首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A theory of pulsar radio emission generation, in which the observed waves are produced directly by the maser-type plasma instabilities on the anomalous cyclotron-Cherenkov resonance and the Cherenkov-drift resonance , is capable of explaining the main observational characteristics of pulsar radio emission. The instabilities are due to the interaction of the fast particles of the primary beam and from the tail of the distribution with the normal modes of a strongly magnetized one-dimensional electron-positron plasma. The waves emitted at these resonances are vacuum-like electromagnetic waves that may leave the magnetosphere directly. The cyclotron-Cherenkov instability is responsible for core emission pattern and the Cherenkov-drift instability produces conal emission. The conditions for the development of the cyclotron-Cherenkov instability are satisfied for the both typical and millisecond pulsars provided that the streaming energy of the bulk plasma is not very high γ p = 5 ÷ 10. In a typical pulsar the cyclotron-Cherenkov and Cherenkov-drift resonances occur in the outer parts of magnetosphere at r res ≈ 109cm. This theory can account for various aspects of pulsar phenomenology including the morphology of the pulses, their polarization properties and spectral behavior. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The model of the pulsar magnetosphere filled with massless charged particles (rest massm=0) is considered. Such a representation is valid in the case, when e mc 2, where is a characteristic potential difference in the pulsar magnetosphere. This inequality takes place almost everywhere in the pulsar magnetosphere. The gas of charged massless particles can be found in two different phases: (1) dynamical phase (DP), when the particles move with nonvanishing energy along some base lines, determined by the electromagnetic field only, (2) statical phase (SP), when the particles have vanishing energy =0. Even in the simplest axially-symmetric case the pulsar magnetosphere occurs to be divided into regions of different types: (a) the accelerating regions (DP-regions), containing only DP, (b) the capture regions, containing only SP, (c) leaky capture regions, where DP moves through SP. The leaky capture regions are the active regions, which are responsible for the pulsar radio-emission, In the paper the mathematical technique of the massless approximation has been developed. The properties of the capture region has been investigated. The problem of axially-symmetric pulsar magnetosphere has been stated mathematically. The massless approximation permits to substitute some differential equations by the algebraic ones, and to simplify the statement of the problem.  相似文献   

3.
Parameteric instabilities in the relativistic plasma are considered. It is shown that in the electron relativistic plasma (T em 0e c 2) the electron mass oscillation in the external electrical field leads to the instability of Langmuir and low frequency aperiodic oscillations as well. In the case of the hot electron ion plasma with relativistic electron temperature the low frequency aperiodic and periodic oscillations are studied. The wave increments for all considered cases are obtained.  相似文献   

4.
At the distancer?1015 cm from NP 0532 the plasma concentration decreases so that the intense low-frequency wave (ν=30 Hz) can propagate. The interaction of this wave with the electrons ejected from the pulsar should result in the IR radiation withF ν~102 fu at λ~10 μ. This flux is the order of the excess IR radiation from the Crab Nebula.  相似文献   

5.
The mechanism of the large-scale magnetic field generation in the Crab Nebula is proposed. The basis for the considered fast mechanism is the model of the central region of Crab Nebula amorphous part having the form of slightly divergent double-layer disk consisting of the relativistic electron-positron plasma.The nebula toroidal magnetic field generation occurs in the double-layer disk in the immediate neighbourhood of the light cylinder of pulsar PSR 0531+21 due to the differential rotation by means of dynamo-mechanism. The generated field is transferred into the nebula by the pulsar wind which forms the double-layer disk.By use of the known parameters of pulsar PSR 0531+21, the considered mechanism yields the strength of magnetic fieldB=10–3 G observed in the nebula. The disk structure must be destroyed toward the edges of the nebula.  相似文献   

6.
It has been shown that Alfvén waves can drive non-inductive current in solar coronal loops via collisional or collisionless damping. Assuming that all the coronal-loop density of dissipated wave power (W= 10–3 erg cm–3 s–1), which is necessary to keep the plasma hot, is due to Alfvén wave electron heating, we have estimated the axial current density driven by Alfvén waves to be jz 103–105 statA cm–2. This current can indeed support the quasi-stationary equilibrium and stability of coronal loops and create the poloidal magnetic field up to B 1–5 G.  相似文献   

7.
There are indications that less than 10–3 of the spin-down energy of the millisecond pulsar PSR 1937+214 emerges as electromagnetic radiation. The implications of this result are discussed. The surface magnetic field would then be 107 G, making the pulsar optically undetectable, and casting aspersions on the accretion disc spin-up neutron star models for the pulsar. The pulsar should have an equatorial ellipticity 10–9, which can be accounted for if the equatorial magnetic field departs from axisymmetry by one part in 103.  相似文献   

8.
The 24-year-old pulsar problem is reconsidered. New results are obtained by replacing the assumption of steady-state discharges near the polar caps by oscillatory discharges, and by creating the neutral-excess pair plasma via inverse-Compton collisions rather than via curvature radiation. As a result, the electrons and positrons which compose the pulsar wind have different bulk velocities and an oscillating space density, and (strong) coherent curvature radiation is implied (without invoking the excitation of instabilities, and contrary to existing proofs of its impossibility). The magnetospheres of young pulsars are likely to have considerable higher-order multipole components, in particular octupole. Radiation transfer through the pulsar magnetosphere results in fan beams whose polarization is dictated by the bottom of the radiation zone, hence, looks like curvature radiation from dipole-like polar caps.Wind generation depends mainly on the quantityB2 which takes similar values for the ms pulsars; the latter compensate for (somewhat) weaker fields by wider polar caps and smaller curvature radii.  相似文献   

9.
The curvature -quanta emitted in the pulsar magnetospheres tangentially to the curved lines of force of the magnetic field are shown to be later canalized along the magnetic field—if it is strong enough,B0.1B cr =4×1012G—by gradually converting into a mutually bound electron-positron pair, i.e. a positronium atom. This happens before the photon reaches the threshold of free-pair creation. The positronium thus arising is stable against the ionizing action of the electric field near the pulsar unless it reaches a critical value about 4×107 CGSE forB1013G. This prevents the screening of the electric field up to the distances from the pulsar, where the magnetic field is already below the value of 0.1B cr and the free pair creation may become essential. This effect provides, at least within the Arons model, a higher theoretical estimate for the total luminosity of pulsars whose field at the surfaceB s exceeds 0.1B cr as compared with the conventional one.  相似文献   

10.
It is pointed out that at frequencies near the plasma cut-off frequencies, the corrections to wave refractive indices in a cold plasmaN 0due to the contribution of ions and relativistic effects can be of the same order of magnitude or greater thanN 0. Expressions for wave refractive indicesN taking into account these corrections are derived in a limiting case |N| I. It is shown that the increase in cut-off frequencies due to effects of ions is negligibly small unless the electron plasma frequency is well below the electron gyrofrequency. The decrease of the cut-off frequencies due to relativistic effects is significant ( 1%) only in a rather hot plasma (T e 1 keV), which may be observed in a plasma sheet region of the Earth's magnetosphere and in astrophysical conditions. These effects appear to be particularly important in a strongly anisotropic plasma (the electron perpendicular temperature is noticeably greater than the parallel one).  相似文献   

11.
Conclusions Our chief result is the proof that pulsars can possess a quasi-steady-state magnetosphere with temperature T104–106. The magnetosphere can be maintained in this state in its part nearest the star if the plasma is heated by radiation from the star (except for P 0531, for which such radiation is nearlyinsignificant). Plasma in the main part of the magnetosphere is maintained in such a hot state as a result of Joule heat due to drift currents. Radiation from the magnetosphere of P 0531 is found basically in the optical spectrum, though the intensity is several orders of magnitude less than the observed value, so that it does not correspond to the observed optical emission from the pulsar in the Crab nebula.Erevan State University. Translated from Astrofizika, Vol. 12, No. 2, pp. 339–349, April–June, 1976.  相似文献   

12.
Nonlinear propagation of strong low-frequency waves, as emitted by pulsars or compact galactic nuclei at their rotation frequencies, in a magnetized plasma is investigated. It is shown that even rather small amplitude waves can drive electrons to ultrarelativistic energies. In the limit when the electrons are ultrarelativistic but the ions are immobile, two types of circularly polarized waves (i.e., ± modes) are excited. In the wave zone of the Crab pulsar, both the electric field ( 3 V m–1) and the wavelength (108 m) of the - mode are larger, by an order of magnitude, than those of the + wave mode. Both ± modes can become modulationally unstable due to their nonlinear interaction with density fluctuations induced by the electrostatic waves.  相似文献   

13.
We have analyzed the physical conditions of the plasma in post-flare loops with special emphasis on dynamics and energy transport using SXT-data (hot plasma) and optical ground-based data from Pic du Midi, Wrocaw, and Ondejov (cool plasma). By combining the H observations with the SXT images we can understand the relationship between cool and hot plasmas, the process of cooling post-flare loops and the mechanism which maintains the long duration of these loops. Using recent results of NLTE modeling of prominence-like plasmas, we derive the emission measure of cool H loops and this gives us a realistic estimate of the electron density (2.2 × 1010 cm–3). Then, by comparing this emission measure with that of hot loops derived from SXT data, we are able to estimate the ratio between electron densities in hot and cool loops taking into account the effect of geometrical filling factors. This leads to the electron density in hot loops 7 × 109 cm–3. We also derive the temperature of hot X-ray loops ( 5.5 × 106 K), which, together with the electron density, provides the initial values for solving the time-dependent energy balance equation. We obtain the cooling times which are compared to a typical growth-time of the whole loop system ( 2000 s). In the legs of cool H loops, we observe an excess of the emission measure which we attribute to the effect of Doppler brightening (due to large downflow velocities).  相似文献   

14.
Nonlinear Alfvén wave in a hot rotating and strongly magnetized electron-positron plasma is considered. Using relativistic two fluid equations, the dispersion relation for Alfvén wave in the rotating plasma is obtained. Large amplitude Alfvén solitons are found to exist in the rotating pulsar plasma. Rotational effects on solitons are discussed.  相似文献   

15.
The possibility of radio emission is considered within a model which produces the beam-plasma system near the pulsar. A longitudinal instability develops near the light cylinder for a particular choice of parameters adopted in the paper. The excited wave strongly oscillates the beam particles perpendicular to its average velocity on one hand, and forms bunches of them on the other hand. Consequently, coherent radiation is expected. The frequency of the emission falls within the radio band, but the intensity turns out to be too low to explain observations. An appreciable enhancement of the beam number density over the Goldreich-Julian value (n bB/2ec) is needed if the mechanism discussed in the present paper is responsible for the pulsar radio emission.  相似文献   

16.
We consider a horizontally stratified isothermal model of the solar atmosphere, with vertical and uniform B 0, and v A 2 v s 2 . The equations of motion are linearized about a background which is in hydrostatic equilibrium. A homogeneous wave equation results for the motions perpendicular to B 0; this wave equation is similar to the equation for the MHD fast mode. On the other hand, the equation for the parallel motions is inhomogeneous, containing driving terms which arise from the presence of the fast mode; the homogeneous form of this equation is identical to the equation describing vertically-propagating gravity-modified acoustic waves. We demonstrate that a resonance can exist between the (driving) fast wave and the (driven) gravity-modified acoustic wave, in such a way that very large parallel velocities can be driven by small perpendicular velocities. Applications of this resonance to solar spicules, jets, and other phenomena are discussed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

17.
The influence of the Landau-Pomeranchuk effect on the development of a shower generated by ultrarelativistic particles bombarding the surface of a pulsar is discussed. Because of this effect, the path length of the shower increases while low-energy photon generation is strongly suppressed. In view of this, the mechanism of pair production suggested by Cheng, Ruderman, and Jones for the pulsar magnetosphere, may be essential only for pulsars whose magnetic field intensity at the surface lies in a relatively narrow range of aroundB 1012 G.  相似文献   

18.
It has been shown that the mass of neutron stars obtained from equations of state based on nuclear theory depend upon the number of baryons assembled in it but not on the type of interactions considered. On examining the behaviour of different equations of state based on nuclear theories, a simple polytropic equation of state,P = (K/N)(pp s)N is proposed. The results obtained forN=1.75 cover the entire range of neutron star masses obtained from the equations of state based on nuclear theories and give a maximum mass of 2.8M . Depending upon various mechanisms for energy output the mass of Crab pulsar is estimated to range from 0.32M to 1.5M . The relation connecting the coordinate mass,M, and the rest mass,M 0, may be written asM/M 0.93 (M 0/M)0.9.  相似文献   

19.
We emphasize that a nonlinear treatment is required to realize the diagnostic potentiality of solar spiky emission. The observational constraints including the latest data on the harmonic structure, degree, and sense of polarization are discussed. A set of coupled equations for energy density of high-frequency normal modes of a magneto-active plasma involving the most important nonlinear effects within the three-wave approximation is deduced. The equations include both previously known and new effects. The qualitative evaluations of the equations obtained have provided a few new findings: (i) quasi-linear relaxation of fast electrons on quasi-potential waves (_) occurs in a characteristic time scale of the order of 10 ms if the frequency,f, is about 1 GHz; (ii) the stimulated scattering of the transverse waves on the background plasma particles is shown to be important if the brightness temperature of the spiky emission exceeds 1015–1016 K; (iii) the Raman scattering of the transverse waves on background plasma density inhomogeneities may suppress the electron cyclotron maser instability if n e 2 /n e 2 3 × (10–4–10–5).  相似文献   

20.
The modulational instability of the weakly nonlinear longitudinal Langmuir as well as the transverse electromagnetic waves, propagation in the relativistic plasma without the static fields is described. The nonlinear Schrödinger equation taking account of the nonlinear Landau damping for these waves has been derived by means of the relativistic Vlasov and Maxwell equations. The plasma with the weakly relativistic temperature and that with an ultrarelativistic one has been investigated. In the first case, for the electron-proton plasma with the temperature more than 2.3 KeV we found the regional change of the wave numbers for which the soliton of two types, subsonic and supersonic, can exist. The soliton of the transverse waves can exist when the group velocity of the waves is between the thermal velocity of the electron and ion and the length of the linear waves is less than 2c/ pi .In the second case the regions of the wave numbers, with the solitons of the Langmuir and transverse waves have been determined.The nonlinear waves in the electron-positron plasma and the waves with the phase velocity, which is about the light one, are also considered in the following paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号