首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ebro Fan System consists of en echelon channel-levee complexes, 50×20 km in area and 200-m thick. A few strong reflectors in a generally transparent seismic facies identify the sand-rich channel floors and levee crests. Numerous continuous acoustic reflectors characterize overbank turbidites and hemipelagites that blanket abandoned channel-levee complexes. The interlobe areas between channel complexes fill with homogeneous mud and sand from mass flow and overbank deposition; these exhibit a transparent seismic character. The steep continental rise and sediment “drainage” of Valencia Trough at the end of the channel-levee complexes prevent the development of distributary channels and midfan lobe deposits. Margin setting represents fan and/or source area  相似文献   

2.
This paper re-examines the Upper Miocene Upper Mount Messenger Formation, Taranaki Basin, to characterize its architecture and interpret its environmental evolution. Analysis of stratal architecture, lithofacies distributions, and paleotransport directions over the 250 m thick formation shows the outcrops provide a nearly dip parallel section displaying the lateral relationships between contemporaneous channel-levee and overbank depositional environments. At least five 30–40 m thick upward fining units are recognized in the north-central parts of the outcrop and are interpreted as large-scale overbank avulsion cycles. Each unit consists of thick- to medium-bedded predominantly planar laminated sandstone turbidites at the base that fine upward into thin- to very thin-bedded, planar laminated and ripple cross-laminated mud-rich turbidites. The units are traceable laterally over a distance exceeding 3 km where they are cut by channels that show basal mudstone draped by medium- to thin-bedded sandstone, and onlapped by thick-bedded planar laminated sandstone at the margin. The channels are separated by tapered packages of medium- to thin-bedded turbidites containing climbing-ripple cross-lamination interpreted as levees. The individual channel-levee and overbank avulsion cycles formed through four stages: 1) a channel avulsion spread sand into the overbank as an unconfined splay, 2) preferential scouring in one area of the splay led to development of a channel with small levees that prograded across the splay, 3) a deep incision followed by abandonment of the channel deposited a mud lining. Alternatively, the mud lining was formed during the first stage as the downdip portion of the channel was abandoned. 4) The channel filled at first by thick-bedded planar laminated and then by climbing-ripple cross-laminated sand. At this time, the growth of constructional levees progressively limited sand into the overbank. Ratios of Bouma division thicknesses calculated over a stratigraphic interval present a new method to distinguish deep-water depositional environments.  相似文献   

3.
The seismic geomorphology and seismic stratigraphy of a deep-marine channel-levee system is described. A moderate to high-sinuosity channel trending southeastward across the northeastern Gulf of Mexico basin floor, and associated depositional elements are well imaged using conventional 3D multi-channel seismic reflection data. Depositional elements described include channels, associated levees, a channel belt, avulsion channels, levee crevasses, frontal splays, sediment waves, and mass transport complexes. Distinguishing morphologic and stratigraphic characteristics of each depositional element are discussed. These deposits are presumed to be associated with repeated deep-marine turbidity flows and other mass transport processes.  相似文献   

4.
The upper Indus Fan is characterized by an average 1∶500 gradient, chanels with 100 m high levees, several continuous subbottom reflectors on 3.5-kHz records, and generally fine-grained sediments. Multichannel seismics show the levee complexes typified by overlapping wedge-shaped reflection sets and channel axis by high-amplitude discontinuous reflections. The middle fan has 1∶500–1∶1000 gradients and channels with ≈20 m high levees. The lower fan has gradients less than 1∶1000, channels with 8–20 m high levees, few or no subbottom reflectors on 3.5-kHz records, and high sand content. Besides the dominant unchannelized turbidity currents, channelized and overbank flows also played a significant role in the sedimentation of the lower fan.  相似文献   

5.
The upper Indus Fan is characterized by an average 1∶500 gradient, chanels with 100 m high levees, several continuous subbottom reflectors on 3.5-kHz records, and generally fine-grained sediments. Multichannel seismics show the levee complexes typified by overlapping wedge-shaped reflection sets and channel axis by high-amplitude discontinuous reflections. The middle fan has 1∶500–1∶1000 gradients and channels with ≈20 m high levees. The lower fan has gradients less than 1∶1000, channels with 8–20 m high levees, few or no subbottom reflectors on 3.5-kHz records, and high sand content. Besides the dominant unchannelized turbidity currents, channelized and overbank flows also played a significant role in the sedimentation of the lower fan. Margin setting represents fan and/or source area  相似文献   

6.
The Mississippi Fan is a large, mud-dominated submarine fan over 4 km thick, deposited in the deep Gulf of Mexico during the late Pliocene and Pleistocene. Analysis of 19,000 km of multifold seismic data defined 17 seismic sequences, each characterized by channel, levee, and associated overbank deposits, as well as mass transport deposits. At the base of nine sequences are a series of seismic facies consisting of mounded, hummocky, chaotic, and subparallel reflections, which constitute 10–20% of the sediments in each the sequences. These facies are externally mounded and occur in two general regions of the fan: (1) in the upper and middle fan they are elongate in shape and mimic the channel's distribution; (2) in the middle fan to lower fan they are characterized by a fan-shaped distribution, increasing in width downfan. These facies are interpreted to have formed as disorganized slides, debris flows, and turbidites (informally called “mass transport complexes”). Overlying this basal interval, characteristic of all sequences, are well-developed channel-levee systems that constitute 80–90% of the fan's sediments. Channels consist of high amplitude, subparallel reflections, whereas the flanking levee sediments appear as subparallel reflections that have high amplitudes at the base changing upward to low amplitude. The vertical change in amplitude may reflect a decrease in grain size and bed thicknesses. Overbank sediments are characterized by interbedded subparallel to hummocky and mounded reflections, suggesting both turbidites from the channel, as well as slides and debris flows derived both locally and from the slope updip.  相似文献   

7.
A basin axial-channel belt was largely responsible for the observed distribution of coarse-grained gravity-flow deposits in the Tertiary Puchkirchen and basal Hall formations of the Molasse foreland basin in Upper Austria. Elements of this depositional system, mapped in three-dimensional (3D) seismic-reflection data, include channel-belt thalweg, mass-transport complexes, overbank wedge, overbank lobe, and tributary channel. The primary objective of this paper is to develop a comprehensive understanding of the sedimentary processes that were prevalent in the channel-belt complex through the analysis of well data, including drill cores and wireline logs, in conjunction with 3D seismic interpretations.  相似文献   

8.
Isaac Channel 3 is a rare outcrop example of a perpendicular cut through a sinuous deep-water channel, and also where levee deposits formed on opposite sides of the channel are well exposed. Strata flanking the outer- and inner-bend margin of the channel show important differences in lithofacies, architecture and association with channel-fill strata. Proximal outer-bend levee deposits are sand-rich (N:G up to 0.68) and comprise medium- to thick-bedded, Ta-d turbidites interstratified with thinly-bedded, Tcd turbidites. The thicker-bedded deposits show lateral variation in grain size and thickness over hundreds of meters whereas thin-bedded strata thin and fine negligibly over similar distances. The distal outer-bend levee (up to 700 m laterally away from the channel) consists predominantly of thin-bedded turbidites interstratified with up to 5 m thick coarse-grained splay deposits. In contrast to the outer-bend, the inner-bend levee deposits are significantly more mud-rich (N:G as low as 0.15) and consist mostly of thin-bedded, Tcd turbidites with less common thicker-bedded, Ta-d turbidites. Lateral thinning and fining trends associated with these less common thicker-bedded deposits occur more rapidly than their outer-bend counterparts.Erosion associated with lateral migration of the channel axis produced a sharp contact along the outer-bend channel margin causing coarse-grained channel-fill deposits to be in erosional contact with levee deposits. This suggests that the crest of the outer-bend levee was elevated above the channel floor and produced a channel margin upon which channel-fill strata onlapped. Positive topography is interpreted to have developed by overspilling processes that deposited abundant sand on the outer-bend levee while the majority of the flow continued through the channel bend and bypassed to areas further downslope. In contrast, some thick-bedded, amalgamated channel-fill deposits in the axial channel area grade laterally over 140 m into thinly-bedded turbidites on the inner-bend levee. The lack of channel-fill on lap relationships implies that topography along the inner bend was sufficiently subtle that at least some flows were able to expand laterally and over the overbank area without becoming separated from the main throughgoing channel flow.Stratal relationships observed in Isaac Channel Complex 3 suggests three main episodes of channel-levee growth that were each initiated by a period of increased levee relief followed by channel filling and distal levee deposition. This consistent depositional history points to the regular variations, in both time and space, of sediment transport and deposition in a deep-marine sinuous channel-levee system.  相似文献   

9.
High-resolution multichannel 2-D and 3-D seismic data, primarily from upper fan reaches of near-seafloor channel-levee systems on the Niger Delta slope and in the Arabian Sea, reveal a high level of detail and architectural complexity. Several architectural elements are common to each system examined in this study. They include inner levees, outer levees, erosional fairways, channel-axis deposits, rotational slumps blocks, and mass transport deposits. Although the scale of individual systems varies significantly, similarities in first-order architectural elements and their configurations suggest that common depositional processes are involved regardless of scale differences.Most of the channel-levee systems examined in this study are characterized by a basal erosional fairway that is bordered by outer levees of varying thickness. Together these elements define the base and margins of the channel-belt, where channel-axis deposits and inner levees are the dominant architectural elements. Vertical, sub-vertical, and lateral stacking patterns of sinuous and/or meandering channels create seismic facies that range from narrow to wide zones of high amplitude reflections (HARs) with chaotic to continuous and shingled to horizontal reflections. Some HARs appear as isolated or stacked asymmetric to symmetric u- and v-shaped reflections, referred to here as channel-forms. Channel-belts evolve within the confines of the scalloped erosional fairway walls (flanked by outer levee), and are similar in morphology to meander-belts in fluvial systems, but commonly have a greater component of vertical aggradation. Detailed study of one particular channel-levee system on the Niger Delta slope shows a period of incision followed by three distinct phases of channel development during its aggradational history. Each fill phase corresponds to a different channel stacking architecture, planform geometry, and nature of terrace development, with important implications for reservoir architecture. In some cases, multiple phases of inner levee growth are observed, each intimately linked to the channel migration and aggradation history. Channel sinuosity evolves dynamically, with some meander loops undergoing periods of accelerated meander growth at the same time that others show little lateral migration.  相似文献   

10.
利用高分辨率三维地震资料、测井和钻井数据,对东非鲁伍马盆地深水沉积特征进行了系统刻画。根据深水沉积体的地震相特征,识别出峡谷、水道、漫溢沉积、朵体、块体搬运沉积(MTDs)和凝缩段等深水沉积单元,建立了地震识别图版。分析总结了水道和朵体的岩性特征、电性特征和储层物性特征,砂岩具有低伽马(GR)和高电阻(RT)特征,厚层砂岩GR曲线呈“箱型”,有泥岩夹层的砂岩段呈叠加的“钟型”特点;储层压实程度弱,发育原生粒间孔隙,具有中—高孔、中—高渗的特征。结合成藏条件研究,认为由水道和朵体浊积砂岩储层、凝缩段和漫溢沉积泥岩盖层、天然堤和MTDs为侧向遮挡等要素构成的油气储、盖配置关系,是研究区油气成藏的一个关键因素,对深水油气勘探具有一定的指导意义。  相似文献   

11.
A high-resolution bathymetric and seismic study of sinuous midfan channels on the Amazon Fan shows that some common elements of seismic profiles across the channel/levee system may be side echoes (sideswipe) from reflective, coarse channel-floor sediments Which lie to the side of the ship track. This includes portions of a dipping zone of high-amplitude reflectors beneath the channel. If these strong echoes are side echoes rather than buried coarse sediments, there may be less coarse material present within the midfan channel/levee systems than predicted, and channel evolution is still poorly resolved. Side echoes may be common in other areas of complex deep-sea morphology.  相似文献   

12.
The Var turbiditic system located in the Ligurian Sea (SE France) is an intermediate mud/sand-rich system. The particularity of the Var deep-sea fan is its single channel with abrupt bends and its asymmetric and hyper-developed levee on the right hand side: the Var Sedimentary Ridge. Long-term sediment accumulation on the Var Sedimentary Ridge makes this an ideal target for studying the link between onshore climate change and deep-sea turbidite stratigraphy. This paper focuses on the establishment of the first detailed stratigraphy of the levee, which is used to analyze the timing of overbank deposition throughout the last deglaciation. Main results indicate that high variability in turbidite frequencies and deposition rates along the Var Sedimentary Ridge are determined by two main parameters: 1) the progressive decrease of the levee height controlling the ability of turbidity currents to spill out from the channel onto the levee, and 2) climatic variations affecting the drainage basin, in particular changes in glacial condition since late Last Glacial Maximum to early Holocene. Compared to other deep-water areas, this study confirms the ability of turbiditic systems to record past climatic events on millennial timescales, and underlines the influence of European deglaciation on the observed decrease in turbidite activity in the Var canyon. The presence of a very narrow continental shelf and a single, large channel-levee system makes the Var Sedimentary Ridge a unique example of climate-controlled turbiditic accumulations.  相似文献   

13.
The Middle to Upper Jurassic Todagin assemblage in northwestern British Columbia, Canada, was deposited in the Bowser Basin above arc-related rocks of the Stikine terrane. Sedimentary structures indicate that a variety of gravity flow processes were involved in transport and deposition in deep-water slope environments. At Mount Dilworth, laterally continuous and channelized turbidites are interbedded with and overlain by mass-transport deposits in which sedimentary clasts are supported in a mudstone matrix. More than 50% of the succession consists of mass-transport deposits, indicating significant slope instability. A 300 m thick mass-transport complex exposed near the top of the succession is interpreted to result from tectonic activity, which triggered a major change in sediment supply from a local source area. At Todagin Mountain, a channel complex displays three successive channel-fills with associated overbank sedimentation units. Mass-transport deposits are rare, and confined to channel axes. Channels 1 and 2 are characterized by 40-50 m thick, ungraded pebble clast-supported conglomerate while the uppermost Channel 3 contains graded beds and occasional traction structures. The gradual change from erosive and amalgamated channel deposits at the base, to more aggradational channels at the top, is related to elevation of the equilibrium profile. Creation of accommodation favored aggradation on the mud-dominated slope succession and construction of well-developed channel-levee systems. The vertical succession exposed at Todagin Mountain is consistent with normal progradation of the slope under high sedimentation rates. In the Mount Dilworth area, extensional faulting associated with development of the restricted Eskay rift in the early Middle Jurassic produced a dissected basement above which the Todagin assemblage was deposited. These structures were inverted during collision of the Stikine and Cache Creek terranes, and likely played a major role in the stratigraphic evolution of the deep-water architectures.  相似文献   

14.
等深流影响的水道沉积体系的沉积特征及其沉积过程是当前深水沉积学研究的热点、难点和前沿科学问题,但研究程度较为薄弱。该文以北礁凹陷上新统(地震反射T20?T30)为研究对象,利用覆盖北礁凹陷局部的三维地震资料,采用均方根属性、相干属性、时间域构造,再结合地震切片等方法,研究北礁凹陷深水区上新统斜交斜坡(走向)的特殊水道沉积体系特征及其沉积过程。研究发现,该水道沉积体系分为早、晚两期,早期发育水道和片状、扇状溢堤沉积,晚期仅发育水道和片状溢堤沉积,其中扇状溢堤沉积仅发育在水道右侧弯曲处,片状溢堤沉积仅分布在水道左侧,水道始终与区域斜坡斜交,水道对称分布且无明显迁移现象。结合该时期北礁凸起发育等深流相关的丘状漂积体和环槽,认为该水道沉积体系特殊的形态主要受控于等深流与浊流交互作用的沉积结果:浊流流经水道,其上覆浊流溢出水道,形成溢岸浊流,在水道左侧,该溢岸浊流与等深流发生相向运动,被等深流“吹拂”到单侧,大面积分布,延伸千米,形成片状溢堤沉积;而在水道弯曲处(右侧),溢岸浊流与等深流发生相对运动,抑制溢岸浊流进一步扩展,形成相对小范围扇状溢堤沉积,该沉积结果与前人水槽实验结果相一致。  相似文献   

15.
Triple mass-transport deposits(MTDs) with areas of 625, 494 and 902 km2, respectively, have been identified on the north slope of the Xisha Trough, northern South China Sea margin. Based on high-resolution seismic reflection data and multi-beam bathymetric data, the Quaternary MTDs are characterized by typical geometric shapes and internal structures. Results of slope analysis showed that they are developed in a steep slope ranging from 5° to 35°. The head wall scarps of the MTDs arrived to 50 km in length(from headwall to termination). Their inner structures include well developed basal shear surface, growth faults, stepping lateral scarps, erosion grooves, and frontal thrust deformation. From seismic images, the central deepwater channel system of the Xisha Trough has been filled by interbedded channel-levee deposits and thick MTDs. Therefore, we inferred that the MTDs in the deepwater channel system could be dominated by far-travelled slope failure deposits even though there are local collapses of the trough walls. And then, we drew the two-dimensional process model and threedimensional structure model diagram of the MTDs. Combined with the regional geological setting and previous studies, we discussed the trigger mechanisms of the triple MTDs.  相似文献   

16.
 Visual observations of the wall of Great Bahama Canyon indicate that ledges produced by differential submarine erosion occur at depths like reflectors on high-resolution seismic profiles, suggesting lithologic changes produce acoustic impedance contrasts and therefore reflectors. Quaternary-aged sediments in a core from Little Bahama Bank exhibit changes in lithology (and presumably acoustic impedance) associated with glacial-to-interglacial transitions, which also correspond in depth to seismic reflectors. This supports the concept that reflectors on high-resolution seismic profiles of Bahamian periplatform ooze correspond directly to changes in lithology and may be associated with climate/sea level fluctuations. Received: 30 June 1998 / Revision received: 20 January 1999  相似文献   

17.
Shallow 3D seismic data show contrasting depositional patterns in Pleistocene deepwater slopes of offshore East Kalimantan, Indonesia. The northern East Kalimantan slope is dominated by valleys and canyons, while the central slope is dominated by unconfined channel–levee complexes. The Mahakam delta is immediately landward of the central slope and provided large amounts of sediments to the central slope during Pleistocene lowstands of sea level. In the central area, the upper slope contains relatively straight and deep channels. Sinuous channel–levee complexes occur on the middle and lower slope, where channels migrated laterally, then aggraded and avulsed. Younger channel–levee complexes avoided bathymetric highs created by previous channel–levee complexes. Levees decrease in thickness down slope. Relief between channels and levees also decreases down slope.North of the Mahakam delta, siliciclastic sediment supply was limited during the Pleistocene, and the slope is dominated by valleys and canyons. Late Pleistocene rivers and deltas were generally not present on the northern outer shelf. Only one lowstand delta was present on the northern shelf margin during the upper Pleistocene, and sediments from that lowstand delta filled a pre-existing slope valley complex and formed a basin-floor fan. Except for that basin-floor fan, the northern basin floor shows no evidence of sand-rich channels or fans, but contains broad areas with chaotic reflectors interpreted as mass transport complexes. This suggests that slope valleys and canyons formed by slope failures, not by erosion associated with turbidite sands from rivers or deltas. In summary, amount of sediment coming onto the slope determines slope morphology. Large, relatively steady input of sediment from the Pleistocene paleo-Mahakam delta apparently prevented large valleys and canyons from developing on the central slope. In contrast, deep valleys and canyons developed on the northern slope that was relatively “starved” for siliciclastic sediment.  相似文献   

18.
Visual observations of the wall of Great Bahama Canyon indicate that ledges produced by differential submarine erosion occur at depths like reflectors on high-resolution seismic profiles, suggesting lithologic changes produce acoustic impedance contrasts and therefore reflectors. Quaternary-aged sediments in a core from Little Bahama Bank exhibit changes in lithology (and presumably acoustic impedance) associated with glacial-to-interglacial transitions, which also correspond in depth to seismic reflectors. This supports the concept that reflectors on high-resolution seismic profiles of Bahamian periplatform ooze correspond directly to changes in lithology and may be associated with climate/sea level fluctuations.  相似文献   

19.
We utilized reflection seismic and bathymetric data to infer the canyon-infilling, fold uplift, and gas hydrate occurrences beneath the frontal fold at the toe of the accretionary wedge, offshore SW Taiwan. The lateral migrating paleo-Penghu canyons has cut across the frontal fold with six distinct canyon/channel incisions marked by channel infills. The longitudinal bathymetric profile along the modern canyon course shows a knickpoint of ~300 m relief at this frontal fold, indicating that the rate of fold uplift is greater than that of canyon incision. The age for the initial thrusting of this fontal fold is around 240 kyr ago, as estimated by using the maximum thickness of growth strata of this fold divided by the sedimentation rate obtained from a nearby giant piston core. Bottom simulating reflector (BSR) on seismic sections indicates the base of gas hydrate stability zone. Beneath the frontal fold, there is a widespread occurrence of BSRs, suggesting the highly probable existence of substantial quantities of gas hydrates. A seismic flat spot and a few push-down reflectors below BSR are found lying beneath the anticlinal axis with bathymetric four-way dip closure. The flat spot, cutting across a series of dipping reflections beneath BSR, may indicate the contact between free gas and its underlying formation water. The push-down reflectors beneath BSRs are interpreted to result from abundant free gas hosted beneath the gas hydrate stability zone. The multiple paleo-canyon infills seen along and beneath the frontal fold and above BSRs may provide thick porous sands to host gas hydrates in the frontal fold.  相似文献   

20.
Seismic oceanography is a new cross-discipline of reflection seismology and physical oceanography. The biggest difference between seismic oceanography and traditional reflection seismology is its research object of time-varied seawater. How to estimate the temporal variations of reflectors in water structure and make some corrections in seismic data are basic problems in seismic oceanography research. Here a method of estimation for seawater movement is provided based on the reflectors. The application results of this method to the simulated and field seismic data turn out to be acceptable. As compared with the previous research, this method has the advantages of low-dependence on migration velocity and dip of reflectors, and it is very suitable for correction in a spectral analysis using seismic data, which is very useful in the research of ocean energy budget.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号