首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 330 毫秒
1.
The statistical technique known as analysis of variance is applied to a large set of European strong-motion data to investigate whether strong ground motions show a regional dependence. This question is important when selecting strong-motion records for the derivation of ground motion prediction equations and also when choosing strong-motion records from one geographical region for design purposes in another. Five regions with much strong-motion data (the Caucasus region, central Italy, Friuli, Greece and south Iceland) are investigated here. For the magnitude and distance range where there are overlapping data from the five areas (2.50 Ms 5.50, 0 d 35 km) and consequently analysis of variance can be performed, there is little evidence for a regional dependence of ground motions. There is a lack of data from moderate and large magnitude earthquakes (Ms > 5.5) so analysis of variance cannot be performed there. Since there is uncertainty regarding scaling ground motions from small to large magnitudes whether ground motions from large earthquakes are significantly different in different parts of Europe is not known. Analysis of variance has the ability to complement other techniques for the assessment of regional dependence of ground motions.  相似文献   

2.
The recent seismicity catalogue of metropolitan France Sismicité Instrumentale de l’Hexagone (SI-Hex) covers the period 1962–2009. It is the outcome of a multipartner project conducted between 2010 and 2013. In this catalogue, moment magnitudes (M w) are mainly determined from short-period velocimetric records, the same records as those used by the Laboratoire de Détection Géophysique (LDG) for issuing local magnitudes (M L) since 1962. Two distinct procedures are used, whether M L-LDG is larger or smaller than 4. For M L-LDG >4, M w is computed by fitting the coda-wave amplitude on the raw records. Station corrections and regional properties of coda-wave attenuation are taken into account in the computations. For M L-LDG ≤4, M w is converted from M L-LDG through linear regression rules. In the smallest magnitude range M L-LDG <3.1, special attention is paid to the non-unity slope of the relation between the local magnitudes and M w. All M w determined during the SI-Hex project is calibrated according to reference M w of recent events. As for some small events, no M L-LDG has been determined; local magnitudes issued by other French networks or LDG duration magnitude (M D) are first converted into M L-LDG before applying the conversion rules. This paper shows how the different sources of information and the different magnitude ranges are combined in order to determine an unbiased set of M w for the whole 38,027 events of the catalogue.  相似文献   

3.
The paper presents the current state of magnitude estimation for Koyna earthquakes exceeding magnitude 3.0. We estimate coda duration magnitude from analogue seismograms recorded on the short period vertical (SPZ) seismometer at Hyderabad seismic observatory HYB and determine moment magnitude using very broad-band (VBB) data from the Geoscope station (HYB)and short period digital data from the local seismic network of NationalGeophysical Research Institute (NGRI) around the Koyna and Warna reservoirs.Firstly, the seismograms of 97 Koyna earthquakes exceeding magnitude 4.0 havebeen used to establish a new empirical coda duration magnitude scale which includes the higher order terms of log10, where is the coda length in seconds. Four background noise levels (1, 2, 6 and 10 mm) areconsidered to estimate the coda duration. We found that the duration magnitudes for 1 mm background level are more stable than those for 2, 6 and 10 mm. The new coda duration magnitude (Mdnew) scale, for 1 mmlevel, is:Mdnew = –0.594 + 2.04 log10 – 0.0435 (log10)2The estimated Mdnew are compatible with the reported MS values of the NGRI observatory and the mb values of the United States Geological Survey (USGS). These magnitudes can be obtained within the standard deviation of ± 0.26 units of MS (NGRI). A new relatively homogeneous catalog for Koyna earthquakes of Mdnew 4.0 is obtained. The momentmagnitudes for 34 Koyna-Warna events of Mdnew ranging from 3.0 to 5.4 have been estimated using two techniques. The first utilizes amplitudes of band-pass filtered (between 15 and 30 sec) velocity traces of moderate Koyna-Warna earthquakes of MW} 4.4 to 5.4, we abbreviate the magnitude using MA. The second is based on the S-wave spectrum of short period seismograms of local earthquakes (MW < 3.8). Moment magnitudes estimated by spectral analysis mainly depend on the estimation of event's long-period spectral level and appears to saturate for moderate Koyna-Warnaearthquakes (MW > 3.8). We recommend the use of both techniques whenever possible. The estimated moment magnitudes and Mdnew show an almost linear relationship with a standard deviation of ± 0.05.  相似文献   

4.
Equilibrium water uptake and the sizes of atmospheric aerosol particles have for the first time been determined for high relative humidities, i.e., for humidities above 95 percent, as a function of the particles chemical composition. For that purpose a new treatment of the osmotic coefficient has been developed and experimentally confirmed. It is shown that the equilibrium water uptake and the equilibrium sizes of atmospheric aerosol particles at large relative humidities are significantly dependent on their chemical composition.List of symbols A proportionality factor - a w activity of water in a solution - c p v specific heat of water vapour at constant pressure - c w specific heat of liquid water - f relative humidity - l w specific heat of evaporation of water - M i molar mass of solute speciesi - M s mean molar mass of all the solute species in a solution - M w molar mass of water - m 0 mass of an aerosol particle in dry state - m i mass of solute speciesi - m s mass of solute - m w mass of water taken up by an aerosol particle in equilibrium state - m total molality=number of mols of solute species in 1000 g of water - m i molality of solute speciesi - m k total molality of a pure electrolytek - O(m 2) remaining terms being of the second and of higher powers ofm - p + standard pressure - p total pressure of the gas phase - p pressure within a droplet - p 1,p 2,p 3 coefficients in the expansion of M - p 1i, p2i, p3i specific parameters of ioni - p s saturation vapour pressure - p w water vapour pressure - R w individual gas constant of water - r radius of a droplet - r 0 equivalent volume radius of an aerosol particle in dry state - T temperature - T 0 standard temperature - T 1 temperature of the pure water drop in the osmometer - v w specific volume of pure water - z i valence of ioni - i relativenumber concentration of ioni in a solution - correction term due to the adsorption of ions at liquid-solid interfaces - activity coefficient of solute speciesi in a solution, related to molalities - I bridge current - T temperature difference between solution and pure water drop in the osmometer - exponential mass increase coefficient - w specific chemical potential of water vapour - w specific chemical potential of water - 0 w specific chemical potential of pure water vapour - 0 w specific chemical potential of pure water - 0 density of an aerosol particle in dry state - w density of pure water - surface tension of a droplet - 0 surface tension of pure water, i.e., at infinite dilution of the solute - osmotic coefficient - k osmotic coefficient of a solution of a pure electrolytek - k osmotic coefficient of a solution of a mixed solute - M fugacity coefficient of water vapour - s i=1 i z 2 i This work is part of a Ph.D. thesis carried out at the Meteorological Institute of the Johannes Gutenberg-Universität, Mainz.  相似文献   

5.
A data set of nineteen, mainly shallow, moderate to large earthquakes, which occurred in the Aegean and the surrounding area, has been used to derive empirical relations for kinematic fault parameters. Thus the relations between seismic momentM 0 and magnitudeM s andm b and betweenM 0 andM s and fault dimensionsS andL have been determined. From these relations and theoretical ones it was deduced that earthquakes in the Aegean and the surrounding events, chiefly interplate, are characterized by low average stress drop values. Values of ranging from 1 to 30 bar are consistent with the data. It was also found that, in general terms, most of the data obey the geometrical similarity conditionL=2w, whereL is the fault length measured along the strike andw is its width measured along the dip. For strike-slip faults, however, the conditionL=4w seems to hold.  相似文献   

6.
Geopotential values W of the mean equipotential surfaces representing the mean ocean topography were computed on the basis of four years (1993 - 1996) TOPEX/POSEIDON altimeter data: W = 62 636 854.10m 2 s –2 for the Pacific (P), W = 62 636 858.20m 2 s –2 for the Atlantic (A), W = 62 636 856.28m 2s–2 for the Indian (I) Oceans. The corresponding mean separations between the ocean levels were obtained as follows: A – P = – 42 cm, I– P = – 22 cm, I – A = 20 cm, the rms errors came out at about 0.3 cm. No sea surface topography model was used in the solution.  相似文献   

7.
Using original seismograph records and bulletin data we re-determined theorigin time, location, seismic moment (M0) and magnitudes(MS and Mw) for four earthquakes in the beginning of the20th century. These are two strong earthquakes April 4, 1904 nearKrupnik, Bulgaria (Mw = 6.8, MS = 7.2 respectively), the April 231909 earthquake near Benavente, Portugal (MS = 6.3), and the June14, 1913 earthquake near Gorna Orjahovitza, Bulgaria (MS = 6.3).Twenty-nine traces from original records have been analysed, a largenumber of original station bulletins have been consulted and a consistentmethodology for analysing these early 20th century instrumentalinformation is presented.In spite of a thorough effort in re-assembling and quality control of theoriginal data, large inaccuracies remain in the improved instrumentalepicentre locations and origin times. The seismic moment estimates weobtained (2.3 1018 M0 3.9 1019Nm) are the first ever determined for these events. The magnitudeestimates (6.3 MS 7.2 and 6.2 Mw 7.0) are robust and systematically lower than most of previousestimates for all earthquakes (Gutenberg and Richter, 1954; Christoskovand Grigorova, 1968; Karnik, 1969). For the largest Krupnik event ourestimates agree with those of Abe and Noguchi (1983b) and Pacheco andSykes (1992). The studied earthquakes all occur in moderately seismicactive regions, therefore our results may have significant consequences forhazard estimates in those regions.  相似文献   

8.
We have employed 10 digital records and computed the spectral magnitude and the seismic radiated energy for 18 large earthquakes (M s≥6) occurred in Eur-asian belt during 1986–1989. The nine digital stations (CD-SN) distribute all over China and one in Germany. The spectral magnitudes of various period have different stability among stations. The stability is better for maximum spectral magnitudemi and seismic radiated energyE, their differences among stations are smaller, especially for the stations where the ray path main penetrates the low mantle. But the stability of corner period is usually not good. The relation between seismic radiated energy and seismic moment magnitudeM w is lg (E)=1.5Mw+c, wherec is a constant. The maximum spectral magnitudemi=M w+0.1, it is consistant with theoretical prediction. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 418–426, 1993. This work supported by the Deutsche Forschungsgemeinschaft, Bonn, F. R. Germany. The support is grateful acknowledge.  相似文献   

9.
The various useful source-parameter relations between seismic moment and common use magnitude lg(M 0) andM s,M L,m b; between magnitudesMs andM L,M s andm b,M L andm b; and between magnitudeM s and lg(L) (fault length), lg (W) (fault width), lg(S) (fault area), lg(D) (average dislocation);M L and lg(f c) (corner frequency) have been derived from the scaling law which is based on an “average” two-dimensional faulting model of a rectangular fault. A set of source-parameters can be estimated from only one magnitude by using these relations. The average rupture velocity of the faultV r=2.65 km/s, the total time of ruptureT(s)=0.35L (km) and the average dislocation slip rateD=11.4 m/s are also obtained. There are four strong points to measure earthquake size with the seismic moment magnitudeM w.
  1. The seismic moment magnitude shows the strain and rupture size. It is the best scale for the measurement of earthquake size.
  2. It is a quantity of absolute mechanics, and has clear physical meaning. Any size of earthquake can be measured. There is no saturation. It can be used to quantify both shallow and deep earthquakes on the basis of the waves radiated.
  3. It can link up the previous magnitude scales.
  4. It is a uniform scale of measurement of earthquake size. It is suitable for statistics covering a broad range of magnitudes. So the seismic moment magnitude is a promising magnitude and worth popularization.
  相似文献   

10.
A numerical study has been made of the heat transfer through a fluid layer with recirculating flow. The outer fluid surface was assumed to be spherical, while the inner surface consisted of a sphere concentrically or eccentrically located with respect to the outer spherical surface. The recirculating flow was assumed to be driven by a gas flow creating stress on the fluid's outer surface so that creeping (low Reynolds number) flow developed in its interior. The present study solves the Stokes equation of motion and the convective diffusion equation in bispherical coordinates and presents the streamline and isotherm patterns.Nomenclature a i inner sphere radius - a d outer sphere radius - A 1 defined by equation (5) - A 2 defined by equation (6) - B 1 defined by equation (7) - B 2 defined by equation (8) - c dimensional factor for bispherical coordinates - C constant in equation (4) - d narrowest distance between the two eccentric spheres - E 2 operator defined by equation (1) in spherical coordinates and by equation (21) in bispherical coordinates - G modified vorticity, defined in equation (22) - G * non-dimensional modified vorticity, defined in equation (28) - h metric coefficient of bispherical coordinate system, defined in equation (18) - k w thermal conductivity of water - K 1 defined by equation (9) - K 2 defined by equation (10) - N Re Reynolds number=2a dU/gn - N Pe,h Peclet number=2a dU/ - n integer counter - q heat flux - r radius - r * non-dimensional radius=r/a d - S surface area - t time - t * non-dimensional time=t/a d 2 - T temperature - T o temperature at inner sphere surface - T a temperature at outer sphere surface - T * non-dimensional temperature;=(T–T o)/(Ta–To) - u velocity - u r radial velocity in spherical coordinates - u angular velocity in spherical coordinates - u radial velocity in bispherical coordinates - u angular velocity in bispherical coordinates - U free stream velocity - u r * =u r/U - u * =u /U - u * =u /U - u * =u /U Greek symbols a 1 small displacement - vorticity, defined in equation (17) - * non-dimensional vorticity, defined in equation (27) - radial bispherical coordinates - o bispherical coordinate of inner sphere - a bispherical coordinate of outer sphere - angular coordinate in spherical coordinates - thermal diffusivity - w thermal diffusivity of water - kinematic viscosity - angular bispherical coordinate - spherical coordinate - streamfunction - non-dimensional streamfunction for spherical coordinates, = /(U a d 2 ) - * non-dimensional streamfunction for bispherical coordinates, defined in equation (26)  相似文献   

11.
This article presents equations for the estimation of horizontal strong ground motions caused by shallow crustal earthquakes with magnitudes Mw 5 and distance to the surface projection of the fault less than 100km. These equations were derived by weighted regression analysis, used to remove observed magnitude-dependent variance, on a set of 595 strong-motion records recorded in Europe and the Middle East. Coefficients are included to model the effect of local site effects and faulting mechanism on the observed ground motions. The equations include coefficients to model the observed magnitude-dependent decay rate. The main findings of this study are that: short-period ground motions from small and moderate magnitude earthquakes decay faster than the commonly assumed 1/r, the average effect of differing faulting mechanisms is not large and corresponds to factors between 0.8 (normal and odd) and 1.3 (thrust) with respect to strike-slip motions and that the average long-period amplification caused by soft soil deposits is about 2.6 over those on rock sites. Disappointingly the standard deviations associated with the derived equations are not significantly lower than those found in previous studies.  相似文献   

12.
Summary The maximum changes of magnification were determined for electrodynamic seismographs with standard characteristics and for some experimental long-period seismographs, the constants of which are given in Tab. 1, when the period of the seismometer or galvanometer has a deviation of not more than 5% from the standard value. Under the assumption of control of the other constants of the seismograph, identical amplitude and phase responses with a small change of the absolute magnification of the seismograph may be achieved with characteristicsAII ( 2 >0.2), AIV ( 2 0.4), B ( 2 >0.3) Nos28, 32 and33. This deviation can also be compensated by adjusting the optical distance. The procedure of adjusting the identical characteristics is suitable for systems with which an accurate setting of the period is difficult and for systems with an uncontrollable period, provided their values are within the limits of allowed deviations from the standard constants.  相似文献   

13.
From the events synthesized from the one-dimensional dynamical mass-spring model proposed byBurridge andKnopoff (1967), the relation between rupture length and earthquake momentM is studied for various model parameters. The earthquake moment is defined to be the total displacement of a connected set of mass elements which slide during an event. A parameter stiffness ratios is defined as the ratio of the spring constant between the two mass elements to that between one mass element and the moving plate. The velocity-dependent friction law (including weakening and hardening processes) is taken to control the sliding of a mass element. The distribution of the breaking strengths over the system is considered to be a fractal function. The cases for severals values and different velocity-dependent friction laws with different decreasing ratesr w of the frictional force with sliding velocity are studied numerically. The weakening process of the frictional force from the static one to the dynamic one obviously affects theM– relation. Meanwhile, a rapid weakening process rather than a slow weakening process can result in aM– relation, which is comparable to the observed one. Although an increase in thes value can yield an increase in the upper bound of the value and the number of events with largeM and values, the scaling of theM– relation is not affected by the change of thes value. For the cases in this study, the theoretical –M relations for small events withM<1 are almost in the form: M 1/2, while those for large events withM>1 have a scaling exponent less than but close to 1. In addition, the fractal dimension, the friction drop ratio and the roughness of the distribution of the breaking strengths over the fault surface are the minor parameters influencing the –M relation. A comparison between the theoreticalM– relation and the observed one for strike-slip earthquakes shows that for large events the theoreticalM– relation is quite consistent with the observed one, while for small events there is a one-order difference in the two relations. For the one-dimensional model, the decreasing rate of the dynamic frictional force with velocity is the main factor in affecting the characteristic value of the earthquake moment, at which the scaling of theM– relation changes.  相似文献   

14.
In previous research, trace amplitudes of surface wave maxima recorded by undamped Milne seismographs were used to determine the surface-wave magnitudes Ms of large shallow earthquakes which occurred prior to 1912. For this purpose, the effective gain of these instruments was calibrated by using the surface-wave magnitudes Ms(GR) which were calculated from the unpublished worksheets for Seismicity of the Earth of Gutenberg and Richter. In this paper, the real quality of Ms(GR) is critically re-evaluated by using independent sets of data. It is found that Ms(GR) for the period 1904–1909 is considerably overestimated. The average excess from the real Ms is 0.5 units for 1904–1906, 0.4 for 1907, 0.3 for 1908–1909 and 0.0 for 1910–1912. This overestimation is so systematic and large that the previous results are all redetermined. The average effective gain of Milne instruments is revised to be 21.9; previously, the gain depended on Ms. This revision results in systematic reduction in the previously assigned magnitudes. The revised values of Ms for 264 shallow earthquakes, with Ms=6.8 and over in the period 1897–1912 inclusive, are listed. The present revision is large enough to preclude the possibility of the high activity of large shallow earthquakes around the turn of the century. The present results have a direct effect on all the magnitude catalogues of shallow earthquakes which occurred prior to 1909.  相似文献   

15.
Riassunto L'Autore dimostra che, nel sistema di coordinate polari , , , si possono determinare un numeros di funzioni della sola variabile :Q 1,Q 3, ....Q 2s–1 tali che la sommatoria delleQ 2i–1/2i–1 rappresenti il potenzialeV di un geoide di rotazione. La condizione di armonicità determina ciascunaQ (che si riduce a un polinomio nelle potenze di sen ) a meno di una costante arbitraria; si dispone pertanto dis costanti che servono per soddisfare la natura dellaV sulla superficie del geoide. Come esempio l'Autore ha determinato la gravità sul geoide sferico, confermando i risultati delSomigliana, e su uno sferoide generico dove ha ritrovato la relazione diClairaut.
Summary The Author proofs that, in the system of polar coordinates , , , it is possible to determine a numbers of functions only of the variable :Q 1,Q 3 ....Q 2s–1 in such a way as to make the summatory of theQ 2i–1/2i–1 represent the potential function of a rotational geoid. The condition of harmonicity determines, saving an arbitrary constant, each of theQ which is reduced to a polynom developed by the sin powers; therefore one disposes of a number of constants to make use for satisfing theV on the geoid. To illustrate his theory the Author determines the gravity on the spherical geoid, thus confirmingSomigliana's formulas and on a spheroidal on which he pointed outClairaut's relations.
  相似文献   

16.
The magnitudes (M S , m bP , m bS ) of the largest historical earthquakes which occurred in the first half of the 20 th century, calculated on the basis of records of Wiechert horizontal seismographs in Göttingen (Germany) and Zagreb (Croatia), are compared with one another, as well as with the magnitudes reported in worldwide catalogues. Systematic trends are observed in the data regarding the temporal stability of magnitude estimations in Göttingen, as well as the apparent non-linearity of the instrument responsle in the case of the Wiechert seismograph in Zagreb. We were unable to clearly identify their causes – possible explanations include effects caused by the interaction of the seismometer's frame and mass, as well as local soil conditions, but nonhomogeneity of the reference catalogues cannot be ruled out. The results indicate that a careful re-examination and cross-checking of the reported magnitude figures for the earthquakes from the first half of the 20th century is required.  相似文献   

17.
We propose a method that employs the squared displacement integral (ID2) to estimate earthquake magnitudes in real time for use in earthquake early warning (EEW) systems. Moreover, using τ c and P d for comparison, we establish formulas for estimating the moment magnitudes of these three parameters based on the selected aftershocks (4.0 ≤ M s  ≤ 6.5) of the 2008 Wenchuan earthquake. In this comparison, the proposed ID2 method displays the highest accuracy. Furthermore, we investigate the applicability of the initial parameters to large earthquakes by estimating the magnitude of the Wenchuan M s 8.0 mainshock using a 3-s time window. Although these three parameters all display problems with saturation, the proposed ID2 parameter is relatively accurate. The evolutionary estimation of ID2 as a function of the time window shows that the estimation equation established with ID2 Ref determined from the first 8-s of P wave data can be directly applicable to predicate the magnitudes of 8.0. Therefore, the proposed ID2 parameter provides a robust estimator of earthquake moment magnitudes and can be used for EEW purposes.  相似文献   

18.
Attenuation of High-Frequency Seismic Waves in Eastern Iran   总被引:1,自引:0,他引:1  
We investigated the frequency-dependent attenuation of the crust in Eastern Iran by analysis data from 132 local earthquakes having focal depths in the range of 5–25 km. We estimated the quality factor of coda waves (Q c) and body waves (Q p and Q s) in the frequency band of 1.5–24 Hz by applying the single backscattering theory of S-coda envelopes and the extended coda-normalization method, respectively. Considering records from recent earthquakes (Rigan M w 6.5, 2010/12/20, Goharan M w 6.2, 2013/5/11 and Sirch M w 5.5, 2013/1/21), the estimated values of Q c, Q p and Q s vary from 151 ± 49, 63 ± 6, and 93 ± 14 at 1.5 Hz to 1,994 ± 124, 945 ± 84 and 1,520 ± 123 at 24 Hz, respectively. The average frequency-dependent relationships (Q = Q o f n ) estimated for the region are Q c = (108 ± 10)f (0.96±0.01), Q p = (50 ± 5)f (1.01±0.04), and Q s = (75 ± 6)f (1.03±0.06). These results evidenced a frequency dependence of the quality factors Q c, Q p, and Q s, as commonly observed in tectonically active zones characterized by a high degree of heterogeneity, and the low value of Q indicated an attenuative crust beneath the entire region.  相似文献   

19.
Tsunamis are most destructive at near to regional distances, arriving within 20–30 min after a causative earthquake; effective early warning at these distances requires notification within 15 min or less. The size and impact of a tsunami also depend on sea floor displacement, which is related to the length, L, width, W, mean slip, D, and depth, z, of the earthquake rupture. Currently, the primary seismic discriminant for tsunami potential is the centroid-moment tensor magnitude, M w CMT , representing the product LWD and estimated via an indirect inversion procedure. However, the obtained M w CMT and the implied LWD value vary with rupture depth, earth model, and other factors, and are only available 20–30 min or more after an earthquake. The use of more direct discriminants for tsunami potential could avoid these problems and aid in effective early warning, especially for near to regional distances. Previously, we presented a direct procedure for rapid assessment of earthquake tsunami potential using two, simple measurements on P-wave seismograms—the predominant period on velocity records, T d , and the likelihood, T 50 Ex , that the high-frequency, apparent rupture-duration, T 0, exceeds 50–55 s. We have shown that T d and T 0 are related to the critical rupture parameters L, W, D, and z, and that either of the period–duration products T d T 0 or T d T 50 Ex gives more information on tsunami impact and size than M w CMT , M wp, and other currently used discriminants. These results imply that tsunami potential is not directly related to the product LWD from the “seismic” faulting model, as is assumed with the use of the M w CMT discriminant. Instead, information on rupture length, L, and depth, z, as provided by T d T 0 or T d T 50 Ex , can constrain well the tsunami potential of an earthquake. We introduce here special treatment of the signal around the S arrival at close stations, a modified, real-time, M wpd(RT) magnitude, and other procedures to enable early estimation of event parameters and tsunami discriminants. We show that with real-time data currently available in most regions of tsunami hazard, event locations, m b and M wp magnitudes, and the direct, period–duration discriminant, T d T 50 Ex can be determined within 5 min after an earthquake occurs, and T 0, T d T 0, and M wpd(RT) within approximately 10 min. This processing is implemented and running continuously in real-time within the Early-est earthquake monitor at INGV-Rome (http://early-est.rm.ingv.it). We also show that the difference m b  ? log10(T d T 0) forms a rapid discriminant for slow, tsunami earthquakes. The rapid availability of these measurements can aid in faster and more reliable tsunami early warning for near to regional distances.  相似文献   

20.
This paper presents the results of an investigation of the magnitude–intensity and intensity–attenuation relationships for earthquakes in the Atlas block and Algeria using macroseismic data. This work is based on a selected sample of isoseismal maps from 32 events which were recently revised. Surface-wave magnitudes, Ms, are recalculated using the Prague formula and range from 4·2 to 7·45. Because the Atlas mountains block is in a collision zone, earthquakes occur in general within a layer 15 km deep. Expressions of general form for the magnitude–intensity and intensity–attenuation correlations are adopted and are, respectively, and where R2 = d2 + h2, d the source distance in km, h the focal depth in km, Ms the revised surface-wave magnitude, Msc the predicted surface-wave magnitude, Ii the intensity at isoseismal i, I the predicted intensity, σ the standard deviation and P is zero for 50-percentile values and one for 84-percentile, and the coefficients A's and B's are determined by regression analysis. The results of this study show that the intensity–attenuation models are adequate to predict quite well the die-out of intensity with distance in the Atlas zone and coastal Algeria; it is also found that magnitude can be predicted accurately by calibrating isoseismal radii against revised instrumental surface-wave magnitude. Such magnitude–intensity relationships may be used to evaluate the magnitude of historical earthquakes in the region under survey, with no instrumental data, for which isoseismal radii and intensities are available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号