首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Abundant spinel peridotite xenoliths occur in late Cenozoic alkali basaltic rocks in the Sikhote-Alin region at the Pacific margin of the Asian continent. Major- and trace-element compositions of representative peridotite xenolith are documented for four occurrences located in different structural units of the continental margin. In each locality, the majority of xenoliths have distinctive microstructures, modal and chemical compositions that are typical for a given xenolith suite. Significant textural and compositional differences between the four xenolith suites suggest that the upper mantle beneath the Sikhote-Alin consists of distinct domains with contrasting composition. The inferred large-scale mantle heterogeneities may be due to juxtaposition of lithospheric blocks of different provenance during accretion of the Sikhote-Alin to the Asian continent.

Trace-element patterns of the xenoliths and their minerals obtained ICP-MS technique provide evidence of depletion and enrichment events and indicate contrasting behaviour of REE, HFSE and other incompatible trace elements. The HFSE behave non-concordantly, in particular, some xenoliths have highly fractionated Zr/Hf, Ti/Zr, Nb/Ta, La/Nb and U/Th ratios relative to their values in the primitive mantle. The fractionated compositions may be related to the interaction of evolved subduction-related fluids and melts with lithospheric mantle at the Mesozoic-early Cenozoic active continental margin or to metasomatism during later continental rifting.  相似文献   


2.
A comparison of mantle xenolith suites along the northern Canadian Cordillera reveals that the xenoliths from three suites exhibit bimodal populations whereas the xenoliths from the other four suites display unimodal populations. The bimodal suites contain both fertile lherzolite and refractory harzburgite, while the unimodal suites are dominated by fertile lherzolite xenoliths. The location of the three bimodal xenolith suites correlates with a newly discovered P-wave slowness anomaly in the upper mantle that is 200 km in width and extends to depths of 400–500 km (Frederiksen AW, Bostock MG, Van Decar JC, Cassidy J, submitted to Tectonophysics). This correlation suggests that the bimodal xenolith suites may either contain fragments of the anomalously hot asthenospheric mantle or that the lithospheric upper mantle has been affected by the anomalously hot mantle. The lherzolite xenoliths in the bimodal suites display similar major element compositions and trace element patterns to the lherzolite xenoliths in the unimodal suites, suggesting that the lherzolites represent the regional lithospheric upper mantle. In contrast, the harzburgite xenoliths are highly depleted in terms of major element composition, but their clinopyroxenes [Cpx] have much higher incompatible trace element contents than those in the lherzolite xenoliths. The major element and mildly incompatible trace element systematics of the harzburgite and lherzolite xenoliths indicate that they could be related by a partial melting process. The lack of textural and geochemical evidence for the former existence of garnet argues against the harzburgite xenoliths representing actual fragments of the deeper anomalous asthenospheric mantle. Furthermore, the calculated P-wave velocity difference between harzburgite and lherzolite end-members is only 0.8%, with the harzburgites having higher P-wave velocities. Therefore the 3% P-wave velocity difference detected teleseismically cannot be produced by the compositional difference between the lherzolite and harzburgite xenoliths. If temperature is responsible for the observed 3% P-wave velocity perturbation, the anomalous mantle is likely to be at least 200 °C higher than the surrounding mantle. Taken together these data indicate that the refractory harzburgite xenoliths represent the residue of 20–25% partial melting of a lherzolite lithospheric mantle. The incompatible trace element enrichment of the harzburgites suggests that this melting was accompanied by the ingress of fluids. The association of the bimodal xenolith suites with the mantle anomaly detected teleseismically suggests that anomalously hot asthenospheric mantle provided both the heat and volatiles responsible for the localized melting and enrichment of the lithospheric mantle. Received: 16 May 1997 / Accepted: 25 October 1997  相似文献   

3.
We present the first data on the petrology of the mantle lithosphereof the Southeastern (SE) Slave craton, Canada. These are basedon petrographic, mineralogical and geochemical studies of mantlexenoliths in Pipe 5034 of the Cambrian Gahcho Kué kimberlitecluster. Major types of mantle xenoliths include altered eclogite,coarse garnet or spinel peridotite, and deformed garnet peridotite.The peridotites belong to the low-temperature suite and formedat T=600–1300°C and P= 25–80 kbar in a thick(at least 220–250 km), cool lithosphere. The SE Slavemantle is cooler than the mantle of other Archaean cratons andthat below other terranes of the Slave craton. The thick lithosphereand the relatively cool thermal regime provide favourable conditionsfor formation and preservation of diamonds beneath the SE Slaveterrane. Similar to average Archaean mantle worldwide, the SESlave peridotite is depleted in magmaphile major elements andcontains olivine with forsterite content of 91–93·5.With respect to olivine composition and mode, all terranes ofthe Slave mantle show broadly similar compositions and are relativelyorthopyroxene-poor compared with those of the Kaapvaal and Siberiancratons. The SE Slave spinel peridotite is poorer in Al, Caand Fe, and richer in Mg than deeper garnet peridotite. Thegreater chemical depletion of the shallow upper mantle is typicalof all terranes of the Slave craton and may be common for thesubcontinental lithospheric peridotitic mantle in general. Peridotiticxenoliths of the SE Slave craton were impregnated by kimberliticfluids that caused late-stage recrystallization of primary clinopyroxene,spinel, olivine and spinel-facies orthopyroxene, and formationof interstitial clinopyroxene. This kimberlite-related recrystallizationdepleted primary pyroxenes and spinel in Al. The kimberliticfluid was oxidizing, Ti-, Fe- and K-rich, and Na-poor, and introducedserpentine, chlorite, phlogopite and spinel into peridotitesat P < 35 kbar. KEY WORDS: kimberlite xenolith; lithosphere; mantle terrane; chemical zoning; thermobarometry; Slave craton  相似文献   

4.
Upper mantle xenoliths from Wikieup, AZ, provide abundant evidence for magmatic modification of the uppermost mantle beneath the Transition Zone between the Colorado Plateau and the southern Basin and Range province. Upper mantle lithologies in this xenolith suite are represented by spinel peridotite, wehrlite, plagioclase peridotite, and Al-augite group pyroxenites. Isotopic data for these xenoliths yield relatively uniform values and suggest a common petrogenesis. Al-augite-bearing gabbro and pyroxenite xenoliths from this locality are interpreted to have formed by crystal fractionation processes from parent alkali basalts similar to the Wikieup host basalt. Mineral and whole rock compositions show consistent trends of increasing incompatible element contents (Fe, Al, Ca, Na, K, LIL, and LREE), and decreasing compatible element contents (Mg, Cr, Ni) from spinel peridotite to wehrlite to plagioclase peridotite to the host basalt composition. These compositional trends are interpreted as resulting from varying degrees of magma-mantle wall rock interaction as ascending mafic magmas infiltrated upper mantle peridotite. Small degrees of melt infiltration resulted in slightly modified spinel peridotite compositions while moderate degrees metasomatized spinel peridotite to wehrlite, and the highest degrees metasomatized it to plagioclase peridotite. Whole rock compositions and clinopyroxene, plagioclase, and whole rock isotopic data suggest that the infiltrating magmas were the same as those from which the gabbros and pyroxenites crystallized, and that they were alkalic in composition, similar to the Wikieup host alkali olivine basalts. Relatively uniform 143Nd/144Nd for the mineral separates and whole rocks in spite of the significantly wide range in their 147Sm/144Nd (0.71–0.23 in clinopyroxene) suggests that the Wikieup xenoliths including gabbro, pyroxenite, peridotite, wehrlite, and plagioclase peridotite, are all relatively young rocks formed or metasomatized by a relatively recent magmatic episode. Received: 21 May 1996 / Accepted: 23 December 1996  相似文献   

5.
Xenoliths hosted by Quaternary basanites and alkali basaltsfrom Marsabit (northern Kenya) represent fragments of Proterozoiclithospheric mantle thinned and chemically modified during riftingin the Mesozoic (Anza Graben) and in the Tertiary–Quaternary(Kenya rift). Four types of peridotite xenoliths were investigatedto constrain the thermal and chemical evolution of the lithosphericmantle. Group I, III and IV peridotites provide evidence ofa cold, highly deformed and heterogeneous upper mantle. Textures,thermobarometry and trace element characteristics of mineralsindicate that low temperatures in the spinel stability field(750–800°C at <1·5 GPa) were attained bydecompression and cooling from initially high pressures andtemperatures in the garnet stability field (970–1080°Cat 2·3–2·9 GPa). Cooling, decompressionand penetrative deformation are consistent with lithosphericthinning, probably related to the development of the Mesozoicto Paleogene Anza Graben. Re-equilibrated and recrystallizedperidotite xenoliths (Group II) record heating (from 800°Cto 1100°C). Mineral trace element signatures indicate enrichmentby mafic silicate melts, parental to the Quaternary host basanitesand alkali basalts. Relationships between mineral textures,P–T conditions of equilibration, and geochemistry canbe explained by metasomatism and heating of the lithosphererelated to the formation of the Kenya rift, above a zone ofhot upwelling mantle. KEY WORDS: East African Rift System; Anza Graben; in situ LA-ICPMS; peridotite xenoliths; thermobarometry  相似文献   

6.
Mantle xenoliths in alkaline lavas of the Kerguelen Islandsconsist of: (1) protogranular, Cr-diopside-bearing harzburgite;(2) poikilitic, Mg-augite-bearing harzburgite and cpx-poor lherzolite;(3) dunite that contains clinopyroxene, spinel phlogopite, andrarely amphibole. Trace element data for rocks and mineralsidentify distinctive signatures for the different rock typesand record upper-mantle processes. The harzburgites reflectan initial partial melting event followed by metasomatism bymafic alkaline to carbonatitic melts. The dunites were firstformed by reaction of a harzburgite protolith with tholeiiticto transitional basaltic melts, and subsequently developed metasomaticassemblages of clinopyroxene + phlogopite ± amphiboleby reaction with lamprophyric or carbonatitic melts. We measuredtwo-mineral partition coefficients and calculated mineral–meltpartition coefficients for 27 trace elements. In most samples,calculated budgets indicate that trace elements reside in theconstituent minerals. Clinopyroxene is the major host for REE,Sr, Y, Zr and Th; spinel is important for V and Ti; orthopyroxenefor Ti, Zr, HREE, Y, Sc and V; and olivine for Ni, Co and Sc. KEY WORDS: mantle xenoliths; mantle metasomatism; partition coefficients; Kerguelen Islands; trace elements  相似文献   

7.
Tertiary to Recent continental rifting and sea floor spreadingformed the Red Sea. Mantle xenoliths from the Saudi ArabianRed Sea margin provide an opportunity to study the mantle beneaththe flanks of this young ocean basin. The Harrat al Kishb mantlexenolith suite consists of Cr-diopside group spinel harzburgiteand lherzolite mantle wall rock, and a variety of pyroxenitesproduced by crystallization from mafic magmas within the mantle.The pyroxenites include two texturally distinct varieties ofCr-diopside group spinel websterites, and Al-augite group spinelpyroxenite, garnet-spinel websterite, and garnet-bearing spinelclinopyroxenite. All Harrat al Kishb xenoliths are deformedto some degree and many are recrystallized. Mineral exsolutionand zoning textures indicate reequilibration to decreasing temperatureconditions. Several xenoliths provide evidence for metasomaticprocesses in the mantle beneath western Saudi Arabia. Estimates of peridotite temperatures are 900–980?C withpressure bracketed between 13 and 19 kb. Al-augite spinel pyroxenitesyield temperatures of 1050–1070?C. Garnet-spinel websteritesyield temperatures and pressures in the range 1000–1030?C,13.8–16.5 kb. These P-T estimates show that mantle temperatures are elevatedwell above those predicted by low surface heat flow measurements.Mantle heating associated with rifting is young enough thatsurface heat flow has not yet equilibrated. The xenolith dataare consistent with a model of asthenosphere upwelling beneaththe Red Sea rift. Comparison of xenolith data with existingseismic refraction data reveals a coherent picture of the compositionof the western Saudi Arabian lithosphere.  相似文献   

8.
The Pb isotope compositions of amphiboles and clinopyroxenesin spinel peridotite and pyroxenite mantle xenoliths from theintra-plate Quaternary volcanic fields of the Eifel province(Germany) are strongly correlated with their Sr–Nd isotopeand trace element compositions. High-temperature anhydrous xenolithsfrom a depth of around 60 km have trace element and Sr–Nd–Pbisotope compositions similar to the depleted source of mid-oceanridge basalts (Depleted MORB Mantle, DMM). Amphibole-bearingxenoliths from shallower depths (<45 km) provide evidencefor three temporally distinct episodes of mantle metasomatismin the subcontinental lithosphere: (1) aqueous fluids from anisotopically enriched (EM-like) mantle reservoir caused amphiboleformation during deformation in the shallow continental lithosphericmantle and may be subduction related, probably associated withthe last major tectonic event that influenced the area (Hercynianorogeny). (2) During a second phase of mantle metasomatism theEM-like lithospheric mantle was affected by melts from an ancient,HIMU-like (high time-integrated µ = 238U/204Pb) mantlesource. The HIMU-like component introduced by these fluids hada much more radiogenic Pb isotope composition than the asthenosphericsource of the widespread Cenozoic magmatism in Europe and maybe linked to reactivation of ancient subducted crustal domainsduring the Hercynian orogeny or to early Cretaceous deep-sourcedmantle plumes. (3) During a brief final stage the heterogeneouslyenriched EM–HIMU subcontinental lithosphere was locallymodified by basaltic melts migrating along fractures and veinsthrough the upper mantle as a consequence of the Cenozoic Eifelvolcanism. Although a DMM component is completely lacking inthe metasomatic fluids of the metasomatic episodes 1 and 2,the vein melts of episode 3 and the Cenozoic Eifel lavas requiremantle sources containing three end-member components (DMM–HIMU–EM).Thus, mobilization of the more depleted mantle material occurredat the earliest in the Tertiary, contemporaneously with thedevelopment of the extensive rift system and main melt generationin Europe. Alternatively, the variety of Sr–Nd–Pbisotope signatures of the metasomatic agents may have been producedby melting of isotopically distinct mantle domains in a heterogeneousuprising mantle plume. KEY WORDS: Eifel; Europe; mantle xenoliths; metasomatism; Pb isotopes  相似文献   

9.
Mantle xenoliths hosted by the historic Volcan de San Antonio, La Palma, Canary Islands include veined spinel harzburgites and spinel dunites. Glasses and associated minerals in the vein system of veined xenoliths show a gradual transition in composition from broad veins to narrow veinlets. Broad veins contain alkali basaltic glass with semi-linear trace element patterns enriched in strongly incompatible elements. As the veins become narrower, the SiO2-contents in glass increase (46 → 67 wt% SiO2 in harzburgite, 43 → 58 wt% in dunite) and the trace element patterns change gradually to concave patterns depleted in moderately incompatible elements (e.g. HREE, Zr, Ti) relative to highly incompatible ones. The highest SiO2-contents (ca. 68% SiO2, low Ti-Fe-Mg-Ca-contents) and most extreme concave trace element patterns are exhibited by glass in unveined peridotite xenoliths. Clinopyroxenes shift from LREE-enriched augites in basaltic glass, to REE-depleted Cr-diopside in highly silicic glass. Estimates indicate that the most silicic glasses represent melts in, or near, equilibrium with their host peridotites. The observed trace element changes are compatible with formation of the silicic melts by processes involving infiltration of basaltic melts into mantle peridotite followed by reactions and crystallization. The Fe-Mg interdiffusion profiles in olivine porphyroclasts adjacent to the veins indicate a minimum period of diffusion of 600 years, implying that the reaction processes have taken place in situ in the upper mantle. The CaO-TiO2-La/Nd relationships of mantle rocks may be used to discriminate between metasomatism caused by carbonatitic and silicic melts. Unveined mantle xenoliths from La Palma and Hierro (Canary Islands) show a wide range in La/Nd ratios with relatively constant, low-CaO contents which is compatible with metasomatism of “normal” abyssal peridotite by silicic melts. Peridotite xenoliths from Tenerife show somewhat higher CaO and TiO2 contents than those from the other islands and may have been affected by basaltic or carbonatitic melts. The observed trace element signatures of ultramafic xenoliths from La Palma and other Canary Islands may be accounted for by addition of small amounts (1–7%) of highly silicic melt to unmetasomatized peridotite. Also ultramafic xenoliths from other localities, e.g. eastern Australia, show CaO-TiO2-La/Nd relationships compatible with metasomatism by silicic melts. These results suggest that silicic melts may represent important metasomatic agents. Received: 15 November 1998 / Accepted: 17 May 1999  相似文献   

10.
IONOV  DMITRI 《Journal of Petrology》2004,45(2):343-367
Peridotite xenoliths in a Miocene picrite tuff from the Vitimvolcanic province east of Lake Baikal, Siberia, are samplesof the off-craton lithospheric mantle that span a depth rangefrom the spinel to garnet facies in a mainly fertile domain.Their major and trace element compositions show some scatter(unrelated to sampling or analytical problems), which is notconsistent with different degrees of partial melting or metasomatism.Some spinel peridotites and, to a lesser degree, garnet-bearingperidotites are depleted in heavy rare earth elements (HREE)relative to middle REE (MREE), whereas some garnet peridotitesare enriched in HREE relative to MREE, with Lu abundances muchhigher than in primitive mantle estimates. Clinopyroxenes fromseveral spinel peridotites have HREE-depleted patterns, whichare normally seen only in clinopyroxenes coexisting with garnet.Garnets in peridotites with similar modal and major elementcompositions have a broad range of Lu and Yb abundances. Overall,HREE are decoupled from MREE and Hf and are poorly correlatedwith partial melting indices. It appears that elements withhigh affinity to garnet were partially redistributed in theVitim peridotite series following partial melting, with feweffects for other elements. The Lu–Hf decoupling may disturbHf-isotope depletion ages and their correlations with meltingindices. KEY WORDS: garnet peridotite; lithospheric mantle; Lu–Hf isotope system; Siberia; trace elements  相似文献   

11.
Mineral and whole-rock chemical data for peridotite xenolithsin basaltic lavas on Spitsbergen are examined to reassess mechanismsof melt–fluid interaction with peridotites and their relativerole versus melt composition in mantle metasomatism. The enrichmentpatterns in the xenoliths on primitive mantle-normalized diagramsrange from Th–La–Ce ‘inflections’ inweakly metasomatized samples (normally without amphibole) toa continuous increase in abundances from Ho to Ce typical foramphibole-bearing xenoliths. Numerical modelling of interactionbetween depleted peridotites and enriched melts indicates thatthese patterns do not result from simple mixing of the two end-membersbut can be explained by chromatographic fractionation duringreactive porous melt flow, which produces a variety of enrichmentpatterns in a single event. Many metasomatized xenoliths havenegative high field strength element and Pb anomalies and Srspikes relative to rare earth elements of similar compatibility,and highly fractionated Nb/Ta and Zr/Hf. Although amphiboleprecipitation can produce Nb–Ta anomalies, some of thesefeatures cannot be attributed to percolation-related fractionationalone and have to be a signature of the initial melt (possiblycarbonate rich). In general, chemical and mineralogical fingerprintsof a metasomatic medium are strongest near its source (e.g.a vein) whereas element patterns farther in the metasomatic‘column’ are increasingly controlled by fractionationmechanisms. KEY WORDS: Spitsbergen; lithospheric mantle; metasomatism; trace elements; theoretical modelling  相似文献   

12.
This comment addresses the interpretation of oxygen fugacitydata for spinel peridotite xenoliths from five Mexican volcanicfields presented by Luhr & Aranda-Gomez (Journal of Petrology,38, 1075–1112, 1997). The postulated east–west increaseof the FMQ (‘relative oxygen fugacity’, where FMQis fayalite–magnetite–quartz) values is inherentto the method and therefore of questionable geological significance.Increases in FMQ do not necessarily mirror oxidation processesin the mantle controlled by subduction-related fluids. KEY WORDS: mantle metasomatism; Mexico; peridotite xenoliths; relative oxygen fugacity  相似文献   

13.
Major element, trace element and Sr–Nd–Pb isotopiccompositions of ultramafic xenoliths and megacrysts from thecontinental Cameroon line provide evidence for metasomatismof the upper most lithospheric mantle by enriched melts duringthe Mesozoic The megacrysts probably crystallized within thelower continental crust from melts similar to the host magmas.All the xenoliths originated as depleted residues after theextraction of basaltic melts, but some indicate evidence ofinteraction with enriched partial melts before entrainment.The U–Pb isotopic data on garnet are consistent with coolingthrough >900C at >300 Ma. The Sm–Nd isotope systematicsin constituent phases appear to have been in equilibrium ona xenolith scale at the time of entrainment, indicating derivationfrom mantle that remained at temperatures >600C until eruption.Spinel therzolies that show simple light rare earth element(LREE) depletions are characterized by isotopic compositionsthat are comparable with, but slightly more depleted than AtlanticN-MORB, suggesting that the unmetasomatized sub-continentallithosphere of the Cameroon line may be isotopically similarto that of sub-oceanic lithosphere. The Nd-depleted mantle modelages of these xenoliths are consistent with late Proterozoicdepletion, similar in age to much of the overlying continentalcrust. In contrast, samples that have LREE-enriched clinopyr-oxenes(La/Yb =4.7–9.4) contain trace amounts of amphibole, areenriched in U and have more radiogenic Pb and Sr. These xenolithsyield U–Pb and Sm–Nd model ages consistent withMesozoic enrichment, in agreement with the age of enrichmentof the source regions of the basalts, as deduced from Pb isotopiccompositions. Clinopyroxenes record three orders of magnitudeenrichment in U and LREE accompanied by progressive K depletionassociated with the growth of trace amphibole, with K/U ratiosthat range from 12000 to 1. The ratios of the trace elementsthought to have similar bulk D in mantle melting, Ce/Pb, Ba/Rband Nd/Sr ratios, display regional variations related to thetime integrated history of enrichments indicated by Nd isotopiccompositions. Mass balance calculations suggest that the meltsresponsible for the most recent enrichment of the lithospherehad higher La/Yb and U/Pb than Cameroon line host magmas, andwere probably the product of small degrees of partial meltingassociated with the earliest stages of the breakup of Pangea. KEY WORDS: Cameroon line; mantle xenoliths; megacrysts; REE; isotopic composition; trace element  相似文献   

14.
Several spinel peridotite xenoliths from Spitsbergen have Sr–Ndisotopic compositions that plot to the right of the ‘mantlearray’ defined by oceanic basalts and the DM end-member(depleted mantle, with low 87Sr/86Sr and high 143Nd/144Nd).These xenoliths also show strong fractionation of elements withsimilar compatibility (e.g. high La/Ce), which cannot be producedby simple mixing of light rare earth element-depleted peridotiteswith ocean island basalt-type or other enriched mantle melts.Numerical simulations of porous melt flow in spinel peridotitesapplied to Sr–Nd isotope compositions indicate that thesefeatures of the Spitsbergen peridotites can be explained bychemical fractionation during metasomatism in the mantle. ‘Chromatographic’effects of melt percolation create a transient zone where thehost depleted peridotites have experienced enrichment in Sr(with a radiogenic isotope composition) but not in Nd, thusproducing Sr–Nd decoupling mainly controlled by partitioncoefficients and abundances of Sr and Nd in the melt and theperidotite. Therefore, Sr–Nd isotope decoupling, earlierreported for some other mantle peridotites worldwide, may bea signature of metasomatic processes rather than a source-relatedcharacteristic, contrary to models that invoke mixing with hypotheticalSr-rich fluids derived from subducted oceanic lithosphere. Pbisotope compositions of the Spitsbergen xenoliths do not appearto be consistently affected by the metasomatism. KEY WORDS: Spitsbergen; lithospheric mantle; metasomatism; radiogenic isotopes; theoretical modelling  相似文献   

15.
Peridotites that sample Archean mantle roots are frequentlyincompatible trace element enriched despite their refractorymajor element compositions. To constrain the trace element budgetof the lithosphere beneath the Canadian craton, trace elementand rare earth element (REE) abundances were determined fora suite of garnet peridotites and garnet pyroxenites from theNikos kimberlite pipe on Somerset Island, Canadian Arctic, theirconstituent garnet and clinopyroxene, and the host kimberlite.These refractory mantle xenoliths are depleted in fusible majorelements, but enriched in incompatible trace elements, suchas large ion lithophile elements (LILE), Th, U and light rareearth elements (LREE). Mass balance calculations based on modalabundances of clinopyroxene and garnet and their respectiveREE contents yield discrepancies between calculated and analyzedREE contents for the Nikos bulk rocks that amount to LREE deficienciesof 70–99%, suggesting the presence of small amounts ofinterstitial kimberlite liquid (0·4–2 wt %) toaccount for the excess LREE abundances. These results indicatethat the peridotites had in fact depleted or flat LREE patternsbefore contamination by their host kimberlite. LREE and Sr enrichmentin clinopyroxene and low Zr and Sr abundances in garnet in low-temperatureperidotites (800–1100°C) compared with high-temperatureperidotites (1200–1400°C) suggest that the shallowlithosphere is geochemically distinct from the deep lithospherebeneath the northern margin of the Canadian craton. The Somersetmantle root appears to be characterized by a depth zonationthat may date from the time of its stabilization in the Archean. KEY WORDS: Canada; mantle; metasomatism; peridotite; trace elements  相似文献   

16.
Petrogenesis of Tertiary Mafic Alkaline Magmas in the Hocheifel, Germany   总被引:5,自引:0,他引:5  
Primitive nephelinites and basanites from the Tertiary Hocheifelarea of Germany (part of the Central European Volcanic Province;CEVP) have high Mg-number (>0·64), high Cr and Nicontents and strong light rare earth element enrichment butsystematic depletion in Rb, K and Ba relative to trace elementsof similar compatibility in anhydrous mantle. Alkali basaltsand more differentiated magmatic rocks have lower Mg-numberand lower abundances of Ni and Cr, and have undergone fractionationof mainly olivine, clinopyroxene, Fe–Ti oxide, amphiboleand plagioclase. Some nephelinites and basanites approach theSr–Nd–Pb isotope compositions inferred for the EAR(European Asthenospheric Reservoir) component. The Nd–Sr–Pbisotope composition of the differentiated rocks indicates thatassimilation of lower crustal material has modified the compositionof the primary mantle-derived magmas. Rare earth element meltingmodels can explain the petrogenesis of the most primitive maficmagmatic rocks in terms of mixing of melt fractions from anamphibole-bearing garnet peridotite source with melt fractionsfrom an amphibole-bearing spinel peridotite source, both sourcescontaining residual amphibole. It is inferred that amphibolewas precipitated in the asthenospheric mantle beneath the Hocheifel,close to the garnet peridotite–spinel peridotite boundary,by metasomatic fluids or melts from a rising mantle diapir orplume. Melt generation with amphibole present suggests relativelylow mantle potential temperatures (<1200°C); thus themantle plume is not thermally anomalous. A comparison of recentlypublished Ar/Ar ages for Hocheifel basanites with the geochemicaland isotopic composition of samples from this study collectedat the same sample sites indicates that eruption of earlierlavas with an EM signature was followed by the eruption of laterlavas derived from a source with EAR or HIMU characteristics,suggesting a contribution from the advancing plume. Thus, theHocheifel area represents an analogue for magmatism during continentalrift initiation, during which interaction of a mantle plumewith the overlying lithosphere may have led to the generationof partial melts from both the lower lithosphere and the asthenosphere. KEY WORDS: alkali basalts; continental volcanism; crustal contamination; partial melting; Eifel, Germany  相似文献   

17.
Major- and trace-element data on the constituent minerals ofgarnet peridotite xenoliths hosted in early Paleozoic (457–500Ma) kimberlites and Neogene (16–18 Ma) volcanic rockswithin the North China Craton are compared with those from thepre-pilot hole of the Chinese Continental Scientific DrillingProject (CCSD-PP1) in the tectonically exhumed Triassic (220Ma) Sulu ultrahigh-pressure (UHP) terrane along its southernmargin. P–T estimates for the Paleozoic and Neogene peridotitexenoliths reflect different model geotherms corresponding tosurface heat flows of 40 mW/m2 (Paleozoic) and 80 mW/m2 (Neogene).Garnet peridotite xenoliths or xenocrysts from the Paleozoickimberlites are strongly depleted, similar to peridotites fromother areas of cratonic mantle, with magnesium olivine (meanFo92.7), Cr-rich garnet and clinopyroxene with high La/Yb. Garnet(and spinel) peridotite xenoliths hosted in Neogene basaltsare derived from fertile mantle; they have high Al2O3 and TiO2contents, low-Mg-number olivine (mean Fo89.5), low-Cr garnetand diopside with flat rare earth element (REE) patterns. Thedifferences between the Paleozoic and Neogene xenoliths suggestthat a buoyant refractory lithospheric keel present beneaththe eastern North China Craton in Paleozoic times was at leastpartly replaced by younger, hotter and more fertile lithosphericmantle during Mesozoic–Cenozoic times. Garnet peridotitesfrom the Sulu UHP terrane have less magnesian olivine (Fo91.5),and lower-Cr garnet than the Paleozoic xenoliths. The diopsideshave low heavy REE (HREE) contents and sinusoidal to light REE(LREE)-enriched REE patterns. These features, and their highMg/Si and low CaO and Al2O3 contents, indicate that the CCSD-PP1peridotites represent a moderately refractory mantle protolith.Details of mineral chemistry indicate that this protolith experiencedcomplex metasomatism by asthenosphere-derived melts or fluidsin Mesoproterozoic, and subsolidus re-equilibration involvingfluids/melts derived from the subducted Yangtze continentalcrust during UHP metamorphism in the early Mesozoic. Tectonicextension of the subcontinental lithospheric mantle of the NorthChina Craton and exhumation of the Sulu UHP rocks in the earlyMesozoic induced upwelling of the asthenosphere. Peridotitessampled by the Neogene basalts represent newly formed lithospherederived by cooling of the upwelling asthenospheric mantle inJurassic–Cretaceous and Paleogene time. KEY WORDS: garnet peridotite xenoliths; North China Craton; lithospheric thinning; Sulu UHP terrane; UHP lithosphere evolution; mantle replacement  相似文献   

18.
DOWNES  H. 《Journal of Petrology》2001,42(1):233-250
The petrology and geochemistry of shallow continental lithosphericmantle (SCLM) can be studied via (1) tectonically emplaced ultramaficmassifs and (2) mantle xenoliths entrained in alkaline magmas.Data from these two separate sources are used to identify processesthat have formed and modified the SCLM. In western and centralEurope where the continental crust consolidated in Phanerozoictimes, both sources of information are available for study.Rock types found in ultramafic massifs in Europe are generallysimilar to those found in ultramafic xenolith suites. The mostfrequent lithology is anhydrous spinel lherzolite, grading towardsharzburgite. Massifs reveal pyroxenite layering, harzburgitebands and cross-cutting mafic and ultramafic dykes. The PhanerozoicEuropean SCLM xenoliths and massifs show broad mineralogicaland chemical similarities to Phanerozoic continental spinelperidotites world-wide. The main process that controls the geochemistryof the SCLM is depletion by removal of basaltic melt. Differencesfrom this norm reflect significantly different processes inthe SCLM, such as interaction with melts and fluids. Such processesprobably gave rise to hornblendite veins and pyroxenite layers,although the latter have also been interpreted as recycled oceaniccrust. Rare earth element data for whole-rock peridotites andtheir constituent clinopyroxenes show a variety of patterns,including light rare earth element (LREE) depletion as a resultof removal of basaltic melt, LREE enrichment caused by metasomatism,and U-shaped REE patterns that are probably due to interactionwith carbonatite melts. Extended mantle-normalized incompatibletrace element patterns for whole rocks show enrichment in Rband Ba in peridotites considered to have been subduction-metasomatized,whereas those considered to be carbonate-metasomatized havestrong negative anomalies in Zr, Nb and Hf. Mantle amphibolesare strongly enriched in LREE when found in veins, but can beLREE depleted if they are interstitial. Radiogenic isotope ratiosfor xenoliths and massifs largely overlap, although the xenolithsshow a significant clustering around a ‘plume-component’identical to the Neogene alkaline magmatism of Europe. Thiscomponent is lacking in the massifs, most of which were emplacedinto the crust before the onset of Neogene plume activity. Infiltrationof carbonatite melts is observed petrographically in some xenolithsand evidenced by low Ti/Eu ratios in bulk rocks, but is veryrare. The effect of passage of hydrous fluids from subductingslabs is also seen in some suites and massifs, being exhibitedmainly as unusual Sr and Pb isotope ratios, although enrichmentin K, Rb and Ba, and the presence of modal phlogopite, may alsopoint to subduction-metasomatism. KEY WORDS: peridotites; xenoliths; orogenic massifs; Europe  相似文献   

19.
The Deccan flood basalt province of west-central India has been linked to the Reunion plume, and reconstructions suggest that the Kutch region was over the plume at the time of Deccan volcanism at 65-68 Ma. Field relations and isotopic data indicate that the alkaline basalts of Kutch, which occur to the NNW of the main Deccan tholeiitic province, preceded the main flood-basalt volcanism and are related to the limited plume incubation period. Several plugs of these alkali basalts contain small spinel peridotite xenoliths of mantle origin. The minerals of the spinel peridotites have been analyzed for their major, trace, and rare-earth element (REE) concentrations using electron micro-probe and LAM-ICPMS techniques. The modes and mineral chemistry, especially of the clinopyroxenes, indicate a fertile mantle; modeling of the clinopyroxene REE data is consistent with <5 to 15% of partial melting of a primitive mantle source material in the spinel peridotite field. Subsequent cryptic metasomatism introduced LREE, U, Th, and Zr. The xenoliths may represent: (1) young lithosphere generated during the lithospheric extension that preceded the main Deccan volcanism; or (2) material from the uppermost parts of the rising plume, brought to the surface by the first stages of the volcanism. Their low equilibration temperatures (≤900°C) and their textural and chemical similarity to xenolith suites from other Phanerozoic intraplate settings favor the first alternative. However, the extensive cryptic metasomatism may reflect the influence of the rising Deccan plume.  相似文献   

20.
Mineralogical data for xenoliths occurring as inclusions in the fissure erupted alkali basalts and the basanitic tuffs of Anjouan reveal three xenolith suites: 1) the lherzolites, 2) the dunites and wehrlites, 3) the gabbros and syenites. The dunite-wehrlite suite and the gabbro suite are shown to represent high-level cumulate sequences resulting from ankaramitic fractionation of the hy-normative shield-building lavas and cotecictic fractionation of the alkali basalt lavas respectively, whilst the syenitic xenoliths represent evolved high-level intrusions. Mineralogical and rare earth element (REE) data indicate that the most likely origin for the spinel lherzolite xenoliths is by extraction of a basaltic phase from spinel peridotite, leaving a light REE-poor spinel lherzolite residuum. REE models, constructed using model peridotite assemblages, imply that the hy-normative basalt lavas may be derived by partial melting of spinel peridotite at pressures of <20–25 kb leaving a residual lherzolite, and that the alkali basalt and basanite melts are formed by small degrees of melting of a garnet-peridotite source at pressures of >20–25 kb. The spinel lherzolite source for the hy-normative basalts has been accidentally sampled during explosive eruption of the alkali basalt and basanite magmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号