首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dynamical stability of a triple system composed of a binary or planetary system and a bound third body moving on a orbit inclined to the system is discussed in terms of Hill stability for the full three-body problem. The situation arises in the determination of stability of triple star systems against disruption and component exchange and the determination of stability of planetary systems against disruption, component exchange or capture. It is found that increasing the inclination of the third body decreases the Hill regions of stability. Increasing the eccentricity of the binary also produces similar effects. These type of changes make exchange or disruption of the component masses more likely. Increasing the eccentricity of the third body initially increases the stability of the system then decreases stability as the eccentricity reaches higher values.The Hill stability criterion is applied to extrasolar planetary systems to determine the critical distances at which planets of the same mass as the observed extrasolar planet moving on a circular orbit could remain on a stable orbit. It was found that these distances were sufficiently short suggesting that the presence of further as yet unobserved stable extrasolar planets in observed systems was very likely.  相似文献   

2.
The stability of magnetic fields in the solar tachocline is investigated. We present stability limits for higher azimuthal wave numbers and results on the dependence of the stability on the location of toroidal magnetic fields in latitude. While the dependence of the wave number with the largest growth rate on the magnetic field strength and the magnetic Prandtl number is small, the dependence on the magnetic Reynolds number Rm indicates that lowest azimuthal modes are excited for very high Rm. Upon varying the latitudinal position of the magnetic field belts, we find slightly lower stability limits for high latitudes, and very large stability limits at latitudes below 10°, with little dependence on latitude in between. An increase of the maximum possible field was achieved by adding a poloidal field. The upper limit for the toroidal field which can be stored in the radiative tachocline is then 1000 G, compared to about 100 G for a purely toroidal field as was found in an earlier work. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The equilibrium points of the relativistic restricted three-body problem are considered. The stability of the triangular points is determined and contrary to recent results of other authors a region of linear stability in the parameter space is obtained. The positions of the collinear points are approximated by series by expansions and their stability is similarly determined. It is found that these are always unstable.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

4.
The stability of the rotational motion of artificial satellites is analyzed considering perturbations due to the gravity gradient torque, using a canonical formulation, and Andoyer’s variables to describe the rotational motion. The stability criteria employed requires the reduction of the Hamiltonian to a normal form around the stable equilibrium points. These points are determined through a numerical study of the Hamilton’s equations of motion and linear study of their stability. Subsequently a canonical linear transformation is used to diagonalize the matrix associated to the linear part of the system resulting in a normalized quadratic Hamiltonian. A semi-analytic process of normalization based on Lie–Hori algorithm is applied to obtain the Hamiltonian normalized up to the fourth order. Lyapunov stability of the equilibrium point is performed using Kovalev and Savchenko’s theorem. This semi-analytical approach was applied considering some data sets of hypothetical satellites, and only a few cases of stable motion were observed. This work can directly be useful for the satellite maintenance under the attitude stability requirements scenario.  相似文献   

5.
This paper deals with the stability analysis of the triangular equilibrium points for the generalized problem of the photogravitational restricted three body where both the primaries are radiating. The problem is generalized in the sense that the eccentricity of the orbits and the oblateness due to both the primaries and infinitesimal are considered. The stability in the case of linear resonance are analyzed based on the Floquet’s theory for finding the characteristic exponent for a system containing periodic coefficients. It was found that the critical value of μ for the stability boundary for parametric excitation is dependent on the oblateness of the primaries as well as infinitesimal.  相似文献   

6.
Relative equilibria occur in a wide variety of physical applications, including celestial mechanics, particle accelerators, plasma physics, and atomic physics. We derive sufficient conditions for Lyapunov stability of circular orbits in arbitrary axisymmetric gravitational (electrostatic) and magnetic fields, including the effects of local mass (charge) and current density. Particularly simple stability conditions are derived for source‐free regions, where the gravitational field is harmonic (∇2U = 0) or the magnetic field irrotational (∇ × B = 0). In either case the resulting stability conditions can be expressed geometrically (coordinate‐free) in terms of dimensionless stability indices. Stability bounds are calculated for several examples, including the problem of two fixed centers, the J2 planetary model, galactic disks, and a toroidal quadrupole magnetic field. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
A method is developed to study the stability of periodic motions of the three-body problem in a rotating frame of reference, based on the notion of surface of section. The method is linear and involves the computation of a 4×4 variational matrix by integrating numerically the differential equations for time intervals of the order of a period. Several properties of this matrix are proved and also it is shown that for a symmetric periodic motion it can be computed by integrating for half the period only.This linear stability analysis is used to study the stability of a family of periodic motions of three bodies with equal masses, in a rotating frame of reference. This family represents motion such that two bodies revolve around each other and the third body revolves around this binary system in the same direction to a distance which varies along the members of the family. It was found that a large part of the family, corresponding to the case where the distance of the third body from the binary system is larger than the dimensions of the binary system, represents stable motion. The nonlinear effects to the linear stability analysis are studied by computing the intersections of several perturbed orbits with the surface of sectiony 3=0. In some cases more than 1000 intersections are computed. These numerical results indicate that linear stability implies stability to all orders, and this is true for quite large perturbations.  相似文献   

8.
This paper provides a study on the connection between Hill stability and weak stability in the framework of the spatial elliptic restricted three-body problem. We determine a necessary condition for weak stability by giving an upper and a lower bound of qualitative measure of the Hill stability. The sufficient condition for weak stability and the symmetry of weak stable regions around the planets of the Solar System is also investigated.  相似文献   

9.
The problem of stability of the Lagrangian equilibrium point of the circular restricted problem of three bodies is investigated in the light of Nekhoroshev-like theory. Looking for stability over a time interval of the order of the estimated age of the universe, we find a physically relevant stability region. An application of the method to the Sun-Jupiter and the Earth-Moon systems is made. Moreover, we try to compare the size of our stability region with that of the region where the Trojan asteroids are actually found; the result in such case is negative, thus leaving open the problem of the stability of these asteroids.  相似文献   

10.
Following the work of Bernsteinet al. (1958), Frieman and Rotenberg (1960) and Unno (1968) a formalism is developed which allows to examine the adiabatic stability of a perfectly conducting, rotating and self-gravitating plasma in non-steady equilibrium. Using this method the stability of a plasma in a dynamical phase of its evolution can be predicted. Global stability investigations are carried out which are based on a variation of the total energy of the system and, in general, lead to sufficient conditions for stability. The formalism is applied to the stability of a horizontal magnetic field in a medium stratified by a gravitational field.  相似文献   

11.
The stability parameters developed and discussed in the first paper of this series (Walkeret al., 1980) are used to determine empirically, by means of numerical integration experiment, regions of stability for corotational, coplanar, hierarchical three-body systems. The initially circular case of these systems is studied: the components of the close binary are taken to move initially in circular orbits with respect to their common mass-centre, the third mass initially moving in a circular orbit with respect to the same mass-centre such that its orbit lies wholly outside those of the former two masses. The stability of these systems is then studied by reference to the empirical stability parameters and the initial ratio of the semi-major axes of the orbit of the close binary to that of the third mass about the binary's mass-centre, which is less than unity. For given values of the stability parameters it is determined how the stability of a system is affected by changes in the ratio of the semi-major axes. It is found that an upper limit to this ratio exists which determines the region of stability for such systems. It is also found possible, in the region of instability, to predict how unstable a system will be i.e. crudely speaking, the number of orbits it may be expected to execute before some gross instability sets in. The effect commensurabilities in mean motion have on the stability of these systems is also considered. It is generally found that these commensurabilities enhance the stability of these systems. The predictive powers of the method are then tested: using many test cases it is seen how accurately the stability or instability of a system may be predicted.  相似文献   

12.
The non-linear stability of the triangular libration points of the restricted three-body problem is studied under the presence of third and fourth order resonance's, when the more massive primary is an oblate spheroid. In this study Markeev's theorem are utilised with the help of KAM theorem. It is found that the stability of the triangular libration points are unstable in the third order resonance case and stable in the fourth order resonance case, for all the values of oblateness factor A1. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Galileo Probe Atmospheric Structure Investigation (ASI) pressure and temperature sensor data acquired during the parachute descent phase have been used to derive the static stability structure of Jupiter's troposphere at pressure levels of 0.5-22 bars using three techniques. The first approach utilizes both the p-sensor and T-sensor data, but since the p-sensor's zero offset was significantly affected by the thermal anomaly in the probe, two other approaches using only T-sensor data have also been developed. By making the physically reasonable assumptions of equilibrium descent for the probe and hydrostatic balance of the atmosphere, an algorithm for deriving the background static stability from T-sensor measurements alone is developed. Regions with static stability 0.1-0.2 K km−1 are found at 0.5-1.7 bars, 3-8.5 bars, and 14-20 bars. Between these layers, regions of weaker static stability are present. Mean molecular weight gradients due to the vertical variation of water vapor abundance near the 11-bar pressure level appear to stabilize the atmosphere at this level. Oscillatory structures with vertical wavelength ∼15-30 km and amplitude ∼0.1-0.2 K are observed in the T-sensor data. For pressure <2 bars, these eddies are well above the noise level of the measurements and are consistent with the predictions of linear gravity wave theory for a wave with horizontal phase speed cx=160 m s−1 with respect to System III propagating through the static stability derived from the T-sensor data alone. They provide quantitative confirmation of the static stability derived from T-sensor data in the troposphere where p<2 bars. The observed static stability structure shows an inverse correlation with the regions of wind shear observed by the Doppler Wind Experiment: regions of highest shear in the horizontal wind appear to be associated with regions of lowest static stability. The particulate population detected by other experiments on the probe shows some correlation with the uppermost layer of static stability, suggesting enhanced solar energy deposition at these levels may play a role in producing the positive static stability.  相似文献   

14.
Stars usually form as members of binary or multiple star systems, and it is likely that the Sun was no exception. The mass and position of possible past companions of the Sun is determined by considering the orbital stability of the Solar System. This is achieved by considering the stability of critical three-body subsets comprising the sun-planet-companion star which must be stable if the Solar System is to remain stable as a whole.  相似文献   

15.
The dynamical stability of a bound triple system composed of a small binary or minor planetary system moving on a orbit inclined to a central third body is discussed in terms of Hill stability for the full three-body problem. The situation arises in the determination of stability of triple star systems against disruption and component exchange and the determination of stability of extrasolar planetary systems and minor planetary systems against disruption, component exchange or capture. The Hill stability criterion is applied to triple star systems and extrasolar planetary systems, the Sun-Earth-Moon system and Kuiper Belt binary systems to determine the critical distances for stable orbits. It is found that increasing the inclination of the third body decreases the Hill regions of stability. Increasing the eccentricity of the binary also produces similar effects.These type of changes make exchange or disruption of the component masses more likely. Increasing the eccentricity of the binary orbit relative to the third body substantially decreases stability regions as the eccentricity reaches higher values. The Kuiper Belt binaries were found to be stable if they move on circular orbits. Taking into account the eccentricity, it is less clear that all the systems are stable.  相似文献   

16.
In this paper we consider the problem of motion of an infinitesimal point mass in the gravity field of an uniformly rotating dumb-bell. The aim of our study is to investigate Liapunov stability of Lagrangian libration points of this problem. We analyze the stability of libration points in the whole range of parameters ω, μ of the problem. In particular, we consider all resonance cases when the order of resonance is not greater than five. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
We established a criterion for the Hill stability of motions in the problem of many spherical bodies with a spherical density distribution. The region of Hill stability was determined. The sizes of this region are comparable to the total volume of all of the bodies in the system, which sharply increases the probability of mutual collisions. This result may be considered as a confirmation that a supermassive core can be formed at the center of a globular star cluster. The motions in the n-body problem are shown to be unstable according to Hill.  相似文献   

18.
The linear stability of the triangular equilibrium points in the photogravitational elliptic restricted problem is examined and the stability regions are determined in the space of the parameters of mass, eccentricity, and radiation pressure. It is found that radiation pressure of the larger body for solar system cases exerts only a small quantitative influence on the stability regions.  相似文献   

19.
Dynamical stability of a static axisymmetrical magnetic star with respect to high-order modes of oscillation is investigated by means of the energy method, neglecting the Eulerian perturbation of gravity. The magnetic field is assumed to be continuous across the surface of the star and its first-order spatial derivatives, but it may have both toroidal and poloidal components.The second variation of the potential energy is written in a way which, in the case of apurely toroidal field, and for axisymmetrical and non-axisymmetrical modes, yields Tayler's local stability criteria which are necessary and sufficient conditions for convective stability, and in the case of ageneral field yields a single local stability criterion, which is a sufficient condition for convective stability.  相似文献   

20.
In this paper we have examined the stability of triangular libration points in the restricted problem of three bodies when the bigger primary is an oblate spheroid. Here we followed the time limit and computational process of Tuckness (Celest. Mech. Dyn. Mech. 61, 1–19, 1995) on the stability criteria given by McKenzie and Szebehely (Celest. Mech. 23, 223–229, 1981). In this study it was found that in comparison to other studies the value of the critical mass μ c has been reduced due to oblateness of the bigger primary, i.e. the range of stability of the equilateral triangular libration points reduced with the increase of the oblateness parameter I and hence the order of commensurability was increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号