首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 638 毫秒
1.
Weathering of heavy metal enriched black shales may be one of the most important sources of environmental contamination in areas where black shales are distributed. Heavy metal release during weathering of the Lower Cambrian Black Shales (LCBS) in western Hunan, China, was investigated using traditional geochemical methods and the ICP-MS analytical technique. Concentrations of 16 heavy metals, 8 trace elements and P were measured for samples from selected weathering profiles at the Taiping vanadium ore mine (TP), the Matian phosphorous ore mine (MT), and Taojiang stone-coal mine (TJ). The results show that the bedrock at these three profiles is enriched with Sc, V, Cr, Co, Ni, Cu, Zn, Pb, Th, U, Mo, Cd, Sb, Tl, and P. Based on mass-balance calculation, the percentages of heavy metals released (in % loss) relative to immobile element Nb were estimated. The results show significant rates of release during weathering of: V, Cr, Co, Ni, Cu, Zn, U, Mo, Cd, Sn, Sb, and Tl for the TP profile; Sc, Cr, Mn, Co, Ni, Cu, Zn, Pb, Th, Cd, and Sn for the MT profile; and Sc, Mn, Co, Ni, Zn, Th, Cd, Sn, and Tl for the TJ profile. Among these heavy metals, Co, Ni, Zn, Cd, and Sn show very similar features of release from each of the three weathering profiles. The heavy metals released during weathering may affect the environment (especially topsoil and surface waters) and are possibly related to an observed high incidence of endemic diseases in the area.  相似文献   

2.
This paper reports a geochemical study of trace metals and Pb isotopes of sediments from the lowermost Xiangjiang River, Hunan province (P. R. China). Trace metals Ba, Bi, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, Mo, Cd, Sn, Sb, Pb, Tl, Th, U, Zr, Hf, Nb and Ta were analyzed using ICP-MS, and Pb isotopes of the bulk sediments were measured by MC-ICP-MS. The results show that trace metals Cd, Bi, Sn, Sc, Cr, Mn, Co, Ni, Cu, Zn, Sb, Pb and Tl are enriched in the sediments. Among these metals, Cd, Bi and Sn are extremely highly enriched (EF values >40), metals Zn, Sn, Sb and Pb significantly highly (5 < EF < 20), and metals Sc, Cr, Mn, Co, Ni, Cu and Tl moderately highly (2 < EF < 5) enriched in the river sediments. All these metals, however, are moderately enriched in the lake sediments. Geochemical results of trace metals Th, Sc, Co, Cr, Zr, Hf and La, and Pb isotopes suggest that metals in the river sediments are of multi-sources, including both natural and anthropogenic sources. Metals of the natural sources might be contributed mostly from weathering of the Indosinian granites (GR) and Palaeozoic sandstones (PL), and metals of anthropogenic sources were contributed from Pb–Zn ore deposits distributed in upper river areas. Metals in the lake sediments consist of the anthropogenic proportions, which were contributed from automobile exhausts and coal dusts. Thus, heavy-metal contamination for the river sediments is attributed to the exploitation and utilization (e.g., mining, smelting, and refining) of Pb–Zn ore mineral resources in the upper river areas, and this for the lake sediments was caused by automobile exhausts and coal combustion. Metals Bi, Cd, Pb, Sn and Sb have anthropogenic proportion of higher than 90%, with natural contribution less than 10%. Metals Mn and Zn consist of anthropogenic proportion of 60–85%, with natural proportion higher than 15%. Metals Sc, Cr, Co, Cu, Tl, Th, U and Ta have anthropogenic proportion of 30–70%, with natural contribution higher than 30%. Metals Ba, V and Mo might be contributed mostly from natural process.  相似文献   

3.
Multivariate statistical techniques, i.e., correlation coefficient analysis, principal components analysis (PCA), and hierarchical cluster analysis (CA), were applied to the total and water-soluble concentrations of potentially hazardous metals in sediments associated with the Sarcheshmeh mine, one of the largest Oligo-Miocene porphyry copper deposits in the world. The samples were analyzed for hazardous metal concentration levels by inductively coupled plasma mass spectrometry method. Results indicate that the contaminant metals As, Cd, Cu, Mo, S, Sb, Sn, Se, Pb, and Zn were positively correlated with the total concentrations. These hazardous metals also have strong association in the PCA and CA results. Different anthropic versus natural sources of contaminant metals were distinguished by using CA method. Water-soluble fraction of hazardous metals showed that the hydro-geochemical behavior of these metals in sediments is different considerably. Elements such as Cd, Co, Cr, Cu, Fe, Mn, Ni, S, and Zn are readily water soluble from contaminated samples, especially from evaporative mineral phases, while the release of As, Mo, Sb, and Pb into the water is limited by adsorption processes. Results obtained from the application of multivariate techniques on the water-soluble fraction data set show that the hazardous metals are categorized into three groups including (1) Ni, S, Co, Cu, Cr, and Fe; (2) Se, Mn, Cd, and Zn; and (3) Sb, As, Mo, and Sn. This classification describes the hydro-geochemical behavior of hazardous metals in water–sediment environments of the Sarcheshmeh porphyry copper mine and can be used as a basis in remedial and treatment strategies.  相似文献   

4.
The purpose of this work is to characterize the hydrochemical behavior of acid mine drainages (AMD) and superficial waters from the Adoria mine area (Northern Portugal). Samples of superficial and mine drainage water were collected for one year, bi-monthly, with pH, temperature, Eh, conductivity and HCO3 determined in situ with chemical analyses of SO4, Ca, K, Mg, Na, Cl, Ag, As, Bi, Co, Cu, Fe, Mn, Ni, Pb, Zn and Cd. In the mine, there are acidic waters, with low pH and significant concentrations of SO4, and metals (Fe, Mn, Zn, Cu, Pb, Cd and Ni), while in the superficial natural stream waters outside the mine, the pH is close to neutral, with low conductivity and lower metal concentrations. The stream waters inside the mine influence are intermediate in composition between AMD and natural stream waters outside the mine influence. Principal Component Analysis (PCA) shows a clear separation between AMD galleries and AMD tailings, with tailings having a greater level of contamination.  相似文献   

5.
云浮黄铁矿利用过程中微量毒害元素的环境化学活动性   总被引:13,自引:3,他引:13  
为了解云浮黄铁矿利用过程中微量毒害元素的环境地球化学行为,客观评价它们对环境质量的影响,利用元素结合形态的连续提取实验方法,分析了云浮黄铁矿及其工业废渣中Co,Ni,Cu,Zn,As,Se,Cd,Sn,Sb,Pb和Tl等11种毒害元素的形态及化学活动性。结果表明,黄铁矿中大部分微量毒害元素都有着极强的化学活动性,各元素活动态浸出比例依次为Co96.3%,Se91.9%,Cu90.3%,Cd90.0%,Pb89.7%,Zn88.6%,Sb82.5%,Ni80.6%,Sn70%,Tl55.1%和As31.9%,元素As和Tl主要赋存于硫化物和硅酸盐矿物相中,另有少量的Cu,Pb和Sb可能赋存于碳酸盐矿物相中,其他元素则主要赋存于硫化物矿物相中。与黄铁矿相比,飞灰和灰渣中各元素可交换态和碳酸盐结合态所占的比例明显减少。废渣中各元素的化学活动性表现出很大的差别,其中Cu,Zn和Cd的化学活动性最强,活性态浸出比例在90%以上;其次是Co,Ni,Se,Pb和Tl,浸出比例在50%左右;Sb,As和Sn的稳定性较高,浸出比例分别为1%、5%和14%左右;飞灰中微量毒害元素的活动性均高于灰渣。  相似文献   

6.
黑色页岩与土壤重金属污染   总被引:6,自引:1,他引:5  
本文利用ICP—MS等技术分析了湘中地区黑色页岩及其相应土壤的重金属含量,在对分析结果进行统计分析的基础上,探讨了黑色页岩与土壤重金属污染的关系。研究表明,黑色页岩是富集多种重金属元素的特殊岩石。以黑色页岩岩系为母岩的土壤,不仅明显富集Cu、Cd、Cr、Co、Pb、Zn、Mo、Ni、V、U、Sn、Sb、T1、Th等多种重金属元素,而且受到Mo、Sb、Cd、U、Tl、Cu、V、Sn、Th等重金属的污染,其中以Mo、Cd、Sb、U、Tl等的污染尤为严重。黑色页岩土壤重金属污染在一些地方已产生明显的负面环境效应,值得关注。  相似文献   

7.
The geochemistry and mineralogy of samples collected along depth profiles from an As-rich tailing deposit with abundant calcite was studied to determine the processes that influence the mobility of Fe, Zn, Cu, Ni, Cd, As, Sb, Cr and Tl. In spite of their near neutral pH, almost all of them are acid potential generators. Total concentrations decreased as: Fe > As > Zn > Pb > Cu > Sb > Cd > Cr > Ni > Tl. Soluble contents were lower and followed a slightly different order. Mobility decreased as: Tl > Cd, Zn, Cu, Sb, Ni, As > Fe, Pb > Cr. Higher soluble concentrations of Fe, Cu, Zn, As, Pb, and Ni were found in low-pH samples and of Sb and Tl in near-neutral samples. Sulfide oxidation processes are developing in the tailing’s dam. These processes do not have a trend with depth but occur mainly in acid layers. Near neutral layers formed by primary sulfides and calcite probably correspond to wastes produced from the processing of ore coming mainly from pods within the skarn, and acid layers with abundant secondary minerals from material mined from chimneys and mantos. The presence of calcite influences speciation, neutralizes acid mine drainage (AMD), and decreases the mobility of most toxic metals and metalloids (TMMs). However, a hard-pan layer was not observed in the studied profiles. Retention of TMM within tailings probably occurs through the formation of low solubility metal carbonates and from elevation of pH that promotes Fe hydroxides precipitation that may retain As, Sb and metals. Calcite occurrence promotes As, Cd, Cu, Fe, Zn, Pb, Cd and Cr retention, does not play a role on Tl and Ni mobilization, and increases Sb release.  相似文献   

8.
In recent years, most of domestic and foreign researches about heavy metal pollutions of metal mine mainly focus on water, soil and plants on the surface. There is lack of researches about heavy metal pollution in groundwater of metal mine. In this research, a certain antimony mine area is selected as a typical study area. Also, the study about statistical characteristics of heavy metals in groundwater has been carried out. Furthermore, the interrelationships have been preliminarily discussed through related analysis, such as relevant analysis, cluster analysis and principle component analysis. The results show that: the excessive elements in groundwater of study area are Sb, As, Pb, Se, and Ni. The average mass concentration of Sb, As, and Pb is higher than that of drinking water standards (GB5749-2006). The concentration of most heavy metals in dry season is lower than or equal to that in wet season for groundwater. Zn is the only metal in groundwater showing a different pattern, the concentration of which in dry season is higher than that in wet season. Under the impacts of stratum leaching and absorption effect, the concentration of heavy metals (except Pb and Ba) in groundwater are lower than or equal to that in surface water. As and Se, the two heavy metals have a significant positive correlation, which shows the two elements might have gone through similar environmental geochemical effect. Also, the connection among Zn, Hg, Pb, and Mn is not obvious; therefore, the sources of those elements are quite different. In addition, the elements of Se and As have obvious positive interrelationship with elements of CO32- and F-. Also, the Pb has significant positive correlation with PO43-, H2SiO3 and oxygen consumption. The results of cluster analysis show that 9 different heavy metals in the study area can be divided into 3 categories: Zn, Cd, Mn, Hg, Cu, and Cr belong to the first category, Se and As belong to the second one, and the last category is Pb. Also, the principle component analysis divides 6 heavy metals (Zn, As, Hg, Pb, Mn, and Se) into 4 different principle components, which can be utilized to assess heavy metals pollution situations in groundwater. The reliability of this method is higher than 91%. Moreover, the research provides theory basis and models for establishing evaluation index system and exploring the evaluation method of heavy mental pollution in groundwater.  相似文献   

9.
Urbanisation and industrial development lead to contamination of estuaries and streams with dispersed loadings of heavy metals and metalloids. Contributions of these elements also occur from natural sources. This study provides baseline geochemical data on the respective natural and anthropogenic inputs of Cu, Pb, Zn, Cd, As, Sb, Cr, Ni, Mn and S to estuarine, fluvial and wetland sediments, and adjacent soils, in the Kooloonbung Creek catchment that drains the Port Macquarie urban area in north coastal New South Wales. There have been anthropogenic additions of Cu, Pb, Zn and As from dispersed urban sources at Port Macquarie, but they are restricted to the local catchment and do not impact on the adjacent Hastings River estuary. The most contaminated sediments display enrichment factors up to 20 × for Cu and Pb, 9 × for Zn and 5 × for As relative to local background values. However, only one value (for Pb) exceeds National Water Quality Management Strategy interim sediment quality guideline (high) values. On the other hand, sediments and local soils are commonly strongly enriched in Cr, Ni and Mn, reflecting adjacent ultramafic and mafic rock substrate and lateritic regolith. Concentrations of Cr and Ni are commonly well above interim sediment quality guideline (high) values for sediments, but are in mineralogical forms that are not readily bioavailable. Sediment and soil quality guideline values consequently need to recognise natural enrichments and the mineralogical siting of heavy metals. Although dissolved concentrations of heavy metals in stream waters are commonly low, there is evidence for mobility of Cu, Zn, Fe and Al. Parts of the Kooloonbung Creek wetland area lie on sulfidic estuarine sediments (potential acid sulfate soils). Experimental oxidation of uncontaminated and contaminated sulfidic sediments leads to substantial dissolution of heavy metals under acid conditions, with subsequent aquatic mobility. The results warn about disturbance and oxidation of potential acid sulfate soils that have been contaminated by urban and natural heavy-metal sources.  相似文献   

10.
Urban roadside soils are important environmental media for assessing heavy metal concentrations in urban environment. However, among other things, heavy metal concentrations are controlled by soil particle grain size fractions. In this study, two roadside sites were chosen within the city of Xuzhou (China) to reflect differences in land use. Bulk soil samples were collected and then divided by particle diameter into five physical size fractions, 500–250, 250–125, 125–74, 74–45, < 45 μm. Concentrations of metals (Ti, Cr, Al, Ga, Pb, Ba, Cd, Co, Cu, Mn, Ni, V, Zn, Mo, As, Sb, Se, Hg, Bi, Ag) were determined for each individual fraction. These metals could be roughly classified into two groups: anthropogenic element (Pb, Ba, Cd, Cu, Zn, Mo, As, Sb, Se, Hg, Bi, Ag) and lithophile element (Ti, Cr, Al, Ga, Co, Mn, Ni, V) in terms of values of enrichment factor. As expected, higher concentrations of anthropogenic heavy metals (Cu, Zn, Mo, As, Hg, Bi, Ag) are observed in the finest particle grain size fraction (i.e. < 45 μm). However, heavy metals Se, Sb and Ba behave independently of selected grain size fractions. From the viewpoint of mass loading, more than 30% of the concentrations for all anthropogenic heavy metals are contributed by the particle grain size fractions of 45–74 μm at site 1 and more than 70% of the concentrations for all heavy metals are contributed by the particle grain size fractions of 45–74 and 74–125 μm at site 2. These results are important for transport of soil-bound heavy metals and pollution control by various remedial options.  相似文献   

11.
The knowledge of the variability, the anthropogenic versus natural origin and corresponding environmental risk for potentially harmful elements in urban topsoils is of importance to assess human impact. The aims of the present study were: (1) to assess the distribution of heavy metals (Sn, Li, Ga, Ba, Fe, Mn, Co, Be, Ti, Al, Hg, Cr, Sb, As, Bi, Pd, Pt, Au, Ni, Cd, Zn, Cu, Pb, Se, Mo, Sc and Ag) in urban environment; (2) to discriminate natural and anthropogenic contributions; and (3) to identify possible sources of pollution. Multivariate statistic approaches (principal component analysis and cluster analysis) were adopted for data treatment, allowing the identification of three main factors controlling the heavy metal variability in Xuzhou urban topsoils. Results demonstrate that Hg, Cr, Sb, As, Bi, Pd, Pt, Au, Ni, Cd, Br, Zn, Cu, S, Pb, Se, Mo, Sc and Ag could be inferred to be tracers of anthropogenic pollution, whereas Al, Ti, Ga, Li, V, Co, Pt, Mn and Be were interpreted to be mainly inherited from parent materials. Iron, Ba, Sn, Pd and Br were interpreted to be affected by mixed sources.  相似文献   

12.
 Acid mine drainage (AMD) with a minimum pH of 0.52 was recorded at Iron Duke mine near Mazowe, Zimbabwe during an investigation of the environmental geochemistry of mine waters in the Greenstone Belts of Zimbabwe. Hydrochemical data for waters emanating from the Iron Duke waste-rock pile indicate their super-saturation with respect to Fe and SO4 2–. Extremely high dissolved concentrations of Al, Zn, Cu, Co, Ni, V, Cr, Cd and As also prevail. Substantial losses of metals from solution occur within 400 m of the AMD source through the precipitation of crystalline sulphates, principally melanterite. Further downstream, hydrous oxide precipitation forms the dominant mechanism of metal attenuation in waters characteristically under-saturated with respect to Fe sulphates. Speciation and saturation index data generated using the equilibrium model WATEQ4F, suggest that such codes have broad utility for generic prediction of the mineralogical contraints on metal mobility in acute AMD systems. Major discrepancies between modelled and empirical hydrochemistries are, however, evident for super-saturated waters in which the kinetics of Fe precipitation are slow, and in which total ionic strengths markedly exceed their theoretical maximum. Received: 28 August 1998 · Accepted: 7 December 1998  相似文献   

13.
Transport and sediment–water partitioning of trace metals (Cr, Co, Fe, Pb, Cu, Ni, Zn, Cd) in acid mine drainage were studied in two creeks in the Kwangyang Au–Ag mine area, southern part of Korea. Chemical analysis of stream waters and the weak acid (0.1 N HCl) extraction, strong acid (HF–HNO3–HClO4) extraction, and sequential extraction of stream sediments were performed. Heavy metal pollution of sediments was higher in Chonam-ri creek than in Sagok-ri creek, because there is a larger source of base metal sulfides in the ores and waste dump upstream of Chonam-ri creek. The sediment–water distribution coefficients (K d) for metals in both creeks were dependent on the water pH and decreased in the order Pb ≈ Al > Cu > Mn > Zn > Co > Ni ≈ Cd. K d values for Al, Cu and Zn were very sensitive to changes in pH. The results of sequential extraction indicated that among non-residual fractions, Fe–Mn oxides are most important for retaining trace metals in the sediments. Therefore, the precipitation of Fe(–Mn) oxides due to pH increase in downstream sites plays an important role in regulating the concentrations of dissolved trace metals in both creeks. For Al, Co, Cu, Mn, Pb and Zn, the metal concentrations determined by 0.1 N HCl extraction (Korean Standard Method for Soil Pollution) were almost identical to the cumulative concentrations determined for the first three weakly-bound fractions (exchangeable + bound to carbonates + bound to Fe–Mn oxides) in the sequential extraction procedure. This suggests that 0.1 N HCl extraction can be effectively used to assess the environmentally available and/or bioavailable forms of trace metals in natural stream sediments.  相似文献   

14.
Analysis of ten heavy metals (Ag, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Zn) in six sediment cores from Wellington Harbour show both anthropogenic enrichments and diagenetic modifications. Absolute concentrations determined by two methods, x-ray fluorescence and acid leaching for bioavailability, are not comparable. However, vertical trends in concentrations of the cored sediment are comparable. To assess levels of anthropogenic pollution, enrichment factors (enriched concentrations in upper core divided by background levels in lower core) are preferred over index of accumulation (I geo) values because preindustrial or background levels of heavy metals are well constrained. The ten metals are placed into three groups: (1) Cu, Pb, and Zn, which show the most anthropogenic enrichment; (2) As, Cd, Cr, Ni, and Sb, which are often associated with anthropogenic pollution but show only minor enrichment; and (3) Fe and Mn, which are diagenetically enriched. Assuming harbor waters are well mixed, anthropogenic enrichments of Cu, Pb, and Zn, are time correlative, but the degree of enrichment depends on the method of analysis and core location. Levels of As, Cd, Pb, and Zn show small variations in preindustrial sediments that are not related to changes in grain size and probably result from changes in the oxidation-reduction potential of the sediments and salinity of the pore waters.  相似文献   

15.
涡阳花沟西10号煤中微量元素的有机亲和性   总被引:1,自引:0,他引:1  
为研究淮北矿区涡阳花沟西勘查区10号煤中微量元素的有机亲和性,共采集10个勘探钻孔煤样品,采用电感耦合等离子质谱仪ICP-MS分析了12种微量元素的含量;应用LECO碳硫分析仪测定了煤的总有机碳TOC,并通过两者的相关关系分析了元素的有机亲和性,结合元素的地球化学特征和煤样XRD物相鉴定结果,通过聚类分析进一步推断元素的赋存状态。结果表明:V、Cr、Co、Ni、Mo、Cd、Sb、Pb和Zn元素含量低于全国均值,没有异常富集,Be、Cu和Tl略高于全国均值;Cd具有较强的有机亲和性,Co、Zn、Be和Cr的有机亲和性较弱,V、Ni、Cu、Mo、Sb、Pb和Tl不具有机亲和性;V、Sb、Cu、Cr、Pb、Co和Ni主要以铝硅酸盐吸附态赋存,Cd主要以有机结合态赋存。   相似文献   

16.

Sulfide‐rich materials comprising the waste at the abandoned Montalbion silver mine have undergone extensive oxidation prior to and after mining. Weathering has led to the development of an abundant and varied secondary mineral assemblage throughout the waste material. Post‐mining minerals are dominantly metal and/or alkali (hydrous) sulfates, and generally occur as earthy encrustations or floury dustings on the surface of other mineral grains. The variable solubility of these efflorescences combined with the irregular rainfall controls the chemistry of seepage waters emanating from the waste dumps. Irregular rainfall events dissolve the soluble efflorescences that have built up during dry periods, resulting in ‘first‐flush’ acid (pH 2.6–3.8) waters with elevated sulfate, Fe, Cu and Zn contents. Less‐soluble efflorescences, such as anglesite and plumbojarosite, retain Pb in the waste dump. Metal‐rich (Al, Cd, Co, Cu, Fe, Mn, Ni, Zn) acid mine drainage waters enter the local creek system. Oxygenation and hydrolysis of Fe lead to the formation of Fe‐rich precipitates (schwertmannite, goethite, amorphous Fe compounds) that, through adsorption and coprecipitation, preferentially incorporate As, Sb and In. Furthermore, during dry periods, evaporative precipitation of hydrous alkali and metal sulfate efflorescences occurs on the perimeter of stagnant pools. Flushing of the streambed by neutral pH waters during heavy rainfall events dissolves the efflorescences resulting in remobilisation and transport of sulfate and metals (particularly Cd, Zn) downstream. Thus, in areas of seasonal or irregular rainfall, secondary efflorescent minerals present in waste materials or drainage channels have an important influence on the chemistry of surface waters.  相似文献   

17.
Dissolved and particulate concentrations of metals (Fe, Al, Mn, Co, Ni, Cu, Zn, Cd, Tl, Pb) and As were monitored over a 5 year period in the Amous River downstream of its confluence with a creek severely affected by acid mine drainage (AMD) originating from a former Pb–Zn mine. Water pH ranged from 6.5 to 8.8. Metals were predominantly in dissolved form, except Fe and Pb, which were in particulate form. In the particulate phase, metals were generally associated with Al oxides, whereas As was linked to Fe oxides. Metal concentrations in the dissolved and/or particulate phase were generally higher during the wet season due to higher generation of AMD. Average dissolved (size < 0.22 μm) metal concentrations (μg/L) were 1 ± 4 (Fe), 69 ± 49 (Al), 140 ± 118 (Mn), 4 ± 3 Co, 6 ± 4 (Ni), 1.3 ± 0.8 (Cu), 126 ± 81 (Zn), 1.1 ± 0.7 (Cd), 0.9 ± 0.5 (Tl), 2 ± 3 (Pb). Dissolved As concentrations ranged from 5 to 134 μg/L (30 ± 23 μg/L). During the survey, the concentration of colloidal metals (5 kDa < size < 0.22 μm) was less than 25% of dissolved concentrations. Dissolved metal concentrations were generally higher than the maximum concentrations allowed in European surface waters for priority substances (Ni, Cd and Pb) and higher than the environmental quality standards for other compounds. Using Diffusion Gradient in Thin Film (DGT) probes, metals were shown to be in potentially bioavailable form. The concentrations in Leuciscus cephalus were below the maximum Pb and Cd concentrations allowed in fish muscle for human consumption by the European Water Directive. Amongst the elements studied, only As, Pb and Tl were shown to bioaccumulate in liver tissue (As, Pb) or otoliths (Tl). Bioaccumulation of metals or As was not detected in muscle.  相似文献   

18.
湘江入湖河段沉积物重金属污染及其Pb同位素地球化学示踪   总被引:12,自引:0,他引:12  
湘江是我国重金属污染最严重的河流之一.本次工作利用等离子质谱(ICP-MS)和多接收同位素质谱(MC-ICP-MS)等技术,对湘江入湖河段沉积物进行了系统的重金属微量元素和Pb同位素分析.结果表明,湘江河床沉积物明显富集Bi、Sc、V、Mn、Ni、Cu、Zn、Pb、Cd、Sn、Sb等多种重金属微量元素,而湖盆沉积物重金...  相似文献   

19.
1 IntroductionCorals are an important proxy for reconstructingpaleo-environment and revealing global changes in thepast. Variations of heavy metals in the growth bands ofcorals can provide important information about the oce-anic environment.Bastidas and …  相似文献   

20.
The geochemical evolution of two acid mine effluents in Tharsis and La Zarza-Perrunal mines (Iberian Pyrite Belt, Huelva, Spain) has been investigated. In origin, these waters present a low pH (2.2 and 3.1) and high concentrations of dissolved sulphate and metals (Fe, Al, Mn, Cu, Zn, As, Cd, Co, Cr, Ni). However, the natural evolution of these acidic waters (which includes the bacterial oxidation of Fe(II) and the subsequent precipitation of Fe(III) minerals) represents an efficient mechanism of attenuation. This self-mitigating process is evidenced by the formation of schwertmannite, which retains most of the iron load and, by sorption, toxic trace elements like As. The later mixing with pristine waters rises the pH and favours the total precipitation of Fe(III) at pH 3.5 and, subsequently, Al compounds at pH 4.5, along with the sorption of trace metals (Mn, Zn, Cu, Cd, Co, Ni) until chemical equilibrium at circumneutral conditions is achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号