首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The whole sedimentary succession (ca 600 m thick) of Wagad area ranging in age from Callovian to Early Kimmeridgian has been divided in to three Formations namely Washtawa, Kanthkot and Gamdau in ascending order. Prograding Kanthkot Formation was frequently interrupted by transgressions. Field and petrographic investigations revealed that the Kanthkot Formation represents three fossiliferous marker beds corresponding to Transgressive sequence I; Transgressive sequence II and Transgressive sequence III. These transgressive sequences are composed of two lithounits: medium to coarse grained/gritty, graded to massive, sheetlike, fossiliferous calcareous sandstone (storm lag unit I) and fossiliferous mudrocks (swell lag unit II). The thickness of the unit I varies from 5 to 75 cm and contains mostly convexly oriented shell fragments and whole shell of Pelecypods, Cephalopods and Brachiopods. Unit II (5–15 cm) is distinguished by sheetlike, massive or laminated, yellowish colour, soft fossiliferous mudrocks. This unit is intercalated with moderately bioturbated sandy siltstone. Unit I is dominant over Unit II in the sequences.Study suggests that the transgressive units were deposited close to wave base by high energy storm flows followed by low energy marine swells during transgression. The intense storms played a major role in the distribution of siliciclastics and nonclastic materials. Storms are evidenced by the occurrence of two distinctly different types of units (storm lags and swell lags). High energy levels are characterized by sand dominated sequence, abundance of reworked sediment particles, high proportion broken shells with convex up orientation and erosional and sharp nature of basal contacts of units together with well preserved bioclasts. Sudden short term changes from high to low energy during transgression are explained by the occurrence of medium to coarse grained siliciclastics interbedded with moderately bioturbated mudrocks. Moderately bedded individual strata, high content of coarse clastics along with polished granule size quartz and abundance of comminuted shells indicate a significant change in depositional setting, possibly closure approach of the source of terrigenous fraction or source uplift. Synrift sedimentation in the present study is documented by an abundance of coarse clastics and an over all aggradational nature of transgressive sequences.  相似文献   

2.
Marginal marine deposits of the John Henry Member, Upper Cretaceous Straight Cliffs Formation, were deposited within a moderately high accommodation and high sediment supply setting that facilitated preservation of both transgressive and regressive marginal marine deposits. Complete transgressive–regressive cycles, comprising barrier island lagoonal transgressive deposits interfingered with regressive shoreface facies, are distinguished based on their internal facies architecture and bounding surfaces. Two main types of boundaries occur between the transgressive and regressive portions of each cycle: (i) surfaces that record the maximum regression and onset of transgression (bounding surface A); and (ii) surfaces that place deeper facies on top of shallower facies (bounding surface B). The base of a transgressive facies (bounding surface A) is defined by a process change from wave‐dominated to tide‐dominated facies, or a coaly/shelly interval indicating a shift from a regressive to a transgressive regime. The surface recording such a process change can be erosional or non‐erosive and conformable. A shift to deeper facies occurs at the base of regressive shoreface deposits along both flooding surfaces and wave ravinement surfaces (bounding surface B). These two main bounding surfaces and their subtypes generate three distinct transgressive – regressive cycle architectures: (i) tabular, shoaling‐upward marine parasequences that are bounded by flooding surfaces; (ii) transgressive and regressive unit wedges that thin basinward and landward, respectively; and (iii) tabular, transgressive lagoonal shales with intervening regressive coaly intervals. The preservation of transgressive facies under moderately high accommodation and sediment supply conditions greatly affects stratigraphic architecture of transgressive–regressive cycles. Acknowledging variation in transgressive–regressive cycles, and recognizing transgressive successions that correlate to flooding surfaces basinward, are both critical to achieving an accurate sequence stratigraphic interpretation of high‐frequency cycles.  相似文献   

3.
Investigation of the Upper Carboniferous to Lower Permian sedimentary strata of central Spitsbergen shows that this highly cyclic rock succession is composed of four long-term transgressive–regressive cycles. These long-term cycles are themselves composed of stacked higher order cycles. Transgressive phases are characterized by increasing accommodation space, and include a basal transgressive part of marked retrogradation of facies belts and thickening-upward component cycles. Regressive phases are characterized by decreasing accommodation space, displayed by progradation of facies belts, overall shallowing and increased restriction of the depositional environment, influx of coarse terrigenous sediments and increasing evidence of exposure and/or non-deposition. The oldest transgressive–regressive sequence identified, Sequence 1, is of Serpukhovian to Bashkirian age and represents a syn-rift sequence. Also composed of syn-rift sediments is the transgressive–regressive Moscovian to mid-Gzhelian-aged Sequence 2. The late Gzhelian to late Asselian Sequence 3 is mainly a post-rift sequence. The youngest sequence, Sequence 4, is of Sakmarian to possible Artinskian age, and is also composed of post-rift sediments. The individual transgressive–regressive cycles are defined as second-order cycles, based on lithological signatures, lateral extent of bounding unconformities, and the actual time period the cycles span. Local tectonic activity is believed to control to some extent the development of short-term cycles in the syn-rift succession. However, cyclicity within the long-term cycles is mainly controlled by eustatic sea-level fluctuations, and therefore enables them to be correlated to other Circum-Arctic regions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
High resolution stratigraphical analysis divides a rock succession into the basic genetic units of stratigraphy which are here termed small scale stratigraphical cycles. Each cycle records the sedimentological response to an episode of shallowing and deepening. Assuming that these changes in water depth reflect changes in the shoreline position, they can be considered as regressive/transgressive episodes. Each cycle comprises a regressive and transgressive facies tract which will be variably proportioned; in some examples a facies tract may only be represented by a hiatal surface of no deposition, erosion and/or bypass. In the Annot Sandstones of south-east France, variations in facies types, proportions and associations can be demonstrated both laterally and vertically through the succession. First, it is demonstrated that facies variations occur within regressive or transgressive facies tracts as a function of the stratigraphical stacking pattern of the cycles (i.e. landward, vertical or seaward stacked); this is termed ‘vertical facies differentiation’. Second, the proportions of facies tracts and their constituent facies types within an individual cycle vary between more landward and more seaward palaeogeographical locations; this is termed ‘lateral facies differentiation'. The upper Eocene/lower Oligocene Annot sandstones outcrop in the Maritime Alps of south-east France, within the thin skinned outer fold and thrust belt of the Alpine arc. The sandstones are well exposed in the area of the Col de la Cayolle on the north-west margin of the Argentera Massif, where lithostratigraphical correlations are possible over 3·5 km in a NNW/SSE direction, perpendicular to the edge of the depositional basin. Traditionally, these outcrops have been interpreted as deep marine turbidite lobe sediments; this study reflects a significant reinterpretation of this succession as having been deposited in a shallow marine environment. Seven sedimentary sections were measured through the succession, which is divided into 10 small scale stratigraphical cycles. These cycles are described in terms of eight facies which are separated into their transgressive or regressive facies tracts. In eight of the 10 cycles, the regressive facies tracts reflect the progradation of storm influenced braid deltas over shelf muds and silts. In two of the 10 cycles, the regressive facies tracts reflect barrier inlet and wash-over sands interfingering with back barrier deposits. These latter two cycles are located within landward stepping cycle sets; this is an example of vertical facies differentiation. Transgressive facies tracts locally reworked the upper surface of the regressive facies tract and also comprise barrier and back barrier deposits. The facies succession within each cycle varies according to its position with respect to the palaeoshoreline. The more landward portion of an individual cycle comprises a deltaic shoaling upward succession, culminating in coarse distributary channel conglomerates, overlain by a transgressive barrier/inlet system with extensive back barrier deposits. Beyond the delta front, the more seaward equivalent of individual cycles comprises an erosive base, with aggradational massive pebbly sandstones sitting directly upon offshore heterolithics; these sandstones are interpreted as hyperconcentrated fluvial efflux into the nearshore environment. This grades upward into offshore heterolithics and graded storm deposits representing the products of ravinement, which are then overlain by shelf mudstones. In summary, the more landward portions of cycles preserve predominantly regressive facies tracts, whereas the more seaward portions preserve aggradational to retrogradational strata of the transgressive facies tract; this is an example of lateral facies differentiation.  相似文献   

5.
The lower part of the Cretaceous Sego Sandstone Member of the Mancos Shale in east‐central Utah contains three 10‐ to 20‐m thick layers of tide‐deposited sandstone arranged in a forward‐ and then backward‐stepping stacking pattern. Each layer of tidal sandstone formed during an episode of shoreline regression and transgression, and offshore wave‐influenced marine deposits separating these layers formed after subsequent shoreline transgression and marine ravinement. Detailed facies architecture studies of these deposits suggest sandstone layers formed on broad tide‐influenced river deltas during a time of fluctuating relative sea‐level. Shale‐dominated offshore marine deposits gradually shoal and become more sandstone‐rich upward to the base of a tidal sandstone layer. The tidal sandstones have sharp erosional bases that formed as falling relative sea‐level allowed tides to scour offshore marine deposits. The tidal sandstones were deposited as ebb migrating tidal bars aggraded on delta fronts. Most delta top deposits were stripped during transgression. Where the distal edge of a deltaic sandstone is exposed, a sharp‐based stack of tidal bar deposits successively fines upward recording a landward shift in deposition after maximum lowstand. Where more proximal parts of a deltaic‐sandstone are exposed, a sharp‐based upward‐coarsening succession of late highstand tidal bar deposits is locally cut by fluvial valleys, or tide‐eroded estuaries, formed during relative sea‐level lowstand or early stages of a subsequent transgression. Estuary fills are highly variable, reflecting local depositional processes and variable rates of sediment supply along the coastline. Lateral juxtaposition of regressive deltaic deposits and incised transgressive estuarine fills produced marked facies changes in sandstone layers along strike. Estuarine fills cut into the forward‐stepped deltaic sandstone tend to be more deeply incised and richer in sandstone than those cut into the backward‐stepped deltaic sandstone. Tidal currents strongly influenced deposition during both forced regression and subsequent transgression of shorelines. This contrasts with sandstones in similar basinal settings elsewhere, which have been interpreted as tidally influenced only in transgressive parts of depositional successions.  相似文献   

6.
The Late Eocene-Early Oligocene sedimentary fill of the Lemnos Island, NE Greece, is represented by a submarine fan and shelf deposits. Turbidites in the system occur as a laterally isolated body, with one sediment influx center present. The influx center is a proximal distributary channel that occupies a position approximately in the fan’s center and displays the coarsest sediment in the study area. It also suggests in association with the main palaeocurrent direction toward NE a curved shape for the fan. The stratigraphic succession of the submarine fans indicates that their sedimentation started during the base level fall and completed shortly after the base level rise. As a consequence, the study area was filled by turbidites that correspond to forced regressive, lowstand normal regressive, and transgressive genetic units. The progradational bedsets, within the basal part of the turbidite deposits, recorded the history of the base level fall. The mixed progradational/aggradational style of the upper part of the submarine fan system suggests that the regression of the shoreline is driven by sediment supply during a period of base-level rise at the shoreline, or at a time of baselevel stillstand. The overlying shelf facies consist of thick to medium bedded sandstones and mudstones, which display a general thinning upward trend. The base of the mudstone facies that overlie the thick-bedded, amalgamated sandstones corresponds to a transgressive surface. This surface separates the low-stand deposits (thick-bedded sandstones) from the high stand deposits (mudstone facies), suggesting that deposition of shelf facies occurred during a transgressive system tract.  相似文献   

7.
A siliciclastic-dominated succession (~11 m thick) underlying Harrat Rahat, belonging to the Miocene–Pliocene Bathan Formation is recently exposed at Al-Rehaili area, North Jeddah, Saudi Arabia. It covers a wide spectrum of grain sizes varying from clay-rich mudstones to cobble grade conglomerate and consists of a variety of facies vary from fluvial to marginal and open lacustrine deposited in a half-graben basin formed along the eastern margin of the extensional Red Sea Basin. Field-based sedimentologic investigation enables to identify ten facies grouped into three facies associations (A–C). The depositional history is subdivided into two stages. The first stage represents deposition in gravel to sand-dominated fluvial system sourced from a southern source and grade northward into lacustrine delta and open lacustrine setting. The second stage on the other hand includes deposition of fluvial channels running in E–W direction with attached bank sand bar. Sequence stratigraphic interpretations of the lacustrine deposits enable to identify three unconformity-bounded sequences (SQ1–3). The basal sequence is incomplete, consisting of three aggradationally to progradationally stacked delta plain and delta front parasequences. The second sequence is sharply and erosively overlying a red paleosol bed that defines the upper boundary of the first sequence. It includes two system tracts; upward-fining and deepening lacustrine offshore mudstones of the transgressive system tracts unconformably overlain by red paleosol of the regressive systems tracts. The top of this sequence is delineated at the sharp transgressive surface of erosion at the base of delta mouth bar deposits of sequence 3. Changes in the accommodation and sedimentation rates by basin subsidence under the influence of tectonics and sediment compaction and loading as well as climatic oscillation between semi-arid to arid conditions were the major controls on the fluvio-lacustrine sedimentation and their facies distribution. Tectonic reorganization of the drainage system resulted in the formation of E–W flowing fluvial streams in the second stage.  相似文献   

8.
Strata of the Bardas Blancas Formation (lower Toarcian–lower Bajocian) are exposed in northern Neuquén Basin. Five sections have been studied in this work. Shoreface/delta front to offshore deposits predominate in four of the sections studied exhibiting a high abundance of hummocky cross-stratified, horizontally bedded and massive sandstones, as well as massive and laminated mudstones. Shell beds and trace fossils of the mixed Skolithos-Cruziana ichnofacies appear in sandstone beds, being related with storm event deposition. Gravel deposits are frequent in only one of these sections, with planar cross-stratified, normal graded and massive orthoconglomerates characterizing fan deltas interstratified with shoreface facies. A fifth outcrop exhibiting planar cross-stratified orthoconglomerates, pebbly sandstones with low-angle stratification and laminated mudstones have been interpreted as fluvial channel deposits and overbank facies. The analysis of the vertical distribution of facies and the recognition of stratigraphic surfaces in two sections in Río Potimalal area let recognized four transgressive–regressive sequences. Forced regressive events are recognized in the regressive intervals. Comparison of vertical distribution of facies also shows differences in thickness in the lower interval among the sections studied. This would be related to variations in accommodation space by previous half-graben structures. The succession shows a retrogradational arrangement of facies related with a widespread transgressive period. Lateral variation of facies let recognize the deepening of the basin through the southwest.  相似文献   

9.
This work presents the first detailed facies analysis of the upper Nyalau Formation exposed around Bintulu, Sarawak, Malaysia. The Lower Miocene Nyalau Formation exposures in NW Sarawak represent one of the closest sedimentological outcrop analogues to the age equivalent, hydrocarbon-bearing, offshore deposits of the Balingian Province. Nine types of facies associations are recognised in the Nyalau Formation, which form elements of larger-scale facies successions. Wave-dominated shoreface facies successions display coarsening upward trends from Offshore, into Lower Shoreface and Upper Shoreface Facies Associations. Fluvio-tidal channel facies successions consist of multi-storey stacks of Fluvial-Dominated, Tide-Influenced and Tide-Dominated Channel Facies Associations interbedded with minor Bay and Mangrove Facies Associations. Estuarine bay facies successions are composed of Tidal Bar and Bay Facies Associations with minor Mangrove Facies Associations. Tide-dominated delta facies successions coarsen upward from an Offshore into the Tidal Bar Facies Association. The Nyalau Formation is interpreted as a mixed wave- and tide-influenced coastal depositional system, with an offshore wave-dominated barrier shoreface being incised by laterally migrating tidal channels and offshore migrating tidal bars. Stratigraphic successions in the Nyalau Formation form repetitive high frequency, regressive–transgressive cycles bounded by flooding surfaces, consisting of a basal coarsening upward, wave-dominated shoreface facies succession (representing a prograding barrier shoreface and/or beach-strandplain) which is sharply overlain by fluvio-tidal channel, estuarine bay or tide-dominated delta facies successions (representing more inshore, tide-influenced coastal depositional environments). An erosion surface separates the underlying wave-dominated facies succession from overlying tidal facies successions in each regressive–transgressive cycle. These erosion surfaces are interpreted as unconformities formed when base level fall resulted in deep incision of barrier shorefaces. Inshore, fluvio-tidal successions above the unconformity display upward increase in marine influence and are interpreted as transgressive incised valley fills.  相似文献   

10.
Four major sedimentary facies are present in coarse-grained, ice-marginal deposits from central East Jylland, Denmark. Facies A and B are matrix-supported gravels deposited by subaerial sediment gravity flows as mudflows (facies A) and debris flows (facies B). Facies C consists of clast-supported, water-laid gravels and facies D are cross-bedded sand and granules. The facies can be grouped into three facies associations related to the supraglacial and proglacial environments: (1) the flow-till association is made up of alternating beds of remobilized glacial mixton (facies A) and well-sorted cross-bedded sand (facies D); (2) the outwash apron association resembles the sediments of alluvial fans in containing coarse-grained debris-flow deposits (facies B), water-laid gravel deposited by sheet floods (facies C) and cross-bedded sand and granules (facies D) from braided distributaries; (3) the valley sandur association comprises water-laid gravel (facies C) interpreted as sheet bars and longitudinal bars interbedded with cross-bedded sand and granules (facies D) deposited in channels between bars in a braided environment.The general coarsening-upward trend of the sedimentary sequences caused by the transition of bars and channel-dominated facies to debris-flow-dominated facies indicate an increasing proximality of the outwash deposits, picturing the advance and still stand of a large continental lowland ice-sheet. The depositional properties suggest that sedimentation was caused by melting along a relatively steep, active glacier margin as a first step towards the final vanishing of the Late Weichselian icesheet (the East Jylland ice) covering eastern Denmark.  相似文献   

11.
The Beni Suef Basin is a petroliferous rift basin straddling the River Nile containing a thick Mesozoic–Paleogene succession. The Kharita Formation is formed in the syn-rift phase of the basin formation and is subdivided into the Lower and Upper Kharita members. These two members are regarded as two third-order depositional sequences (DSQ-1 and DSQ-2). The lowstand systems tract (LST-1) of the DSQ-1 is represented by thick amalgamated sandstone bodies deposited by active braided channels. Mid-Albian tectonic subsidence led to a short-lived marine invasion which produced coastal marine and inner-shelf facies belts during an ensuing transgressive systems tract (TST-1). At the end of the mid-Albian, a phase of tectonic uplift gradually rose the continent creating a fall in relative sea level, resulting in deposition of shallow marine and estuarine facies belts during a highstand systems tract (HST-1). During the Late Albian, a new phase of land-rejuvenation commenced, with a prolonged phase of fluvial depositional. Fluvial deposits consisted of belts of amalgamated, vertically aggraded sandstones interpreted as braided and moderately sinuous channels, in the lower part of the Upper Kharita Member lowstand stage (LST-2). The continuous basin filling, coupled with significant lowering in the surrounding highlands changed the drainage regime into a wide belt of meandering river depositing the transgressive stage (TST-2). The history of the Kharita Formation finalized with a Cenomanian marine transgressive phase. Economically, the TST-1 and HST-1 play a significant role as source rocks for hydrocarbon accumulations, whereas LST-2 act as good reservoir rocks in the Early Cretaceous in the Basin.  相似文献   

12.
The Lower Jurassic Mashabba Formation crops out in the core of the doubly plunging Al-Maghara anticline, North Sinai, Egypt. It represents a marine to terrestrial succession deposited within a rift basin associated with the opening of the Neotethys. Despite being one of the best and the only exposed Lower Jurassic strata in Egypt, its sedimentological and sequence stratigraphic framework has not been addressed yet. The formation is subdivided informally into a lower and upper member with different depositional settings and sequence stratigraphic framework. The sedimentary facies of the lower member include shallow-marine, fluvial, tidal flat and incised valley fill deposits. In contrast, the upper member consists of strata with limited lateral extension including fossiliferous lagoonal limestones alternating with burrowed deltaic sandstones. The lower member contains three incomplete sequences (SQ1-SQ3). The depositional framework shows transgressive middle shoreface to offshore transition deposits sharply overlain by forced regressive upper shoreface sandstones (SQ1), lowstand fluvial to transgressive tidal flat and shallow subtidal sandy limestones (SQ2), and lowstand to transgressive incised valley fills and shallow subtidal sandy limestones (SQ3). In contrast, the upper member consists of eight coarsening-up depositional cycles bounded by marine flooding surfaces. The cycles are classified as carbonate-dominated, siliciclastic-dominated, and mixed siliciclastic-carbonate. The strata record rapid changes in accommodation space. The unpredictable facies stacking pattern, the remarkable rapid facies changes, and chaotic stratigraphic architecture suggest an interplay between allogenic and autogenic processes. Particularly syndepositional tectonic pulses and occasional eustatic sea-level changes controlled the rate and trends of accommodation space, the shoreline morphology, the amount and direction of siliciclastic sediment input and rapid switching and abandonment of delta systems.  相似文献   

13.
The Gongila Formation in the Hawal Basin displays lithological characteristics, textural variations and sedimentary structures that facilitate palaeoenvironmental reconstruction. The 41 m thick Gongila succession is divisible into: (i) a mudstone facies association (at the bottom) composed of fossiliferous limestone, clay shale, and sharp-based, graded and swaly-bedded shell debris; and (ii) a cross-stratified sandstone facies association that constitutes the uppermost 60% of the entire succession. The cross-stratified sandstone facies association is further subdivided, on the basis of sedimentary structures, into: (i) a lower interval represented by a coarsening upward fine- to medium-grained sandstone, siltstone and shale in which units characterised by parallel lamination and hummocky cross-stratification pass upward through a zone of small-scale low angle cross-stratification into units characterised by planar cross-stratification and sparse Teichichnus and Skolithos burrow traces; and (ii) an upper interval dominated by fine- to medium-grained sandstone and bioturbated siltstone characterised by erosive based, high angle tangential foresets, subhorizontal laminations and burrow structures belonging to the Thalassinoides, Ophiomorpha and Skolithos ichnogenera.The overall sequence of the Gongila Formation represents progradation on a wave influenced coast, passing from shelf mudstone at the base to lower and upper shoreface sandstones at the top. Each facies association displays an alternation between relatively high energy conditions when sediment was mainly deposited by decelerating suspension laden currents, and relatively low energy conditions when wave reworked fine-grained sediment as it was deposited from suspension. The influence of storms in these conditions is inferred from the associated lithofacies, textural characteristics and sedimentary structures.  相似文献   

14.
吕梁-陕北地区马家沟组碳酸盐岩-蒸发岩向上变浅层序由一系列小层序垂向叠置而成。本文主要通过小层序特征及其分布规律的研究,认为小层序是由叠加在三级海平面变化旋回上的频繁小级别海平面升降旋圆形成的,这种小级别海平面旋回与地球轨道旋回引起的米兰科维奇旋回有关。  相似文献   

15.
The Cretaceous(Albian-Cenomanian) Dalmiapuram Formation is one of the economically significant constituents in the hydrocarbon-producing Cauvery rift basin, SE India that opened up during the Late Jurassic e Early Cretaceous Gondwanaland fragmentation. The fossil-rich Dalmiapuram Formation,exposed at Ariyalur within the Pondicherry sub-basin of Cauvery Basin, rests in most places directly on the Archean basement and locally on the Lower Cretaceous(Barremian-Aptian) Basal Siliciclastic Formation. In the Dalmiapuram Formation, a facies association of tectonically-disturbed phase is sandwiched between two drastically quieter phases. The early syn-rift facies association(FA 1), records the first carbonate marine transgression within the basin, comprising a bar-lagoon system with occasionally storms affecting along the shore and a sheet-like non-recurrent biomicritic limestone bed on the shallow shelf that laterally grades into pyrite e glauconite-bearing dark-colored shale in the deeper shelf. Spectacular breccias together with varied kinds of mass-flow products comprise the syn-rift facies association(FA 2). While the breccias occur at the basin margin area, the latter extend in the deeper inland sea. Clast composition of the coarse clastics includes large, even block-sized limestone fragments and small fragments of granite and sandstone from the basement.Marl beds of quieter intervals between tectonic pulses occur in alternation with them. Faulted basal contact of the formation, and small grabens filled by multiple mass-flow packages bear the clear signature of the syntectonic activity localized contortions, slump folds, and pillow beds associated with mega slump/slide planes and joints, which corroborates this contention further. This phase of tectonic intervention is followed by another relatively quieter phase and accommodates the late syn-rift facies association(FA 3). A tidal bar-interbar shelf depositional system allowed a transgressive systems tract motif to grow eventually passing upwards into the Karai Shale Formation, whose contact with the Dalmiapuram Formation is gradational.  相似文献   

16.
Across-shelf variations in thickness, grain size, and frequency of sandstone beds in a transgressive outer-shelf succession were investigated from the Middle Pleistocene (ca. 0.7 Ma) Kakinokidai Formation on the Boso Peninsula, Japan. The transgressive deposits are generally muddy and contain slumps and slump scars. The intercalated sandstone beds are interpreted to have been formed from turbidity currents as a response to erosion and resuspension of sandridge-complex deposits in the southwestern upslope area during storm events. Mapping of volcanic ash beds and a transgressive surface in the base of the formation permits detailed bed-by-bed correlation of the outer-shelf sandstone beds. Although, overall, thickness, grain size, and frequency of sandstone beds decrease in the downslope direction, some sandstone beds locally thin out and coarsen in association with slump scars in the surrounding muddy deposits. These sandstone beds subsequently thicken and fine, and finally thin out in the farther downslope area. In addition to the local thinning of sandstone beds, the frequency of sandstone beds first decreases and then increases in the farther offshore direction. From this evidence, we concluded that these non-uniform patterns of across-outer-shelf variations in thickness, grain size, and frequency of sandstone beds were caused by the local increases in flow speeds and subsequent expansion and reduced speeds of turbidity currents, along with a local increase in the seafloor gradient that was induced by the development of slump scars in the transgressive outer-shelf floor. These physiographic features in the outer shelf are interpreted not to have permitted monotonous downslope thinning and fining of sandstone beds, compared with the bed-shape models of depletive turbidity currents and with the proximality trend of shelf sandstones from modern and ancient highstand-stage shelf systems.  相似文献   

17.
To elucidate the signature of isostatic and eustatic signals during a deglaciation period in pre‐Pleistocene times is made difficult because very little dating can be done, and also because glacial erosion surfaces, subaerial unconformities and subsequent regressive or transgressive marine ravinement surfaces tend to amalgamate or erode the deglacial deposits. How and in what way can the rebound be interpreted from the stratigraphic record? This study proposes to examine deglacial deposits from Late‐Ordovician to Silurian outcrops at the Algeria–Libya border, in order to define the glacio–isostatic rebound and relative sea‐level changes during a deglaciation period. The studied succession developed at the edge and over a positive palaeo‐relief inherited from a prograding proglacial delta that forms a depocentre of glaciogenic deposits. The succession is divided into five subzones, which depend on the topography of this depocentre. Six facies associations were determined: restricted marine (Facies Association 1); tidal channels (Facies Association 2); tidal sand dunes (Facies Association 3); foreshore to upper shoreface (Facies Association 4); lower shoreface (Facies Association 5); and offshore shales (Facies Association 6). Stratigraphic correlations over the subzones support the understanding of the depositional chronology and associated sea‐level changes. Deepest marine domains record a forced regression of 40 m of sea‐level fall resulting from an uplift caused by a glacio‐isostatic rebound that outpaces the early transgression. The rebound is interpreted to result in a multi‐type surface, which is interpreted as a regressive surface of marine erosion in initially marine domains and as a subaerial unconformity surface in an initially subaerial domain. The transgressive deposits have developed above this surface, during the progressive flooding of the palaeo‐relief. Sedimentology and high‐resolution sequence stratigraphy allowed the delineation of a deglacial sequence and associated sea‐level changes curve for the studied succession. Estimates suggest a relatively short (<10 kyr) duration for the glacio‐isostatic uplift and a subsequent longer duration transgression (4 to 5 Myr).  相似文献   

18.
The Proterozoic Nagthat Formation of the Krol-belt succession, in the Nainital area, is composed mainly of fine- to coarse-grained quartzarenite with a subordinate amount of purple to grey sandstone, siltstone-shale and conglomerate horizons. The association with spilitic lava flows, variable palaeocurrent trends and the restricted lateral extent of the Nagthat Formation within the Krol-belt succession imply an active role for tectonism in the basin of deposition. In the upward coarsening succession of the Nagthat Formation, six major lithofacies have been identified: medium- to coarse-grained gravelly quartzarenite (Lithofacies A), planar cross-bedded, medium-grained quartzarenite (Lithofacies B), horizontally laminated, fine-grained quartzarenite (Lithofacies D), interbedded sandstone-shale (Lithofacies E) and matrix-supported conglomerate (Lithofacies F). The constituent lithofacies are repetitive in nature, forming upward fining unit cycles and interpreted to reflect deposition as upper shore-face, shoals and bars, barrier-beachface, tidal channels (inlets), intertidal–sandflat–mixedflat environments and, occasionally, in the form of gravity flows in subtidal channels. The general upward coarsening succession of the Nagthat Formation represents deposition in a progradational (regressive) barrier island system. The palaeocurrent pattern in the Nagthat Formation is distinctly polymodal and indicates sediment distribution across the roughly NW–SE trending shoreline, in response to a dominating flood tidal current system. The palaeocurrent pattern shows higher variability in the upper shore-face deposits than in the tidalflat domain. A recycled metasedimentary terrain served as the source for the Nagthat Formation, probably supplying the sediments from E, NE and S directions.  相似文献   

19.
The Lower Cretaceous (Albian) upper Blairmore Group is part of a thick clastic wedge that formed adjacent to the rising Cordillera in south-western Alberta. Regional transgressive intervals are superimposed on the overall regressive succession. Alluvial conglomerates, sandstones and mudstones were deposited in east-north-eastward draining fluvial systems, orientated transverse to the basin axis. Five facies associations have been identified: igneous pebble conglomerate, thick sandstone, interbedded lenticular sandstone and mudstone, thick mudstone with thin sandstone interlayers, and fossiliferous sandstone and mudstone. The facies associations are interpreted as gravelly fluvial channels, sandy fluvial channels, sand-dominated floodplains, mud-dominated floodplains, and marine shoreline deposits, respectively. Five types of palaeosols are recognized in the upper Blairmore Group based on lithology, the presence of pedogenic features (clay coatings, root traces, ferruginous nodules, slickensides, carbonate nodules) and degree of horizonization. The regional distribution of the various types of palaeosols enables a refinement of the palaeoenvironmental reconstruction permitting an assessment of the controls on floodplain evolution. In source-proximal areas, palaeosol development was inhibited by high rates of sedimentation. In source-distal locations, poor drainage resulting from high watertables, low topography and lower rates of sedimentation also inhibited palaeosol development. The best-developed palaeosols (containing Bt horizons) occur in intermediate alluvial plain positions (tectonic hinge zone) where the floodplains were most stable due to a balance between sedimentation, erosion and subsidence rates. Extrapolating from the upper Blairmore Group suggests that the tectonic hinge zone of continental foreland basins can be established by palaeosol analysis. At the hinge zone, soil development is controlled primarily by climate and tectonics and their effect on sediment supply, whereas closer to the palaeoshoreline, relative sea level fluctuations, resulting in poor drainage, may have a more significant influence.  相似文献   

20.
Sandstone bodies in the Sunnyside Delta Interval of the Eocene Green River Formation, Uinta Basin, previously considered as point bars formed in meandering rivers and other types of fluvial bars, are herein interpreted as delta mouth‐bar deposits. The sandstone bodies have been examined in a 2300 m long cliff section along the Argyle and Nine Mile Canyons at the southern margin of the Uinta lake basin. The sandstone bodies occur in three stratigraphic intervals, separated by lacustrine mudstone and limestone. Together these stratigraphic intervals form a regressive‐transgressive sequence. Individual sandstone bodies are texturally sharp‐based towards mudstone substratum. In proximal parts, the mouth‐bar deposits only contain sandstone, whereas in frontal and lateral positions mudstone drapes separate mouth‐bar clinothems. The clinothems pass gradually into greenish‐grey lacustrine mudstone at their toes. Horizontally bedded or laminated lacustrine mudstone onlaps the convex‐upward sandstone bars. The mouth‐bar deposits are connected to terminal distributary channel deposits. Together, these mouth‐bar/channel sandstone bodies accumulated from unidirectional jet flow during three stages of delta advance, separated by lacustrine flooding intervals. Key criteria to distinguish the mouth‐bar deposits from fluvial point bar deposits are: (i) geometry; (ii) bounding contacts; (iii) internal structure; (iv) palaeocurrent orientations; and (v) the genetic association of the deposits with lacustrine mudstone and limestone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号