首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Merensky Reef of the Bushveld Complex contains one of theworld’s largest concentrations of platinum-group elements(PGE). We have investigated ‘normal’ reef, its footwalland its hanging wall at Impala Platinum Mines. The Reef is 46cm thick and consists from bottom to top of leuconorite, anorthosite,chromitite and a very coarse-grained melanorite. The footwallis leuconorite and the hanging wall is melanorite. The onlyhydrous mineral present is biotite, which amounts to 1%, orless, of the rock. All of the rocks contain 0·1–5%interstitial sulphides (pyrrhotite, pentlandite and chalcopyrite),with the Reef rocks containing the most sulphides (1–5%).Lithophile inter-element ratios suggest that the magma fromwhich the rocks formed was a mixture of the two parental magmasof the Bushveld Complex (a high-Mg basaltic andesite and a tholeiiticbasalt). The Reef rocks have low incompatible element contentsindicating that they contain 10% or less melt fraction. Nickel,Cu, Se, Ag, Au and the PGE show good correlations with S inthe silicate rocks, suggesting control of the abundance of thesemetals by sulphides. The concentration of the chalcophile elementsand PGE in the silicate rocks may be modelled by assuming thatthe rocks contain sulphide liquid formed in equilibrium withthe evolving silicate magma. It is, however, difficult to modelthe Os, Ir, Ru, Rh and Pt concentrations in the chromititesby sulphide liquid collection alone, as the rocks contain 3–4times more Os, Ir, Ru, Rh and Pt than the sulphide-collectionmodel would predict. Two possible solutions to this are: (1)platinum-group minerals (PGM) crystallize from the sulphideliquid in the chromitites; (2) PGM crystallize directly fromthe silicate magma. To model the concentrations of Os, Ir, Ru,Rh and Pt in the chromitites it is necessary to postulate thatin addition to the 1% sulphides in the chromitites there isa small quantity (0·005%) of cumulus PGM (laurite, cooperiteand malanite) present. Sulphide liquids do crystallize PGM atlow fS2. Possibly the sulphide liquid that was trapped betweenthe chromite grains lost some Fe and S by reaction with thechromite and this provoked the crystallization of PGM from thesulphide liquid. Alternatively, the PGM could have crystallizeddirectly from the silicate magma when it became saturated inchromite. A weakness of this model is that at present the exactmechanism of how and why the magma becomes saturated in PGMand chromite synchronously is not understood. A third modelfor the concentration of PGE in the Reef is that the PGE arecollected from the underlying cumulus pile by Cl-rich hydrousfluids and concentrated in the Reef at a reaction front. Althoughthere is ample evidence of compaction and intercumulus meltmigration in the Impala rocks, we do not think that the PGEwere introduced into the Reef from below, because the rocksunderlying the Reef are not depleted in PGE, whereas those overlyingthe Reef are depleted. This distribution pattern is inconsistentwith a model that requires introduction of PGE by intercumulusfluid percolation from below. KEY WORDS: Merensky Reef; platinum-group elements; chalcophile elements; microstructures  相似文献   

2.
Base-metal sulfides in magmatic Ni-Cu-PGE deposits are important carriers of platinum-group elements (PGE). The distribution and concentrations of PGE in pentlandite, pyrrhotite, chalcopyrite, and pyrite were determined in samples from the mineralized portion of four Merensky Reef intersections from the eastern and western Bushveld Complex. Electron microprobe analysis was used for major elements, and in situ laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) for trace elements (PGE, Ag, and Au). Whole rock trace element analyses were performed on representative samples to obtain mineralogical balances. In Merensky Reef samples from the western Bushveld, both Pt and Pd are mainly concentrated in the upper chromitite stringer and its immediate vicinity. Samples from the eastern Bushveld reveal more complex distribution patterns. In situ LA-ICP-MS analyses of PGE in sulfides reveal that pentlandite carries distinctly elevated PGE contents, whereas pyrrhotite and chalcopyrite only contain very low PGE concentrations. Pentlandite is the principal host of Pd and Rh in the ores. Palladium and Rh concentrations in pentlandite reach up to 700 and 130 ppm, respectively, in the samples from the eastern Bushveld, and up to 1,750 ppm Pd and up to 1,000 ppm Rh in samples from the western Bushveld. Only traces of Pt are present in the base-metal sulfides (BMS). Pyrrhotite contains significant though generally low amounts of Ru, Os, and Ir, but hardly any Pd or Rh. Chalcopyrite contains most of the Ag but carries only extremely low PGE concentrations. Mass balance calculations performed on the Merensky Reef samples reveal that in general, pentlandite in the feldspathic pyroxenite and the pegmatoidal feldspathic pyroxenite hosts up to 100 % of the Pd and Rh and smaller amounts (10–40 %) of the Os, Ir, and Ru. Chalcopyrite and pyrrhotite usually contain less than 10 % of the whole rock PGE. The remaining PGE concentrations, and especially most of the Pt (up to 100 %), are present in the form of discrete platinum-group minerals such as cooperite/braggite, sperrylite, moncheite, and isoferroplatinum. Distribution patterns of whole rock Cu, Ni, and S versus whole rock Pd and Pt show commonly distinct offsets. The general sequence of “offset patterns” of PGE and BMS maxima, in the order from bottom to top, is Pd in pentlandite?→?Pd in whole rock?→?(Cu, Ni, and S). The relationship is not that straightforward in general; some of the reef sequences studied only partially show similar trends or are more complex. In general, however, the highest Pd concentrations in pentlandite appear to be related to the earliest, volumetrically rather small sulfide liquids at the base of the Merensky Reef sequence. A possible explanation for the offset patterns may be Rayleigh fractionation.  相似文献   

3.
 The platinum-group elements (PGE) in base metal sulfides (BMS) of the Merensky reef are mostly close to the detection limit of the proton microprobe. The only phase that accommodates appreciable PGE is pentlandite. Total average PGE plus Au grades of the sulfide fraction of the Merensky reef are about 500 ppm. We estimate the modal proportions of the major BMS to be around 53 percent pyrrhotite, 25 percent pentlandite, and 22 percent chalcopyrite (ignoring minor phases). Using this estimate, we calculate by how much the sulfides are oversaturated with respect to individual PGE. With respect to Pt, the sulfides are many times oversaturated, i.e., nearly all Pt occurs as discrete PGE phases. With regard to Pd the sulfides are oversaturated by about a factor of two. The Ru and Rh levels are at and below saturation levels. Available experiments suggest that the entire PGE content of the sulfide fraction can easily be accommodated in solid solution in BMS at temperatures as low as 500°C. The fact that the BMS are oversaturated with most PGE thus indicates that the sulfides have continued to exsolve PGE below that temperature. Calculated sulfur fugacities indicate that f S2 is controlled by silica activity, as expected in high-temperature ores, suggesting that metal/sulfur ratios of the ore may not have changed much since complete solidification of the intercumulus silicate melt of the Merensky reef. All sulfides investigated have cooled below the maximum temperature of pentlandite-pyrite coexistence, which experiments place at 250±30°C. Final closure temperatures of the sulfide-PGE mineral assemblages, approximated by extrapolating the pentlandite-pyrrhotite solvus beyond its experimentally determined range, are possibly as low as 80 to 90°C. Received: 25 April 1995/Accepted: 5 September 1995  相似文献   

4.
Two drill cores of the UG2 chromitite from the eastern and western Bushveld Complex were studied by whole-rock analysis, ore microscopy, SEM/Mineral Liberation Analysis (MLA), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis. The top and base of the UG2 main seam have the highest bulk-rock Pd and Pt concentrations. Sulfides mostly occur as aggregates of pentlandite, chalcopyrite, and rare pyrrhotite and pyrite or as individual grains associated mostly with chromite grains. In situ LA-ICP-MS analyses reveal that pentlandite carries distinctly elevated platinum-group element (PGE) contents. In contrast, pyrrhotite and chalcopyrite contain very low PGE concentrations. Pentlandite shows average maximum values of 350–1,000 ppm Pd, 200 ppm Rh, 130–175 ppm Ru, 20 ppm Os, and 150 ppm Ir, and is the principal host of Pd and Rh in the studied ores of the UG2. Mass balance calculations were conducted for samples representing the UG2 main seam of the drill core DT46, eastern Bushveld. Pentlandite consistently hosts elevated contents of the whole-rock Pd (up to 55 %) and Rh (up to 46 %), and erratic contents of Os (up to 50 %), Ir (2 to 17 %), and Ru (1–39 %). Platinum-group mineral (PGM) investigations support these mass balance results; most of the PGM are Pt-dominant such as braggite/cooperite and Pt-Fe alloys or laurite (carrying elevated concentrations of Os and Ir). Palladium and Rh-bearing PGM are rare. Both PGE concentrations and their distribution in base-metal sulfides (BMS) in the UG2 largely resemble that of the Merensky Reef, as most of the Pd and Rh are incorporated in pentlandite, whereas pyrrhotite, chalcopyrite, and pyrite are almost devoid of PGE.  相似文献   

5.
The concentrations of platinum-group elements (PGE), Co, Re,Au and Ag have been determined in the base-metal sulphide (BMS)of a section of the Merensky Reef. In addition we performeddetailed image analysis of the platinum-group minerals (PGM).The aims of the study were to establish: (1) whether the BMSare the principal host of these elements; (2) whether individualelements preferentially partition into a specific BMS; (3) whetherthe concentration of the elements varies with stratigraphy orlithology; (4) what is the proportion of PGE hosted by PGM;(5) whether the PGM and the PGE found in BMS could account forthe complete PGE budget of the whole-rocks. In all lithologies,most of the PGE (65 up to 85%) are hosted by PGM (essentiallyPt–Fe alloy, Pt–Pd sulphide, Pt–Pd bismuthotelluride).Lesser amounts of PGE occur in solid solution within the BMS.In most cases, the PGM occur at the contact between the BMSand silicates or oxides, or are included within the BMS. Pentlanditeis the principal BMS host of all of the PGE, except Pt, andcontains up to 600 ppm combined PGE. It is preferentially enrichedin Pd, Rh and Co. Pyrrhotite contains, Rh, Os, Ir and Ru, butexcludes both Pt and Pd. Chalcopyrite contains very little ofthe PGE, but does concentrate Ag and Cd. Platinum and Au donot partition into any of the BMS. Instead, they occur in theform of PGM and electrum. In the chromitite layers the whole-rockconcentrations of all the PGE except Pd are enriched by a factorof five relative to S, Ni, Cu and Au. This enrichment couldbe attributed to BMS in these layers being richer in PGE thanthe BMS in the silicate layers. However, the PGE content inthe BMS varies only slightly as a function of the stratigraphy.The BMS in the chromitites contain twice as much PGE as theBMS in the silicate rocks, but this is not sufficient to explainthe strong enrichment of PGE in the chromitites. In the lightof our results, we propose that the collection of the PGE occurredin two steps in the chromitites: some PGM formed before sulphidesaturation during chromitite layer formation. The remainingPGE were collected by an immiscible sulphide liquid that percolateddownward until it encountered the chromitite layers. In thesilicate rocks, PGE were collected by only the sulphide liquid. KEY WORDS: Merensky Reef; Rustenburg Platinum Mine; sulphide; platinum-group elements; image analysis; laser ablation ICP-MS  相似文献   

6.
We have analysed 18 samples of komatiite from five consecutivelava flows of the Komati Formation at Spinifex Creek, BarbertonMountain Land. Our samples include massive komatiite, varioustypes of spinifex-textured komatiite, and flow-top breccias.The rocks have low platinum-group element (PGE) contents andPd/Ir ratios relative to komatiites from elsewhere, at 0·45–2ppb Os, 1–1·4 ppb Ir, <1–5 ppb Ru, 0·33–0·79ppb Rh, 1·7–6 ppb Pt, 1·6–6·1ppb Pd, and Pd/Ir 3·3. Pt/Pd ratios are c. 1·1.Platinum-group elements are depleted relative to Cu (Cu/Pd =15 300). They display a tendency to increase in the less magnesiansamples, suggesting that the magmas were S-undersaturated uponeruption and that all PGE were incompatible with respect tocrystallizing olivine. Komatiites from the Westonaria Formationof the Ventersdorp Supergroup and the Roodekrans Complex nearJohannesburg have broadly similar PGE patterns and concentrationsto the Komati rocks, suggesting that the PGE contents of SouthAfrican ultrabasic magmas are controlled by similar processesduring partial mantle melting and low-P magmatic crystallization.Most workers believe that the Barberton komatiites formed byrelatively moderate-degree batch melting of the mantle at highpressure. Based on the concentration of Zr in the Komati samples,we estimate that the degree of partial melting was between 26and 33%. We suggest that the low PGE contents and Pd/Ir ratiosof all analysed South African komatiites are the result of sulphideshaving been retained in the mantle source during partial melting.The difference in Pd/Ir between our samples and Al-undepletedkomatiites from elsewhere further suggests that the PGE arefractionated during progressive partial melting of the mantle.Thus, our data are in agreement with other recent studies showingthat the PGE are hosted by different phases in the mantle, withPd being concentrated by interstitial Cu-rich sulphide, andthe IPGE (Os, Ir, Ru) and Rh resting in monosulphide solid solutionincluded within silicates. Pt is possibly controlled by a discreterefractory phase, as Pt/Pd ratios of most komatiites worldwideare sub-chondritic. KEY WORDS: platinum-group elements; komatiites; Barberton; mantle melting; South Africa  相似文献   

7.
Large mafic–ultramafic layered intrusions may containlayers enriched in platinum-group elements (PGE). In many cases,the PGE are hosted by disseminated sulphides. We have investigatedthe distribution of the sulphides in three dimensions in twooriented samples of the Merensky Reef and the J-M Reef. Theaim of the study was to test the hypothesis that the sulphidescrystallized from a base metal sulphide liquid that percolatedthrough the cumulate pile during compaction. The distributionof sulphides was quantified using: (1) X-ray computed tomography;(2) microstructural analysis of polished thin sections orientedparallel to the paleovertical; (3) measurement of dihedral anglesbetween sulphides and silicates or oxides. In the Merensky Reefand the J-M Reef, sulphides are connected in three dimensionsand fill paleovertical dilatancies formed during compaction,which facilitated the downward migration of sulphide liquidin the cumulate. In the melanorite of the Merensky Reef, thesulphide content increases from top to bottom, reaching a maximumvalue above the underlying chromitite layer. In the chromititelayers sulphide melt connectivity is negligible. Thus, the chromititemay have acted as a filter, preventing extensive migration ofsulphide melt downwards into the footwall. This could partiallyexplain the enrichment in PGE of the chromitite layer and theobserved paucity of sulphide in the footwall. KEY WORDS: X-ray computed tomography; microstructures; sulphides; Merensky Reef; J-M Reef  相似文献   

8.
Detailed mineralogical and laser ablation-inductively coupled plasma-mass spectrometry studies have revealed the physical manifestation of the platinum-group elements (PGE) within the Platreef at Overysel, northern Bushveld Complex, South Africa. The PGE in the Platreef were originally concentrated in an immiscible sulfide liquid along with semi-metals such as Bi and Te. As the sulfide liquid began to crystallize, virtually all the Os, Ir, Ru and Rh partitioned into monosulfide solid solution (mss), which on further cooling, exsolved to form pyrrhotite and pentlandite with Os, Ir and Ru remaining in solid solution in both phases with Rh prefentially partitioning into pentlandite. Platinum, some Pd and Au were concentrated in the residual sulfide liquid after mss crystallization, and were then concentrated in an immiscible late stage melt along with semi metals, which was expelled to the grain boundaries during crystallization of intermediate solid solution (iss) to form Pt and Pd tellurides and electrum around the margins of the sulfide grains. Tiny droplets of this melt trapped in the crystallizing mss and iss cooled to form Pt–Bi–Te microinclusions in all sulfide phases, whilst the excess Pd was accommodated in solid solution in pentlandite. Minor redistribution and recrystallization by hydrothermal fluids occurred around xenoliths and at the very base of the mineralized zone within the footwall, however, the overall lack of secondary alteration coupled with the volatile-poor nature of the gneissic footwall have allowed the preservation of what may be the most ‘primary’ style of Platreef mineralization. The lack of PGM inclusions within early liquidus phases suggests very early sulfur saturation in the Platreef, lending support to theories involving S saturation occurring prior to intrusion of the Platreef, possibly within a staging chamber.  相似文献   

9.
The Merensky Reef and the underlying Upper Group 2 chromitite layer, in the Critical Zone of the Bushveld Complex, host much of the world’s platinum-group element (PGE) mineralization. The genesis is still debated. A number of features of the Merensky Reef are not consistent with the hypotheses involving mixing of magmas. Uniform mixing between two magmas over an area of 150 by 300 km and a thickness of 3–30 km seems implausible. The Merensky Reef occurs at the interval where Main Zone magma is added, but the relative proportions of the PGE in the Merensky Reef are comparable to those of the Critical Zone magma. Mineral and isotopic evidence in certain profiles through the Merensky Unit suggest either mixing of minerals, not magmas, and in one case, the lack of any chemical evidence for the presence of the second magma. The absence of cumulus sulphides immediately above the Merensky Reef is not predicted by this model. An alternative model is proposed here that depends upon pressure changes, not chemical processes, to produce the mineralization in chromite-rich and sulphide-rich reefs. Magma was added at these levels, but did not mix. This addition caused a temporary increase in the pressure in the extant Critical Zone magma. Immiscible sulphide liquid and/or chromite formed. Sinking sulphide liquid and/or chromite scavenged PGE (as clusters, nanoparticles or platinum-group minerals) from the magma and accumulated at the floor. Rupturing of the roof resulted in a pressure decrease and a return to sulphur-undersaturation of the magma.  相似文献   

10.
Summary The Jinchuan deposit is a platinum group element (PGE)-rich sulfide deposit in China. Drilling and surface sampling show that three categories of platinum group element (PGE) mineralization occur; type I formed at magmatic temperatures, type II occurs in hydrothermally altered zones of the intrusion, and type III in sheared dunite and lherzolite. All ore types were analyzed for Os, Ir, Ru, Rh, Pd, Pt and Au, as well as for Cu, Ni, Co and S. Type I ore has (Pt + Pd)/(Os + Ir + Ru + Rh) ratios of <7 and relatively flat chondrite-normalized noble metal patterns; the platinum group minerals (PGM) are dominated by sperrylite and moncheite associated with chalcopyrite, pyrrhotite and pentlandite. Type II has (Pt + Pd)/(Os + Ir + Ru + Rh) ratios from 40 to 330 and noble metal distribution patterns with a positive slope; the most common PGM are sperrylite and Pd bismuthotelluride phases concentrated mostly at the margins of base metal sulfides. Type III ores have the highest (Pt + Pd)/(Os + Ir + Ru + Rh) ratios from 240 to 710; the most abundant PGM are sperrylite and phases of the Pt–Pd–Te–Bi–As–Cl system. It is concluded that the Jinchuan deposit formed as a result of primary magmatic crystallization followed by hydrothermal remobilization, transport, and deposition of the PGE.  相似文献   

11.
The Sopcheozero chromite deposit is hosted in dunite of the Monchegorsk layered intrusion as a sheetlike body of disseminated ore with a chromite grade varying from 20 to 60%. The total PGM content in the ore attains 0.5–0.8 g/t. The composition of host rocks varies from plagioclase peridotite to dunite, but PGM were found only in chromite-bearing dunite. PGM inclusions were detected in the interstices of chromite and olivine grains and within grains themselves. The data obtained confirm the known tendency toward variation in PGM composition with increasing sulfur and light PGE contents in the residual magmatic melt. The first particles of refractory Ir, Os, and Ru intermetallides appeared at the final stage of olivine crystallization, whereas laurite (Ru,Os,Ir)S2 and pentlandite (Fe,Ni)9S8 were formed at the final stage of chromite crystallization, when the sulfur concentration in the residual melt became sufficient.  相似文献   

12.
During partial melting in the earth’s mantle, the noble metals become fractionated. Os, Ir, Ru, and Rh tend to remain in the mantle residue whereas Pt, Pd, and Re behave mildly incompatible and are sequestered to the silicate melt. There is consensus that sulfide plays a role in the fractionation process; the major noble metal repository in the mantle is sulfide, and most primitive mantle melts are sulfide-saturated when they leave their mantle sources. However, with sulfide–silicate partitioning, the fractionation cannot be modeled properly. All sulfide–silicate partition coefficients are so extremely high that a silicate melt segregating from a mantle source with residual sulfide should be largely platinum-group elements free. We offer a physical alternative to sulfide–silicate chemical partitioning and provide a mechanism of generating a noble metal-rich melt from a sulfide-saturated source: Because sulfide is at least partially molten at asthenospheric temperature, it will behave physically incompatible during melt segregation, and a silicate melt segregating from a mantle residue will entrain molten residual sulfide in suspension and incorporate it in the basaltic pool melt. The noble metal abundances of a basalt then become independent of sulfide–silicate chemical partitioning. They reflect the noble metal abundances in the drained sulfide fraction as well as the total amount of sulfide entrained. Contrary to convention, we suggest that a fertile, sulfide-rich mantle source has more potential to generate a noble metal-enriched basaltic melt than a refractory mantle source depleted by previous partial melting events.  相似文献   

13.
It is of great importance to understand the origin of UG2 chromitite reefs and reasons why some chromitite reefs contain relatively high contents of platinum group elements(PGEs: Os, Ir, Ru, Rh,Pt, Pd) or highly siderophile elements(HSEs: Au, Re, PGE). This paper documents sulphide-silicate assemblages enclosed in chromite grains from the UG2 chromitite. These are formed as a result of crystallisation of sulphide and silicate melts that are trapped during chromite crystallisation. The inclusions display negative crystal shapes ranging from several micrometres to 100 μm in size.Interstitial sulphide assemblages lack pyrrhotite and consist of chalcopyrite, pentlandite and some pyrite. The electron microprobe data of these sulphides show that the pentlandite grains present in some of the sulphide inclusions have a significantly higher iron(Fe) and lower nickel(Ni) content than the pentlandite in the rock matrix. Pyrite and chalcopyrite show no difference. The contrast in composition between inter-cumulus plagioclase(An_(68)) and plagioclase enclosed in chromite(An_(13)), as well as the presence of quartz, is consistent with the existence of a felsic melt at the time of chromite saturation.Detailed studies of HSE distribution in the sulphides and chromite were conducted by LA-ICP-MS(laser ablation-inductively coupled plasma-mass spectrometry), which showed the following.(Ⅰ) Chromite contained no detectable HSE in solid solution.(Ⅱ) HSE distribution in sulphide assemblages interstitial to chromite was variable. In general, Pd, Rh, Ru and Ir occurred dominantly in pentlandite, whereas Os,Pt and Au were detected only in matrix sulphide grains and were clearly associated with Bi and Te.(Ⅲ)In the sulphide inclusions,(a) pyrrhotite did not contain any significant amount of HSE,(b) chalcopyrite contained only some Rh compared to the other sulphides,(c) pentlandite was the main host for Pd,(d)pyrite contained most of the Ru, Os, Ir and Re,(e) Pt and Rh were closely associated with Bi forming a continuous rim between pyrite and pentlandite and(f) no Au was detected. These results show that the use of ArF excimer laser to produce high-resolution trace element maps provides information that cannot be obtained by conventional(spot) LA-ICP-MS analysis or trace element maps that use relatively large beam diameters.  相似文献   

14.
The Mayarí-Baracoa ophiolitic belt in eastern Cuba hosts abundant chromite deposits of historical economic importance. Among these deposits, the chemistry of chromite ore is very variable, ranging from high Al (Cr#=0.43–0.55) to high Cr (Cr#=0.60–0.83) compositions. Platinum-group element (PGE) contents are also variable (from 33 ppb to 1.88 ppm) and correlate positively with the Cr# of the ore. Bulk PGE abundances correlate negatively with the Pd/Ir ratio showing that chromite concentrates mainly Os, Ir and Ru which gives rise to the characteristic negatively sloped, chrondrite-normalized PGE patterns in many chromitites. This is consistent with the mineralogy of PGEs, which is dominated by members of the laurite–erlichmanite solid solution series (RuS2–OsS2), with minor amounts of irarsite (IrAsS), Os–Ir alloys, Ru–Os–Ir–Fe–Ni alloys, Ni–Rh–As, and sulfides of Ir, Os, Rh, Cu, Ni, and/or Pd. Measured 187Os/188Os ratios (from 0.1304 to 0.1230) are among the lower values reported for podiform chromitites. The 187Os/188Os ratios decrease with increasing whole-rock PGE contents and Cr# of chromite. Furthermore, γOs values of all but one of the chromitite samples are negative indicating a subchondiritc mantle source. γOs decrease with increasing bulk Os content and decreasing 187Re/188Os ratios. These mineralogical and geochemical features are interpreted in terms of chromite crystallization from melts varying in composition from back-arc basalts (Al-rich chromite) to boninites (Cr-rich chromite) in a suprasubduction zone setting. Chromite crystallization occurs as a consequence of magma mixing and assimilation of preexisting gabbro sills at the mantle–crust transition zone. Cr#, PGE abundances, and bulk Os isotopic composition of chromitites are determined by the combined effects of mantle source heterogeneity, the degree of partial melting, the extent of melt-rock interactions, and the local sulfur fugacity. Small-scale (μm to cm) chemical and isotopic heterogeneities in the platinum-group minerals are controlled by the mechanism(s) of chromite crystallization in a heterogeneous environment created by the turbulent regime generated by successive inputs of different batches of melt.  相似文献   

15.
The Platreef unit of the northern Bushveld Complex comprises a diverse package of pyroxenites, peridotites and mafic lithologies with associated Ni–Cu–platinum-group element (PGE) mineralisation. Base metal sulphides (BMS) are generally more abundant in the Platreef than in other Bushveld PGE deposits, such as the Merensky Reef and the UG2 chromitite, but the Platreef, though thicker, has lower overall PGE grades. Despite a commonly held belief that PGEs are closely associated with sulphide mineralisation, a detailed study by laser ablation ICP-MS (LA-ICP-MS) on a core through the Platreef at Turfspruit suggests that this is not strictly the case. While a significant proportion of the Pd, Os and Ir were found to be hosted by BMS, Pt, irrespective of its whole-rock concentration, was not. Only at the top of the Platreef is Pt directly associated with sulphide minerals where Pt–Pd–(±Sb)–Te–Bi-bearing inclusions were detected in the chalcopyrite portions of large composite sulphides. In contrast, Pd, Os, and Ir occur in solid solution and as discrete inclusions within the BMS throughout the core. For Os and Ir, this is usually in the form of Os–Ir alloys, whereas Pd forms a range of Pd–Te–Bi–(Sb) phases. Scanning electron microscope observations on samples from the top of the core revealed the presence of ≤0.2-mm-long (PtPd)2(Sb,Te,Bi)2 michenerite–maslovite laths within the chalcopyrite portions of large composite sulphides. Additional Pt-bearing minerals, including sperrylite and geversite, and a number of Pd(–Te–Bi–Sb) minerals were observed in, or close to, the alteration rims of these sulphides. This textural association was observed throughout the core. Similar platinum-group minerals (PGMs) were observed within the felsic assemblages composed of quartz, plagioclase, alkali feldspar and clinopyroxene produced by late-stage felsic melts that permeated the Platreef. Many of these PGMs occur a significant distance away from any sulphide minerals. We believe these features can all be linked to the introduction of As, Sb, Te and Bi into the magmatic system through assimilation of sedimentary footwall rocks and xenoliths. Where the degree of contamination was high, all of the Pt and some of the Pd formed As- and Sb-bearing PGM that were expelled to the edges of the sulphide droplets. Many of these were redistributed where they came into contact with late-stage felsic melts. Where no felsic melt interactions occurred, the expelled Pt- and Pd-arsenides and antimonides remained along the margins of the sulphides. At the top of the Platreef, where the effects of contamination were relatively low, some of the Pt remained within the sulphide liquids. On cooling, this formed the micro-inclusions and blade-like laths of Pt–Pd–(Sb)–Bi–Te in the chalcopyrite.  相似文献   

16.
Kilauea Iki lava lake formed during the 1959 summit eruption of Kilauea Volcano, then crystallized and differentiated over a period of 35 years. It offers an opportunity to evaluate the fractionation behavior of trace elements in a uniquely well-documented basaltic system. A suite of 14 core samples recovered from 1967 to 1981 has been analyzed for 5 platinum-group elements (PGE: Ir, Os, Ru, Pt, Pd), plus Re. These samples have MgO ranging from 2.4 to 26.9 wt.%, with temperatures prior to quench ranging from 1140 °C to ambient (110 °C). Five eruption samples were also analyzed.Osmium and Ru concentrations vary by nearly four orders of magnitude (0.0006–1.40 ppb for Os and 0.0006–2.01 ppb for Ru) and are positively correlated with MgO content. These elements behaved compatibly during crystallization, mostly likely being concentrated in trace phases (alloy or sulfide) present in olivine phenocrysts or included chromite. Iridium also correlates positively with MgO, although less strongly than Os and Ru. The somewhat poorer correlation for Ir, compared with Os and Ru, may reflect variable loss of Ir as volatile IrF6 in some of the most magnesian samples.Rhenium is negatively correlated with MgO, behaving as an incompatible trace element. Its behavior in the lava lake is complicated by apparent volatile loss of Re, as suggested by a decrease in Re concentration with time of quenching for lake samples vs. eruption samples. Platinum and Pd concentrations are negatively, albeit weakly, correlated with MgO, so these elements were modestly incompatible during crystallization of the major silicate phases. Palladium contents peaked before precipitation of immiscible sulfide liquid, however, and decline sharply in the most differentiated samples. In contrast, Pt appears to have been unaffected by sulfide precipitation. Microprobe data confirm that Pd entered the sulfide liquid before Re, and that Pt is not strongly chalcophile in this system. Occasional high Pt values in both eruption and lava lake samples suggest the presence of unevenly distributed, unidentified Pt-rich trace phases in some Kilauea Iki materials.Estimated mineral (olivine + chromite)/melt D values for Os, Ir, Ru and Pt for equilibrium crystallization for samples from ~ 7 to 27 wt.% MgO are 26, 8.2, 19 and 0.55, respectively. These Os, Ir and Ru estimates are somewhat higher than previous estimates for similar systems. If fractional crystallization is instead assumed, D values are much more similar.Results confirm many prior observations in other mafic systems that olivine (together with included phases) has a major effect on absolute and relative abundances of Re and the PGE. The relatively linear correlations between these elements and MgO potentially permit accurate estimation of the concentrations of these elements in the primary melts of comparable systems, especially in instances where the MgO content of the primary melt is well constrained.  相似文献   

17.
Fourteen peridotite xenoliths collected in the Massif Central neogene volcanic province (France) have been analyzed for platinum-group elements (PGE), Au, Cu, S, and Se. Their total PGE contents range between 3 and 30 ppb and their PGE relative abundances from 0.01 to 0.001 × CI-chondrites, respectively. Positive correlations between total PGE contents and Se suggest that all of the PGE are hosted mainly in base metal sulfides (monosulfide solid solution [Mss], pentlandite, and Cu-rich sulfides [chalcopyrite/isocubanite]). Laser ablation microprobe-inductively coupled plasma mass spectrometry analyses support this conclusion while suggesting that, as observed in experiments on the Cu-Fe-Ni-S system, the Mss preferentially accommodate refractory PGEs (Os, Ir, Ru, and Rh) and Cu-rich sulfides concentrate Pd and Au. Poikiloblastic peridotites pervasively percolated by large silicate melt fractions at high temperature (1200°C) display the lowest Se (<2.3 ppb) and the lowest PGE contents (0.001 × CI-chondrites). In these rocks, the total PGE budget inherited from the primitive mantle was reduced by 80%, probably because intergranular sulfides were completely removed by the silicate melt. In contrast, protogranular peridotites metasomatized by small fractions of volatile-rich melts are enriched in Pt, Pd, and Au and display suprachondritic Pd/Ir ratios (1.9). The palladium-group PGE (PPGE) enrichment is consistent with precipitation of Cu-Ni-rich sulfides from the metasomatic melts. In spite of strong light rare earth element (LREE) enrichments (Ce/YbN < 10), the three harzburgites analyzed still display chondrite-normalized PGE patterns typical of partial melting residues, i.e., depleted in Pd and Pt relative to Ir and Ru. Likewise, coarse-granular lherzolites, a common rock type in Massif Central xenoliths, display Pd/Ir, Ru/Ir, Rh/Ir, and Pt/Ir within the 15% uncertainty range of chondritic meteorites. These rocks do not contradict the late-veneer hypothesis that ascribes the PGE budget of the Earth to a late-accreting chondritic component; however, speculations about this component from the Pd/Ir and Pt/Ir ratios of basalt-borne xenoliths may be premature.  相似文献   

18.
The contents of the platinum-group elements (PGEs: Os, Ir, Ru, Rh, Pt, Pd) in the Abulangdang ultramafic intrusion have been determined using ICP-MS after nickel sulfide fire assay preconcentration. Different samples show significant differences in absolute PGE abundance. They display a pronounced negative incline in mantle-normalized patterns which are characterized by strong enrichment in IPGEs (Os, Ir, Ru) and depleting to slight enrichment in PPGEs (Rh, Pt, Pd). The characteristics of PGE distribution in the Abulangdang rocks are due to the combined action of sulfide and non-sulfide (spinel/chromite or alloy or micro-granular aggregation of metals). In comparison with the mafic-ultramafic rocks which host Ni-Cu-PGE deposits in the Emeishan Large Igneous Province (ELIP), it is assumed that the Abulangdang ultramafic intrusion may be the product of early-stage magma activity in the ELIP.  相似文献   

19.
The Merensky Reef hosts one of the largest PGE resources globally.It has been exploited for nearly 100 years, yet its origin remains unresolved.In the present study, we characterised eight samples of the reef at four localities in the western Bushveld Complex using micro-X-ray fluorescence and field emission scanning electron microscopy.Our results indicate that the Merensky Reef formed through a range of diverse processes.Textures exhibited by chromite grains at the base of the reef are consistent with supercooling and in situ growth.The local thickening of the Merensky chromitite layers within troughs in the floor rocks is most readily explained by granular flow.Annealing and deformation textures in pyroxenes of the Merensky pegmatoid bear testament to recrystallisation and deformation.The footwall rocks to the reef contain disseminations of PGE rich sulphides as well as olivine grains with peritectic reaction rims along their upper margins suggesting reactive downward flow of silicate and sulphide melts.Olivine-hosted melt inclusions containing Cl-rich apatite, sodic plagioclase, and phlogopite suggest the presence of highly evolved, volatile-rich melts.Pervasive reverse zonation of cumulus plagioclase in the footwall of the reef indicates dissolution or partial melting of plagioclase, possibly triggered by flux of heat, acidic fluids, or hydrous melt.Together, these data suggest that the reef formed through a combination of magmatic, hydrodynamic and hydromagmatic processes.  相似文献   

20.
铂族元素矿物共生组合(英文)   总被引:1,自引:2,他引:1  
CHEN Yuan 《现代地质》2001,15(2):131-142
由于铂族元素能有效地降低汽车尾气的污染 ,其需求量日益增加 ,对铂族元素矿床的寻找已是当务之急。着重从矿物矿床学角度对铂族元素的矿物共生特点进行了探讨。铂族元素可呈独立矿床产出 ,主要产于基性超基性层状侵入体、蛇绿岩套及阿拉斯加式侵入体中。铂族元素也伴生于铜镍矿床中 ,该类铜镍矿床主要与苏长岩侵入体、溢流玄武岩及科马提岩有关。产于基性超基性层状侵入体中的铂族矿物有铂钯硫化物、铂铁合金、钌硫化物、铑硫化物、铂钯碲化物、钯砷化物及钯的合金。这些铂族矿物可与硫化物矿物共生 ,也可与硅酸盐矿物共生 ,还可与铬铁矿及其他氧化物矿物共生。产于蛇绿岩套中的铂族矿物主要是钌铱锇的矿物 ,而铂钯铑的矿物则较少出现 ,这些铂族矿物可呈合金、硫化物、硫砷化物以及砷化物 4种形式出现。产于阿拉斯加式侵入体中的铂族矿物主要有铂铁合金、锑铂矿、硫铂矿、砷铂矿、硫锇矿及马兰矿等少数几种 ,其中铂铁合金与铬铁矿及与其同时结晶的高温硅酸盐矿物共生 ,而其他的铂族矿物则与后来的变质作用及蛇纹岩化作用中形成的多金属硫化物及砷化物共生。产于铜镍矿床中的铂族矿物主要是铂和钯的矿物。产于基性超基性层状侵入体、蛇绿岩套及阿拉斯加式侵入体中的铂族矿物的共同特点是它们均与铬铁矿?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号