首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 893 毫秒
1.
Sediment cores from Chappice Lake, a hypersaline, groundwater-fed lake in southeastern Alberta, have been used in previous studies to reconstruct Holocene climate using lake levels as a source for proxy climate data. This assumes that the lake is fed by a shallow groundwater system sensitive to changes in climate. In this study we use the dynamics and chemistry of groundwater entering the lake to test this hypothesis.Groundwater inputs calculated from historical records using a simple water budget were highest during periods when the precipitation deficit was high. Over specific time intervals, the expected relationship between lake volumes and climate were not always found. Feedback loops between lake levels and groundwater input, and time lags within the system are the mechanisms proposed to explain these discrepancies.Field measurements suggest discharge of a local surficial groundwater system. Slug tests reveal a high conductivity system (K = 10-5 m/s) surrounding the lake. Hydraulic heads measured in standpipe, multilevel and minipiezometers installed around Chappice Lake show that the lake is situated in a closed hydraulic head contour. Hydraulic heads and water table elevations show strong annual fluctuations corresponding to seasonal changes in recharge. Horizontal hydraulic gradients measured in areas of groundwater springs indicate a strong horizontal component of flow towards the lake. Vertical hydraulic gradients are low and indicate the upward flow of water consistent with the discharge of a shallow, surfical groundwater system.Groundwater sampled from deposits surrounding Chappice Lake and springs feeding the lake have compositions similar to both shallow surficial aquifers and bedrock aquifers suggesting that the lake may be receiving inputs from both sources. However, evaporation simulations using PHRQPITZ, show that the evaporation of water typical of bedrock aquifers result in a mineral assemblage and brine composition different from that found at Chappice Lake. This suggests that discharge of a regional groundwater system can be eliminated as a dominant source over the lake's history. Evaporation simulations suggest that evaporation of groundwater from shallow surficial deposits can best explain the present mineral assemblage and brine chemistry and were likely the dominant source of water to the lake.Bedrock and shallow surficial groundwater sources have different chemistries and isotopic compositions. In hydrogeological settings such as Chappice Lake where more than one source may contribute to the lake, the relative importance of the different sources may change with changes in climate. If the source water composition to the lake changes, identifying changes in climate or hydrology based on changes in the composition of the lake preserved in sediment core will be made more difficult. This may complicate paleoclimate and paleohydrological reconstructions that rely on mineralogical and isotopic data.  相似文献   

2.
The northern Great Plains region of western Canada contains many saline and hypersaline lakes. These lakes exhibit great diversity in geochemical and sedimentological characteristics which results in a wide range of bedding features and lamination types. Because of the high brine salinities and supersaturation with respect to many carbonate and sulfate evaporitic minerals, chemical laminae and beds are the most common stratification types observed. Simple monomineralic carbonate or sulfate layers as well as beds composed of complex mixtures of aragonite, magnesite, hydromagnesite, mirabilite, gypsum, epsomite,and/or bloedite occur frequently in Holocene sequences from these saline lakes. In addition, biolaminae, including microbialite bedding and accretionary tufa and travertine deposits, are present. Due to the dominance of chemical sedimentary processes operating in these lakes, physical laminae are uncommon. Other observed bedding features and sedimentary structures consist of distinctive pedogenic-cryogenic dry zones, salt karst structures, and clastic dykes and diapirs. Although paleoenvironmental investigations of these well-bedded sequences have just recently begun, several basins provide examples of the nature of paleolimnological information that can be derived from the salt lakes of the northern Great Plains. The chemical and biological laminae preserved in the Holocene sequence of Waldsea Lake provide evidence for significant fluctuations in brine chemistry and chemocline depth in this meromictic basin. Freefight Lake, another hypersaline meromictic lake, contains a relatively thick sequence of rapidly deposited, deep-water salts underlain by finely laminated carbonates, sulfates, and microbial mat sediments. These very thin, undisturbed laminae, combined with exceedingly high rates of offshore evaporite mineral accumulation, provide an excellent opportunity for high resolution geochemical and hydrologic reconstructions in a part of the region distinguished by a paucity of other sources of paleoenvironmental information. Chappice Lake, a shallow, hypersaline brine pool, contains a wealth of paleoenvironmental information. Although the basin probably never experienced the deep-water conditions that earmark Waldsea and Freefight lakes, nonetheless, finely laminated and well-bedded sequences abound in the Holocene record of Chappice Lake. The endogenic magnesium and calcium carbonates and sulfates comprising these laminae can be used to interpret the history of brine chemistry fluctuations which may then help to understand past changes in the hydrologic budget and groundwater inflow.  相似文献   

3.
Water levels in the Lake Erie basin are inferred from glacial lake times to present. An era of early to middle Holocene lowstands is defined below outlets by a submerged paleo-beach, and truncated reflectors in glaciolacustrine sediment beneath a mud-covered wave-cut terrace. Also, the glacial clay surface above the paleo-shore level has elevated shear strength because of porewater drainage during subaerial exposure. Below the paleo-shore where exposure did not occur, clay strength remained normal. Sedimentation rates were reduced during the lowstands. The distortion of once-level shore zone indicators by differential glacial rebound was removed by computing original elevations of the indicators using an empirical model of rebound based on observations of upwarped former lake shorelines. Erie water-level history was inferred from a plot of the original elevations of lake-level constraints and outlets versus age. The lake history was validated by reference to ~83 water-level indicators, not used as constraints. During the deglaciation, lake-crossing moraines were likely eroded by fluvial drainage into low-level Lake Ypsilanti and a subsequent unnamed low lake to produce the Lorain Valley and Pennsylvania Channel. Once inflow from the upper Great Lakes basins was directed to Ottawa Valley about 10,400 (12,270 cal BP), Erie water levels descended in a dry, evaporative climate to a closed lowstand during which ostracode δ18O increased ~2‰ above present values. Lake level began to rise 6,000 to 7,000 (6,830 to 7,860 cal) BP in response to increased atmospheric moisture and later, to northern inflow as the Nipissing Transgression returned upper Great Lakes drainage to Lake Erie by about 5,200 (6,000 cal) BP. At that time, the lake overflowed the uplifted Lyell–Johnson Sill north (downstream) of the present Niagara Falls at higher-than-present levels. After recession of the Falls breached this sill about ~3,500 (~3,770 cal) BP, Lake Erie fell 3–4 m to its present Fort Erie–Buffalo Sill. The extended low-water phase with its isolated sub-basins could have restricted migration of aquatic fauna. The early to middle Holocene closed-basin response highlights the sensitivity of Lake Erie to climatic reductions in its water budget.  相似文献   

4.
We have reconstructed the history of mid-late Holocene paleohydrological changes in the Chinese Loess Plateau using n-alkane data from a sediment core in Tianchi Lake. We used Paq (the proportion of aquatic macrophytes to the total plant community) to reflect changes in lake water level, with a higher abundance of submerged macrophytes indicating a lower water level and vice versa. The Paq-based hydrological reconstruction agrees with various other lines of evidence, including ACL (average chain length), CPI (carbon preference index), C/N ratio and the n-alkane molecular distribution of the sediments in Tianchi Lake. The results reveal that the lake water level was relatively high during 5.7–3.2 ka BP, and decreased gradually thereafter. Our paleohydrological reconstruction is consistent with existing paleoclimate reconstructions from the Loess Plateau, which suggest a humid mid-Holocene, but is asynchronous with paleoclimatic records from central China which indicate an arid mid-Holocene. Overall, our results confirm that the intensity of the rainfall delivered by the EASM (East Asian summer monsoon) is an important factor in affecting paleohydrological changes in the region and can be considered as further evidence for the development of a spatially asynchronous “northern China drought and southern China flood” precipitation pattern during the Holocene.  相似文献   

5.
Causal links that connect Holocene high stands of Lake Superior with dune building, stream damming and diversion and reservoir impoundment and infilling are inferred from a multidisciplinary investigation of a small watershed along the SE shore of Lake Superior. Radiocarbon ages of wood fragments from in-place stumps and soil O horizons, recovered from the bottom of 300-ha Grand Sable Lake, suggest that the near-shore inland lake was formed during multiple episodes of late Holocene dune damming of ancestral Sable Creek. Forest drownings at 3000, 1530, and 300 cal. years BP are highly correlated with local soil burial events that occurred during high stands of Lake Superior. During these and earlier events, Sable Creek was diverted onto eastward-graded late Pleistocene meltwater terraces. Ground penetrating radar (GPR) reveals the early Holocene valley of Sable Creek (now filled) and its constituent sedimentary structures. Near-planar paleosols, identified with GPR, suggest two repeating modes of landscape evolution mediated by levels of Lake Superior. High lake stands drove stream damming, reservoir impoundment, and eolian infilling of impoundments. Falling Lake Superior levels brought decreased sand supply to dune dams and lowered stream base level. These latter factors promoted stream piracy, breaching of dune dams, and aerial exposure and forestation of infilled lakebeds. The bathymetry of Grand Sable Lake suggests that its shoreline configuration and depth varied in response to events of dune damming and subsequent dam breaching. The interrelated late Holocene events apparent in this study area suggest that variations in lake level have imposed complex hydrologic and geomorphic signatures on upper Great Lakes coasts.  相似文献   

6.
Little Manitou Lake is a topographically closed, hypersaline lake that occupies a long, linear glacial meltwater channel in the northern Great Plains of western Canada. Most of the modern and late Holocene sediment in the lake has been generated from within the basin itself, either by endogenic inorganic precipitation or by other authigenic processes. These endogenic and authigenic precipitates, composed of mainly very soluble sulfate salts and sparingly soluble carbonates, provide an explicit record of the past chemical and hydrological fluctuations that have occurred in the lake. Although detailed chronostratigraphy is incomplete, preliminary14C dating indicates an age of about 2000 years for the oldest sediment recovered from the basin.Five subsurface sedimentary facies are identified in offshore cores. From the base these are: (i) structureless, gray clay, (ii) gypsiferous mud, (iii) structureless, organic-rich mud, (iv) finely laminated aragonitic mud, and (v) Na and Mg sulfate salts. The lithostratigraphy and variation in the mineralogical composition of the sediment indicate that Little Manitou Lake experienced significant water level changes and compositional fluctuations during the past several millennia. The basal clays indicate a relatively deep, freshwater lake existed about 2000 years ago, but was soon followed by a period of low water/playa sedimentation and a negative hydrological budget in the basin. Water levels gradually increased after about 1500 years ago in response to a cooler and wetter climate. This resulted in development of a meromictic, saline to hypersaline lake characterized by periodic carbonate (aragonite) whitings. Water levels again decreased about 1000 years ago, resulting in a breakdown of meromixis and initiation of subaqueous evaporitic salt precipitation. Although the brine in Little Manitou Lake has fluctuated between Na-SO4 and Mg-Na-SO4 -Cl types during the past 1000 years, water levels and overall salinities have remained relatively constant.Palliser Triangle Global Change Contribution No. 16.  相似文献   

7.
Sevier Lake is the modern lake in the topographically closed Sevier Lake basin, and is fed primarily by the Sevier River. During the last 12 000 years, the Beaver River also was a major tributary to the lake. Lake Bonneville occupied the Sevier Desert until late in its regressive phase when it dropped to the Old River Bed threshold, which is the low point on the drainage divide between the Sevier Lake basin and the Great Salt Lake basin. Lake Gunnison, a shallow freshwater lake at 1390 m in the Sevier Desert, overflowed continuously from about 12 000 to 10 000 yr B.P., into the saline lake in the Great Salt Lake basin, which continued to contract. This contrast in hydrologic histories between the two basins may have been caused by a northward shift of monsoon circulation into the Sevier Lake basin, but not as far north as the Great Salt Lake basin. Increased summer precipitation and cloudiness could have kept the Sevier Lake basin relatively wet.By shortly after 10 000 yr B.P. Lake Gunnison had stopped overflowing and the Sevier and Beaver Rivers had begun depositing fine-grained alluvium across the lake bed. Sevier Lake remained at an altitude below 1381 m during the early and middle Holocene. Between 3000 and 2000 yr B.P. the lake expanded slightly to an altitude of about 1382.3 m. A second expansion, probably in the last 500 years, culminated at about 1379.8 m. In the mid 1800s the lake had a surface altitude of 1379.5 m. Sevier Lake was essentially dry (1376 m) from 1880 until 1982. In 1984–1985 the lake expanded to a 20th-century high of 1378.9 m in response to abnormally high snow-melt runoff in the Sevier River. The late Holocene high stands of Sevier Lake were most likely related to increased precipitation derived from westerly air masses.This is the first of a series of papers to be published by this journal that was presented in the paleolimnology sessions organized by R. B. Davis and H. Löffler for the XIIth Congress of the International Union for Quaternary Research (INQUA), which took place in Ottawa, Canada in August 1987. Drs. Davis and Löffler are serving as guest editors of this series.  相似文献   

8.
Lake Agassiz water oxygen isotopic compositions inferred from sediment core organics and pore waters provide some additional insight into the paleohydrology of the Great Lakes and their drainage into the North Atlantic during the late glacial and early Holocene. Isotopically enriched Lake Agassiz water supports the hypothesis that high Huron Basin lake (Mattawa) phases, during the early Holocene (9600–9300 and 9100–8100 years BP) resulted from an influx of Lake Agassiz water and suggests that low lake (Stanley) phases (9800–9600, 9300–9100, 8100–7400 years BP) were influenced more by regional influxes of isotopically depleted glacial melt water. Eastward drainage of enriched early Lake Agassiz water supports an active Port Huron outlet between 11000 and 10500 years BP and also helps to explain the absence of an 18O depleted interval in North Atlantic foram records. This may be the result of a balance between the opposing isotopic effects of depleted Lake Agassiz water and lower sea surface temperatures on carbonate precipitation between 11000 and 10000 years BP.  相似文献   

9.
Lacustrine records from the northern margin of the East Asian monsoon generate a conflicting picture of Holocene monsoonal precipitation change. To seek an integrated view of East Asian monsoon variability during the Holocene, an 8.5-m-long sediment core recovered in the depocenter of Dali Lake in central-eastern Inner Mongolia was analyzed at 1-cm intervals for total organic and inorganic carbon concentrations. The data indicate that Dali Lake reached its highest level during the early Holocene (11,500–7,600 cal yr BP). The middle Holocene (7,600–3,450 cal yr BP) was characterized by dramatic fluctuations in the lake level with three intervals of lower lake stands occurring 6,600–5,850, 5,100–4,850 and 4,450–3,750 cal yr BP, respectively. During the late Holocene (3,450 cal yr BP to present), the lake displayed a general shrinking trend with the lowest levels at three episodes of 3,150–2,650, 1,650–1,150 and 550–200 cal yr BP. We infer that the expansion of the lake during the early Holocene would have resulted from the input of the snow/ice melt, rather than the monsoonal precipitation, in response to the increase in summer solar radiation in the Northern Hemisphere. We also interpret the rise in the lake level since ca. 7,600 cal yr BP as closely related to increased monsoonal precipitation over the lake region resulting from increased temperature and size of the Western Pacific Warm Pool and a westward shifted and strengthened Kuroshio Current in the western Pacific. Moreover, high variability of the East Asian monsoon climate since 7,600 cal yr BP, marked by large fluctuations in the lake level, might have been directly associated with variations in the intensity and frequency of the El Niño-Southern Oscillation (ENSO) events.  相似文献   

10.
We studied Holocene lake-level fluctuations from a small lake, Iso Lehmälampi, southern Finland, utilizing cladoceran and diatom analyses. We report data from a sediment core (A) taken from the deepest part of the lake (8.1 m) where two layers of moss, mixed with gyttja, were found. These layers were formed in situ during the early Holocene (1. ca. 8100-7900, 2. ca. 7300 BP). Lake-level fluctuations were inferred also from another core C, which did not have moss layers. According to the ratio of planktonic/littoral Cladocera, the water level was high around 9000 BP and started to fall before 8000 BP. The lowering continued until 7000 BP and the moss layers were formed during this lowering. Water level was high again ca. 6000 BP and lowered towards ca. 4000 BP. The late Holocene is characterized by several rapid fluctuations of lake-level. The ratio of planktonic/littoral Cladocera and the diatom species composition in core A showed drastic changes between the moss layers and the non-moss gyttja sections of the core. We suggest that they reflect changes in sedimentary facies between the local moss environment and the pelagic bottom. Thus, cores which contain moss layers may lead to erroneous interpretations of lake-level fluctuations.  相似文献   

11.
The Holocene sedimentary diatom record from Otasan Lake, Alberta, has been analyzed to determine the development of this presently slightly acidic lake. The changes in the lake have been linked to the development of the Sphagnum-dominated catchment. Analysis of the stratigraphic data revealed four distinct zones. The lake record began ca. 8200 yrs BP with a benthic and alkaline diatom assemblage dominated by Ellerbeckia arenaria (Moore) Crawford. At ca. 7300 yrs BP planktonic species began to increase and dominate indicating increased water levels, decreased turbidity, and increased nutrient levels. Throughout the Holocene the peatland in the catchment encroached toward the modern lake margin and by ca. 5000 yrs BP lake acidity had changed sufficiently such that acidic diatom species dominated. Tabellaria flocculosa (Roth) Kütz.v. flocculosa Strain IIIp sensu Koppen dominated the record from ca. 5000 to ca. 3100 yrs BP. The lowest lake water pH was inferred for this zone. From ca. 3100 yrs BP to the present Fragilaria species, primarily F. construens v. venter (Ehr.) Hustedt, dominated the diatom assemblage. Diatom productivity and inferred pH were interpreted as stable. From correspondence analysis of the fossil samples, and from species assemblages, underlying gradients of pH, nutrient level, and water depth were inferred. The change from alkaline to slightly acidic conditions took place between ca. 8200 and ca. 5000 yrs BP. From ca. 3000 yrs BP to the present, lake water pH has remained fairly constant. Nutrient levels and water depth were inferred to have altered together. After ca. 8200 yrs BP, nutrients and water level began to increase until ca. 6000 yrs BP. Then, there was a gradual decline in these variables over the most acidic zone until ca. 3000 yrs BP, after which they, too, have remained fairly constant. Dominant Boreal Upland Vegetation was established by ca. 7200 yrs BP, and it was inferred that dominant climate patterns had been established at that time, but small changes in climate have occurred and the landscape in northeastern Alberta has only been stable for the last 3000 years.  相似文献   

12.
Palaeolimnological and palynological records from climatically variable central Alberta, Canada, document periods of hypersaline lake conditions indicative of late glacial and early Holocene drought. The sensitivity of palaeolimnological indicators for inferring palaeoclimates is examined by comparing records from two sites at opposite ends of the regional precipitation gradient. Palaeosalinity is identified by the presence of Ruppia pollen, a hypersaline aquatic plant not presently growing in either lake, and diatom assemblages comprising both saline epipelic and planktonic species. Goldeye Lake (52° 27 N; 116° 12 W), in the relatively moist Rocky Mountain Foothills remained saline from its inception before ca 14500 years BP until ca 10400 years BP by which time pioneering forests had replaced tundra vegetation; however, freshwater planktonic diatoms dominated ca 12500 to 11500 years BP. However, dating problems endemic to the Foothills region make this chronology only tentative. Moore Lake (54° 30 N; 110° 30 N), in dry, east-central Alberta contained Ruppia only between ca 9000 and 6000 years BP. Freshwater diatoms dominated until ca 10000 years BP when they were succeeded by taxa characteristic of saline water. The lake remained saline until ca 6000 years BP. The late glacial period of palaeosalinity at Goldeye Lake occurred because the lake was surrounded by Cordilleran and Laurentide glacial ice, and therefore, cut off from moisture sources until the early Holocene by which time significant ice recession had occurred. Factors causing the second period of salinity remain unknown at this time. In contrast, by the early Holocene, Moore Lake was influenced by drought caused by high summer insolation induced by orbital fluctuations. Freshwater conditions were maintained through the Holocene in the Foothills region of west-central Alberta, but occurred consistently only over the last 4000 years in central and east-central Alberta. The warmer, drier climate during the early Holocene did affect lake levels in at least one headwater Foothills lake (Fairfax Lake — 52° 58 N; 116° 34 W). The severity of the drought increased in an easterly direction across the province.This publication is the fourth of a series of papers presented at the Conference on Sedimentary and Palaeolimnological Records of Saline Lakes. This Conference was held August 13–16, 1991 at the University of Saskatchewan, Saskatoon, Canada. Dr. Evans is serving as Guest Editor.  相似文献   

13.
Lake Uddelermeer (The Netherlands) is characterized by turbid conditions and annual blooms of toxic cyanobacteria, which are supposed to be the result of increased agricultural activity in the twentieth century AD. We applied a combination of classic palaeoecological proxies and novel geochemical proxies to the Holocene sediment record of Lake Uddelermeer (The Netherlands) in order to reconstruct the natural variability of the lake ecosystem and to identify the drivers of the change to the turbid conditions that currently characterize this lake. We show that the lake ecosystem was characterized by a mix of aquatic macrophytes and abundant phytoplankton between 11,500 and 6000 cal year BP. A transition to a lake ecosystem with clear-water conditions and relatively high abundances of ‘isoetids’ coincides with the first signs of human impact on the landscape around Lake Uddelermeer during the Early Neolithic (ca. 6000 cal year BP). An abrupt and dramatic ecosystem shift can be seen at ca. 1030 cal year BP when increases in the abundance of algal microfossils and concentrations of sedimentary pigments indicate a transition to a turbid phytoplankton-dominated state. Finally, a strong increase in concentrations of plant and faecal biomarkers is observed around 1950 AD. Canonical Correspondence Analysis suggests that reconstructed lake ecosystem changes are best explained by environmental drivers that show long-term gradual changes (sediment age, water depth). These combined results document the long-term anthropogenic impact on the ecosystem of Lake Uddelermeer and provide evidence for pre-Industrial Era signs of eutrophication.  相似文献   

14.
Transects of surface sediment samples were taken in 4 lakes from the Sylvania Wilderness Area, Upper Peninsula of Michigan. These surface samples were compared with diatom samples from a core taken in the Northwest basin of Crooked Lake, also from the Sylvania Wilderness Area. Weighted Averaging calibration was used to reconstruct lake depths in Crooked Lake using the diatom microfossils from the core and the surface samples to infer past lake depth. During the early Holocene the lake was dominated by planktonic species and diatom-inferred water depth was large – approx. 13 m. At about 6700 BP inferred water depth was 2 m and samples were dominated by Fragilaria construens var. venter – a species characteristic of shallow parts of the surface sample transects. From 6700 to 5000 BP reconstructed water level was at its shallowest. From 5000 to 3000 BP it increased. This rise in water level was marked by increasing abundances of Aulacoseira ambigua and occurred at the same time increasing percentages of hemlock pollen indicate increasing available moisture. Modern water depth was reached about 3000 BP. The water level changes at Crooked Lake are consistent with regional climate changes in the Upper Midwest during the Holocene. The lake was shallowest during the mid-Holocene warm period documented by other investigators. It deepened as the Midwestern climate became cooler and wetter during the late Holocene.  相似文献   

15.
Multiple proxies record aridity in the northern Great Lakes basin ~8,800–8,000 cal (8,000–7,200) BP when water levels fell below outlets in the Michigan, Huron and Georgian Bay basins. Pollen-climate transfer function calculations on radiocarbon-dated pollen profiles from small lakes from Minnesota to eastern Ontario show that a drier climate was sufficient to lower the Great Lakes, in particular Georgian Bay, to closed basins. The best modern climate analog for the early Holocene late Lake Hough stage in the Georgian Bay basin is Black Bass Lake near Brainerd MN. Modern annual precipitation at Brainerd is ~35% lower than at Huntsville ON, in the Georgian Bay catchment; warmer summers and colder, less snowy winters make Brainerd drier than the Georgian Bay snow belt. These values parallel transfer function reconstructions for the early Holocene from pollen records at five small lakes in the Georgian Bay drainage basin. Higher evaporation and evapotranspiration due to greater seasonality during the early Holocene produced a deficit in effective moisture in Georgian Bay that is recorded by the jack/red pine pollen zone that spanned ~8,800–8,200 cal (8,000–7,500) BP. This deficit drove late Lake Hough ~5 m below Lake Stanley in the Huron basin, following diversion of Laurentide Ice sheet meltwater from the Great Lakes basin. The level of Georgian Bay largely depends not on fluvial input from its own drainage basin, but rather from Lake Superior, where the early Holocene moisture deficit was greater. Reconstruction of paleoclimates in Minnesota, northwestern Ontario and Wisconsin produced a closed lake in the Superior basin, which removed the main water input to Georgian Bay. Once the inflow through the St. Marys River was reduced and inflow from other tributary streams was adjusted for isostatic and climatic differences, input was <5% of modern values. Consequent high evaporation rates produced a significant fall in lake level in the Georgian Bay basin and a negative water budget. This reduction in basin supply, together with the high conductivity of stagnant water in late Lake Hough inferred from microfossils in lowstand sediments, peaked at the end of the jack/red pine zone, ~8,300–8,200 (7,450 ± 90) BP. These major hydrologic changes resulting from climate change in the recent geologic past draw attention to possible declines of the Great Lakes under future climates.  相似文献   

16.
Piston cores from deep-water bottom deposits in Lake Ontario contain shallow-water sediments such as, shell-rich sand and silt, marl, gyttja, and formerly exposed shore deposits including woody detritus, peat, sand and gravel, that are indicative of past periods of significantly lower water levels. These and other water-level indicators such as changes in rates of sedimentation, mollusc shells, pollen, and plant macrofossils were integrated to derive a new water-level history for Lake Ontario basin using an empirical model of isostatic adjustment for the Great Lakes basin to restore dated remnants of former lake levels to their original elevations. The earliest dated low-level feature is the Grimsby-Oakville bar which was constructed in the western end of the lake during a near stillstand at 11–10.4 (12.9–12.3 cal) ka BP when Early Lake Ontario was confluent with the Champlain Sea. Rising Lake Ontario basin outlet sills, a consequence of differential isostatic rebound, severed the connection with Champlain Sea and, in combination with the switch of inflowing Lake Algonquin drainage northward to Ottawa River valley via outlets near North Bay and an early Holocene dry climate with enhanced evaporation, forced Lake Ontario into a basin-wide lowstand between 10.4 and 7.5 (12.3 and 8.3 cal) ka BP. During this time, Lake Ontario operated as a closed basin with no outlets, and sites such as Hamilton Harbour, Bay of Quinte, Henderson Harbor, and a site near Amherst Island existed as small isolated basins above the main lake characterized by shallow-water, lagoonal or marsh deposits and fossils indicative of littoral habitats and newly exposed mudflats. Rising lake levels resulting from increased atmospheric water supply brought Lake Ontario above the outlet sills into an open, overflowing state ending the closed phase of the lake by ~7.5 (8.3 cal) ka BP. Lake levels continued to rise steadily above the Thousand Islands sill through mid-to-late Holocene time culminating at the level of modern Lake Ontario. The early and middle Holocene lake-level changes are supported by temperature and precipitation trends derived from pollen-climate transfer functions applied to Roblin Lake on the north side of Lake Ontario.  相似文献   

17.
Diatom assemblages and sulfur content in sediments were analyzed to clarify changes in the sedimentary environment of Kushu Lake, a coastal lake on Rebun Island in Hokkaido, Japan. Salinity variations were assessed by means of a diatom-based index of paleosalinity and the sedimentary sulfur content. This paper discusses the Holocene development of the lake, in relation to Holocene relative sea-level change. For paleoenvironmental interpretation of the lake development, the rationale of the threshold method (Anundsen et al., 1994) was applied.At ca. 8000 yr BP, a coastal embayment (paleo-Kushu Bay) resulted from marine ingression. The threshold elevation at the mouth of the paleo-Kushu Bay kept pace with the rising sea-level, resulting in its enclosure at the culmination of Holocene marine transgression (ca. 6500–5000 yr BP). From predicted relative sea-level at ca. 6000 yr BP for Rebun Island (Nakada et al., 1991), the threshold may have been at least above –3 to –5 m altitude. A freshwater lake environment with strongly anoxic bottom conditions may have occurred from ca. 5500 to 5100 yr BP. After an important episode of marine ingression, the lake was isolated completely from the open sea at ca. 4900 yr BP. The diatom record suggests that the maximum lacustrine extent occurred at ca. 4900–3100 yr BP. Thereafter, water depth decreased at the lake margins.In Kushu Lake, the threshold elevation, due to a build-up of a coastal barrier, prevents us from determining the amplitude of sea-level changes, even though the age of isolation contacts corresponds to periods of regression and climatic deterioration. In spite of isostatic subsidence, the effective protection provided by the well-developed barrier did not allow registration of any relative sea-level fluctuations since its isolation.  相似文献   

18.
Harris Lake, a small, groundwater fed lake in the Cypress Hills area of Saskatchewan, is one of the few lacustrine basins in the Great Plains that contains a complete, uninterrupted record of Holocene sedimentation. The lithostratigraphy and variation in the mineralogical composition of the sediments in this basin provide insight into the paleolimnology and paleohydrology of the lake and surrounding watershed. Although there is no evidence that the basin was dry for extended periods during the Holocene, the lake did experience numerous short-lived episodes of high salinity, as well as significant changes in solute composition during the early to mid-Holocene. An abrupt change, from a lake dominated by detrital sediments to one characterized almost entirely by endogenic deposition, occurred about 4000 years ago in response to the combined influence of forestation of the watershed and diversion of major fluvial and detrital influx by landsliding. These adjustments to the Harris Lake drainage basin were likely the result of the onset of cooler and wetter climatic conditions after 4500 B.P. During the late Holocene, slope failure continued to sporadically provide fresh clastic material to the otherwise endogenic-sediment dominated lake.  相似文献   

19.
We recovered a sediment core (DL04) from the depocenter of Dali Lake in central-eastern Inner Mongolia. The upper 8.5 m were analyzed at 1-cm intervals for grain-size distribution to partition the grain-size components and provide a high-resolution proxy record of Holocene lake level changes. Partitioning of three to six components, C1, C2, C3 through C6 from fine to coarse modes within the individual polymodal distributions, into overlapping lognormal distributions, was accomplished utilizing the method of lognormal distribution function fitting. Genetic analyses of the grain-size components suggest that two major components, C2 and C3, interpreted as offshore-suspension fine and medium-to-coarse silt, can serve as sediment proxies for past changes in the level of Dali Lake. Lower modal sizes of both C2 and C3 and greater C3 and lower C2 percentages reflect higher lake stands. The proxy data from DL04 core sediments span the last 12,000 years and indicate that Dali Lake experienced five stages during the Holocene. During the interval ca. 11,500–9,800 cal year BP, lake level was unstable, with drastic rises and falls. Following that interval, the lake level was marked by high stands between ca. 9,800 and 7,100 cal year BP. During the period from ca. 7,100 to 3,650 cal year BP, lake level maintained generally low stands, but displayed a slight tendency to rise. Subsequently, the lake level continued rising, but exhibited high-frequency, high-amplitude fluctuations until ca. 1,800 cal years ago. Since ca. 1,800 cal year BP, the lake has displayed a gradual lowering trend with frequent fluctuations.  相似文献   

20.
刘向军 《盐湖研究》2018,26(2):16-26
青海湖是国内最大的内陆湖泊,位于青藏高原东北缘,因其处在东亚夏季风、印度季风和西风带的交替控制区域,对气候变化十分敏感,成为古环境变化研究的热点地区。有关青海湖的形成演化、环境变化和水文变化的研究也存在多种观点。本研究再分析了青海湖已报道的古环境指标和气候模式模拟的夏季、冬季温度和降水变化,力图更加全面地理解青海湖全新世以来的古环境变化。研究发现早全新世11~8 ka夏季降水量和表面蒸发量较大,冬季降水稀少,湖泊水位只有十余米深,使得青海湖周边风沙活动频繁。并且,早全新世的气候不稳定,经历了频繁和较大幅度的波动。全新世气候适宜期出现在8~6 ka,古环境指标指示这一时期为温暖湿润的气候环境,湖盆内植被以森林草原为主,湖泊水位不断上升。青海湖地区的夏季降水自6 ka开始减少,然而冬季降水增加,同时夏季温度和蒸发量减少,使得湖区植被组成由森林草原向高山草甸转变,湖区大范围形成古土壤。湖区古环境条件在晚全新世距今1.5 ka开始恶化,冬季和夏季降水同时减少,湖泊水位下降,风沙活动再次加强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号