permanent offset from a true vertical line is commonly referred to as being ‘out‐of‐plumb’. Out‐of‐plumb may result from construction tolerances or post‐earthquake permanent deformations in steel buildings. This paper quantifies the displacements of buildings with out‐of‐plumb in subsequent seismic events by means of inelastic dynamic time history analysis. Structures considered have different structural heights, force design reduction factors (R), and target inter‐story drifts. It is shown that buildings with greater out of plumb and force design reduction factor have larger normalized peak inter‐story drift ratio and ratio of residual‐to‐peak drift. Also, the ratio of residual‐to‐peak drift was not strongly dependent on structural height or design drift. A design procedure and example provided, based on the results obtained, show how peak and residual inter‐story drift ratio can be estimated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In Italy, as in other high seismic risk countries, many bridges, nowadays deemed ‘strategic’ for civil protection interventions after an earthquake, were built without antiseismic criteria, and therefore their seismic assessment is mandatory. Accordingly, the development of a seismic assessment procedure that gives reliable results and, at the same time, is sufficiently simple to be applied on a large population of bridges in a short time is very useful. In this paper, a displacement‐based procedure for the assessment of multi‐span RC bridges, satisfying these requirements and called direct displacement‐based assessment (DDBA), is proposed. Based on the direct displacement‐based design previously developed by Priestley et al., DDBA idealizes the multi DOF bridge structure as an equivalent SDOF system and hence defines a safety factor in terms of displacement. DDBA was applied to hypothetical bridge configurations. The same structures were analyzed also using standard force‐based approach. The reliability of the two methods was checked performing IDA with response spectrum compatible accelerograms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
According to the most modern trend, performance‐based seismic design is aimed at the evaluation of the seismic structural reliability defined as the mean annual frequency (MAF) of exceeding a threshold level of damage, i.e. a limit state. The methodology for the evaluation of the MAF of exceeding a limit state is herein applied with reference to concentrically ‘V’‐braced steel frames designed according to different criteria. In particular, two design approaches are examined. The first approach corresponds to the provisions suggested by Eurocode 8 (prEN 1998—Eurocode 8: design of structures for earthquake resistance. Part 1: general rules, seismic actions and rules for buildings), while the second approach is based on a rigorous application of capacity design criteria aiming at the control of the failure mode (J. Earthquake Eng. 2008; 12 :1246–1266; J. Earthquake Eng. 2008; 12 :728–759). The aim of the presented work is to focus on the seismic reliability obtained through these design methodologies. The probabilistic performance evaluation is based on an appropriate combination of probabilistic seismic hazard analysis, probabilistic seismic demand analysis (PSDA) and probabilistic seismic capacity analysis. Regarding PSDA, nonlinear dynamic analyses have been carried out in order to obtain the parameters describing the probability distribution laws of demand, conditioned to given values of the earthquake intensity measure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
An investigation on the validity of the conventional design approach known as constant displacement ductility is carried out. The hysteretic behaviour described by the Modified Takeda model is taken to represent the characteristics of reinforced concrete structural systems. The results presented in the form of seismic damage spectra indicate that the conventional design approach may not be valid because cumulative damage is excessively high. The inelastic design spectra based on the constant‐damage concept are proposed in terms of simplified expressions. The expressions are derived from constant‐damage design spectra computed by non‐linear response analysis for SDOF systems subjected to ground motions recorded on rock sites, alluvium deposits, and soft‐soil sites. The proposed expressions, which are dependent on the local soil conditions, are functions of target seismic damage, displacement ductility ratio and period of vibration. The seismic damage of structures that have been designed based on this new design approach is also checked by a design‐and‐evaluation approach. The results are found to be satisfactory. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
A method concerning the evaluation, in a very compact form, of the non‐stationary modal cross‐correlation coefficients of MDOF structural systems subjected to seismic excitations is presented. It is available both in the case when the excitation is considered as a white‐noise process and when it is considered as a filtered process. The evaluation of these coefficients is required when a transient seismic analysis is performed by the use of the modal response spectrum approach. This is necessary when the strong‐motion phase of the earthquake is significantly short with respect to the fundamental period of the structure. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
The response of low‐ductility reinforced concrete (RC) frames, designed typically for a non‐seismic region, subjected to two frequencies of base excitations is studied. Five half‐scaled, two‐bay, two‐storey, RC frames, each approximately 5 m wide by 3.3 m high, were subjected to both horizontal and/or vertical base excitations with a frequency of 40 Hz as well as a lower frequency of about 4 Hz (close to the fundamental frequency) using a shake table. The imposed acceleration amplitude ranged from 0.2 to 1.2g. The test results showed that the response characteristics of the structures differed under high‐ and low‐frequency excitations. The frames were able to sustain high‐frequency excitations without damage but were inadequate for low‐frequency excitations, even though the frames exhibited some ductility. Linear‐elastic time‐history analysis can predict reasonably well the structural response under high‐frequency excitations. As the frames were not designed for seismic loads, the reinforcement detailing may not have been adequate, based on the crack pattern observed. The effect of vertical excitation can cause significant additional forces in the columns and moment reversals in the beams. The ‘strong‐column, weak‐beam’ approach for lateral load RC frame design is supported by experimental observations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
Passive structural control techniques are generally used as seismic rehabilitation and retrofit methodologies for existing structures. A poorly explored and exciting opportunity within structural seismic control research is represented by the possibility to design new structural forms and configurations, such as slender buildings, without compromising the structural performance through an integrated design approach. In this paper, with reference to viscous dampers, an integrated seismic design procedure of the elastic stiffness resources and viscoelastic properties of a dissipative bracing‐damper system is proposed and developed to ensure a seismic design performance, within the displacement‐based seismic design, explicitly taking into account the dynamic behaviour both of the structural and control systems. The optimal integrated seismic design is defined as the combination of the variables that minimizes a suitable index, representing an optimized objective function. Numerical examples of the proposed integrated cost‐effectiveness seismic design approach both on an equivalent SDOF system and a proportionally damped MDOF integrated system are developed defining the design variables, which minimize the cost index. Validation of the effectiveness of the proposed integrated design procedure is carried out by evaluating the average displacement of the time‐history responses to seven unscaled acceleration records selected according to EC8 provisions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The time‐invariant gain‐limit‐constrained inverse Q‐filter can control the numerical instability of the inverse Q‐filter, but it often suppresses the high frequencies at later times and reduces the seismic resolution. To improve the seismic resolution and obtain high‐quality seismic data, we propose a self‐adaptive approach to optimize the Q value for the inverse Q‐filter amplitude compensation. The optimized Q value is self‐adaptive to the cutoff frequency of the effective frequency band for the seismic data, the gain limit of the inverse Q‐filter amplitude compensation, the inverse Q‐filter amplitude compensation function, and the medium quality factor. In the processing of the inverse Q‐filter amplitude compensation, the optimized Q value, corresponding gain limit, and amplitude compensation function are used simultaneously; then, the energy in the effective frequency band for the seismic data can be recovered, and the seismic resolution can be enhanced at all times. Furthermore, the small gain limit or time‐variant bandpass filter after the inverse Q‐filter amplitude compensation is considered to control the signal‐to‐noise ratio, and the time‐variant bandpass filter is based on the cutoff frequency of the effective frequency band for the seismic data. Synthetic and real data examples demonstrate that the self‐adaptive approach for Q value optimization is efficient, and the inverse Q‐filter amplitude compensation with the optimized Q value produces high‐resolution and low‐noise seismic data.  相似文献   

14.
Centralized semi‐active control is a technique for controlling the whole structure using one main computer. Centralized control systems introduce better control for relatively short to medium high structures where the response of any story cannot be separated from the adjacent ones. In this paper, two centralized control approaches are proposed for controlling the seismic response of post‐tensioned (PT) steel frames. The first approach, the stiffness control approach, aims to alter the stiffness of the PT frame so that it avoids large dynamic amplifications due to earthquake excitations. The second approach, deformation regulation control approach, aims at redistributing the demand/strength ratio in order to provide a more uniform distribution of deformations over the height of the structure. The two control approaches were assessed through simulations of the earthquake response of semi‐actively and passively controlled six‐story post‐tensioned steel frames. The results showed that the stiffness control approach is efficient in reducing the frame deformations and internal forces. The deformation regulation control approach was found to be efficient in reducing the frame displacements and generating a more uniform distribution of the inter‐story drifts. These results indicate that centralized semi‐active control can be used to improve the seismic performance of post‐tensioned steel frames. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The conventional integral approach is very well established in probabilistic seismic hazard assessment (PSHA). However, Monte‐Carlo (MC) simulations can become an efficient and flexible alternative against conventional PSHA when more complicated factors (e.g. spatial correlation of ground shaking) are involved. This study aims at showing the implementation of MC simulation techniques for computing the annual exceedance rates of dynamic ground‐motion intensity measures (GMIMs) (e.g. peak ground acceleration and spectral acceleration). We use multi‐scale random field technique to incorporate spatial correlation and near‐fault directivity while generating MC simulations to assess the probabilistic seismic hazard of dynamic GMIMs. Our approach is capable of producing conditional hazard curves as well. We show various examples to illustrate the potential use of the proposed procedures in the hazard and risk assessment of geographically distributed structural systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Shear‐wall dominant multistorey reinforced concrete structures, constructed by using a special tunnel form technique are commonly built in countries facing a substantial seismic risk, such as Chile, Japan, Italy and Turkey. In spite of their high resistance to earthquake excitations, current seismic code provisions including the Uniform Building Code (International Conference of Building Officials, Whittier, CA, 1997) and the Turkish Seismic Code (Specification for Structures to be Built in Disaster Areas, Ankara, Turkey, 1998) present limited information for their design criteria. In this study, consistency of equations in those seismic codes related to their dynamic properties are investigated and it is observed that the given empirical equations for prediction of fundamental periods of this specific type of structures yield inaccurate results. For that reason, a total of 80 different building configurations were analysed by using three‐dimensional finite‐element modelling and a set of new empirical equations was proposed. The results of the analyses demonstrate that given formulas including new parameters provide accurate predictions for the broad range of different architectural configurations, roof heights and shear‐wall distributions, and may be used as an efficient tool for the implicit design of these structures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
A rational approach is presented for minimizing the dynamic response of reinforced concrete framed structures forced by a seismic base acceleration. Reference is made to EC8 regulations, but the presented approach may in principle be applied to structures ruled by any regulation code. Governing equations are set in the frequency domain (and not in the periods domain as usual) so as to enable the adoption of sound approaches for analysis and design of dynamic structures that are typical of automatics. Among these, a novel usage of the H‐norm concept is proposed that determines a rational design approach capable to minimize the structural response with reference to any quantity of engineering interest, eg, the overall compliance and the displacement of a specific point or the interstorey drift. A numerical investigation on a 6‐storey 3‐bay frame is performed, and relevant analysis and design results are presented in much detail to validate the theoretical framework.  相似文献   

18.
Bridge design should take into account not only safety and functionality, but also the cost effectiveness of investments throughout a bridge life‐cycle. This paper presents a probabilistic approach to compute the life‐cycle cost (LCC) of corroding reinforced concrete (RC) bridges in earthquake‐prone regions. The approach is developed by combining cumulative seismic damage and damage associated with corrosion due to environmental conditions. Cumulative seismic damage is obtained from a low‐cycle fatigue analysis. Chloride‐induced corrosion of steel reinforcement is computed based on Fick's second law of diffusion. The proposed methodology accounts for the uncertainties in the ground motion parameters, the distance from the source, the seismic demand on the bridge, and the corrosion initiation time. The statistics of the accumulated damage and the cost of repairs throughout the bridge life‐cycle are obtained by Monte‐Carlo simulation. As an illustration of the proposed approach, the effects of design parameters on the LCC of an example RC bridge are studied. The results are valuable in better estimating the condition of existing bridges and, therefore, can help to schedule inspection and maintenance programs. In addition, by taking into consideration the two deterioration processes over a bridge life‐cycle, it is possible to estimate the optimal design parameters by minimizing, for example, the expected cost throughout the life of the structure. A comparison between the effects of the two deterioration processes shows that, in seismic regions, the cumulative seismic damage affects the reliability of bridges over time more than the corrosion even for corrosive environments. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Seismic imaging is an important step for imaging the subsurface structures of the Earth. One of the attractive domains for seismic imaging is explicit frequency–space (fx) prestack depth migration. So far, this domain focused on migrating seismic data in acoustic media, but very little work assumed visco‐acoustic media. In reality, seismic exploration data amplitudes suffer from attenuation. To tackle the problem of attenuation, new operators are required, which compensates for it. We propose the weighted L 1 ‐error minimisation technique to design visco‐acoustic f – x wavefield extrapolators. The L 1 ‐error wavenumber responses provide superior extrapolator designs as compared with the previously designed equiripple L 4 ‐norm and L‐norm extrapolation wavenumber responses. To verify the new compensating designs, prestack depth migration is performed on the challenging Marmousi model dataset. A reference migrated section is obtained using non‐compensating fx extrapolators on an acoustic dataset. Then, both compensating and non‐compensating extrapolators are applied to a visco‐acoustic dataset, and both migrated sections are then compared. The final images show that the proposed weighted L 1 ‐error method enhances the resolution and results in practically stable images.  相似文献   

20.
Marine seismic data are always affected by noise. An effective method to handle a broad range of noise problems is a time‐frequency de‐noising algorithm. In this paper we explain details regarding the implementation of such a method. Special emphasis is given to the choice of threshold values, where several different strategies are investigated. In addition we present a number of processing results where time‐frequency de‐noising has been successfully applied to attenuate noise resulting from swell, cavitation, strumming and seismic interference. Our seismic interference noise removal approach applies time‐frequency de‐noising on slowness gathers (τ?p domain). This processing trick represents a novel approach, which efficiently handles certain types of seismic interference noise that otherwise are difficult to attenuate. We show that time‐frequency de‐noising is an effective, amplitude preserving and robust tool that gives superior results compared to many other conventional de‐noising algorithms (for example frequency filtering, τ?p or fx‐prediction). As a background, some of the physical mechanisms responsible for the different types of noise are also explained. Such physical understanding is important because it can provide guidelines for future survey planning and for the actual processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号