首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Grounded-source TEM modelling of some deep-seated 3D resistivity structures   总被引:2,自引:0,他引:2  
Long-offset transient electromagnetics (LOTEM) is now regarded as a suitable electrical method for deep exploration along with magnetotellurics (MT). In this method, the vertical magnetic-field impulse response and, occasionally, the horizontal electric-field step response of a grounded-wire source on the surface of the earth are measured. Here, these two responses are computed for 3D models of three deep resistivity structures of interest in hydrocarbon exploration: (i) a faulted graben in a resistive basement rock at a depth of 4 km beneath a conductive overburden; (ii) a facies change in a resistive layer buried at a depth of 2 km in the conductive overburden above a resistive basement; and (iii) an anticlinal uplift of a resistive layer at a depth of 1 km in the conductive overburden above a resistive basement. The results show that the sensitivity of the electric-field response to model perturbation is generally greater than that of the magnetic-voltage response. Further, the electric-field sensitivity is confined to early and intermediate times while that of the magnetic-voltage response is confined to intermediate and late times. Hence it is recommended that both electric and magnetic recordings are made in a LOTEM survey so that the final results can be presented as apparent-resistivity curves derived from the two responses jointly as well as separately.  相似文献   

2.
We compare the resolution power of single frequency very low frequency (VLF) electromagnetic data (real and imaginary parts of the tipper) and multi-frequency RadioMagnetoTelluric (RMT) data in delineating conductive structures typical for the sedimentary cover over crystalline basement in Scandinavia. Using VLF field data from five parallel profiles reveals that the estimated models have responses that fit the observed data well, and the models show an overall agreement with more detailed models derived from broadband RMT data. It is suggested that VLF data be used as a fast mapping tool to fill in the gaps between profiles along which more detailed RMT measurements are made. A generic model with conductive clay lenses and sandy formations over crystalline basement is used to generate synthetic data for the two cases. Using regularized inversion the corresponding estimated models clearly shows the strength and the weakness of both methods. Being inductive methods, they both have difficulties in clearly resolving the depth transition from conductive to resistive units. Especially the single frequency VLF data can be interpreted with very smooth models at depth. However, both methods resolve very well the lateral boundaries of the clay lenses and the RMT data also constrain the thickness of the clays quite well compared with the VLF models, which are less distinct at depth. Single frequency scalar VLF data emphasize those conductive structures that have dominant strikes in the direction of the transmitter. Multi-frequency VLF (tensor VLF) measurements provide the tipper vector which depends upon the underlying conductivity structure only. Real conductivity structures have significant 3D components which can be delineated easily by tensor VLF measurements. We propose that new VLF instrumentation be developed with this in mind.  相似文献   

3.
The indication from surface measurements of a zone of relatively high conductivity (resistivity<200 ohm-m) at depths between 20 and 50 km has become so general over the Earth that regions without this zone can be considered anomalous. However, the depths indicated often span the lower crust and the uppermost mantle, so that before any effect can be definitely attributed to one or the other, the depth resolution in the electromagnetic measurements must be carefully considered. This paper applies the eigenvector decomposition of generalized linear inverse theory to soundings by Schlumberger resistivity, by magnetotellurics, by man-made electromagnetic fields formed by controlled current flow in grounded electric transmission lines, and by natural magnetic field variation studies to improve the bounds on depth, thickness and conductivity of a conductive layer. It is shown that many of the methods are capable of giving the depth to the top of a conductor with remarkable accuracy. Joint inversion of two or more of them offers an advantage in the separation of thickness and conductivity of both conductive and resistive layers. Natural geomagnetic field transfer functions, while accurately mapping the position of the edge of a conductor, do not provide the resolution of the other techniques, largely because the frequencies that can be practically measured at present are much too low.  相似文献   

4.
Two-dimensional numerical model calculations, employing a finite difference technique, are used to study the behaviour of the induction arrows, for a range of periods, for a conductive plate of (i) semi-infinite and (ii) finite width in uniform and layered resistive hosts. The results for the conductive plate at the surface of the host have application to a uniform-depth ocean, while the results for the plate buried at some depth in the resistive host have application to a conductive sill in a resistive Earth. The numerical results indicate that for a profile over the plate-host vertical interface the in-phase arrows for all periods and locations point towards the conductive plate, while the quadrature arrows at periods near the characteristic period of the model are oppositely directed on either side of the interface so as to point towards each other and towards the interface for nearby locations, both over the conductive plate and the resistive host. Further, the quadrature arrow undergoes a second reversal over the resistive host at a distance from the interface that is somewhat dependent on the period. Thus, at either side of the location of this second reversal, the quadrature induction arrows are again oppositely directed, but pointing away from each other, with the arrows near the interface pointing towards, and the more distant arrows pointing away from the conductive plate. The period range for the quadrature-arrow reversal is characteristic of conductivities and layer depths. The features of the quadrature-arrow sign reversals at and near the interface are in accordance with the earlier laboratory analogue model results of Hebert et al. for the Newfoundland coastal region and Nienaber et al. for a conductive plate in a resistive host.

It is suggested that in practice the sign reversal of the quadrature arrow may aid in locating a conductor-host interface, and that if the conductivity of the host is known, the maximum in the anomalous vertical magnetic field response may permit an approximate determination of the conductive-layer depth.  相似文献   


5.
Variable frequency soundings in the audio-range replaces shallow conventional direct current methods for determination of layer parameters when surface layer resistivity is high. Central frequency soundings (CFS) is one such method that involves measurement of the existing vertical magnetic field component induced at the centre of a horizontal circular or square loop. Dipole method of frequency sounding using small horizontal coplanar loops (abbreviated DFS) measuring the same field component is also considered. Theoretical studies on CFS and DFS over two- and three-layer horizontally stratified earth are carried out and the response characteristics computed and analysed.Theoretical response curves for CFS and DFS over two- and three-layer earth models are presented in convenient forms. Response curves under similar geological-physical conditions are compared. The study indicates that the relative superiority of a method is controlled largely by the nature of the conductivity contrast and the ratio of the first layer thickness to loop radius or dipole separation. While CFS shows a better resolution of conductivity contrast, DFS works better at high frequencies. For resistive substratum, however, both lack proper resolution.  相似文献   

6.
Magneto-telluric measurements were carried out at a group of eight sites, from Braunschweig to Lübeck, to determine the resistivity values associated with the North German conductivity anomaly. The data were analyzed for scalar and tensor apparent resistivities over the period range 5–2000 seconds. The results in general indicate very conductive (?I Ω-m) sediments overlying a resistive basement which is strongly lineated. Interpreted basement depth (?6 km) is compatible with published seismic refraction data. Principal conductivity axes in the basement appear to be directly related to trends of salt domes and major troughs. A major change in axis direction occurs near the center of the North German anomaly.  相似文献   

7.
The time-domain controlled source electromagnetic method is a geophysical prospecting tool applied to image the subsurface resistivity distribution on land and in the marine environment. In its most general set-up, a square-wave current is fed into a grounded horizontal electric dipole, and several electric and magnetic field receivers at defined offsets to the imposed current measure the electromagnetic response of the Earth. In the marine environment, the application often uses only inline electric field receivers that, for a 50% duty-cycle current waveform, include both step-on and step-off signals. Here, forward and inverse 1D modelling is used to demonstrate limited sensitivity towards shallow resistive layers in the step-off electric field when transmitter and receivers are surrounded by conductive seawater. This observation is explained by a masking effect of the direct current signal that flows through the seawater and primarily affects step-off data. During a step-off measurement, this direct current is orders of magnitude larger than the inductive response at early and intermediate times, limiting the step-off sensitivity towards shallow resistive layers in the seafloor. Step-on data measure the resistive layer at times preceding the arrival of the direct current signal leading to higher sensitivity compared to step-off data. Such dichotomous behaviour between step-on and step-off data is less obvious in onshore experiments due to the lack of a strong overlying conductive zone and corresponding masking effect from direct current flow. Supported by synthetic 1D inversion studies, we conclude that time-domain controlled source electromagnetic measurements on land should apply both step-on and step-off data in a combined inversion approach to maximize signal-to-noise ratios and utilize the sensitivity characteristics of each signal. In an isotropic marine environment, step-off electric fields have inferior sensitivity towards shallow resistive layers compared to step-on data, resulting in an increase of non-uniqueness when interpreting step-off data in a single or combined inversion.  相似文献   

8.
Computations of the time-domain electromagnetic response of a multi-layered earth have been carried out for different source-receiver coil systems. The primary excitation is a train of half-sinusoidal waveforms of alternating polarity. The conversion into the time-domain involves Fourier series summation of the matched complex mutual coupling ratios of the layered earth models computed by a digital linear filter method. As an example, the response of a perpendicular coil system on the ground surface for two source-receiver separations has been presented for a five-layer earth model. This has been compared with the responses of homogeneous, two-layer, three-layer, and four-layer models. Next, the investigations have been extended to study the problems of equivalence of three-layer models, the intermediate layer of which is either conductive or resistive. For an intermediate conductive layer (H-type), the studies show that in the early portion of the signal the interpretation of a true three-layer earth is possible to some extent, whereas the ambiguity due to equivalence persists in the late samples. On the other hand, for an intermediate resistive layer (K-type), the three-layer earth and its equivalent model cannot be distinguished from each other over the entire sampling period. On the basis of a computational approach, equivalence has been empirically established as √h/ρ=constant for H-type earth-sections, and as h2ρ=constant for K-type earth sections, where h and ρ are respectively the thickness and resistivity of the intermediate layer.  相似文献   

9.
Responses of a multifrequency, multicoil airborne electromagnetic (AEM) system were modelled numerically for 3D electrical conductors embedded in a resistive bedrock and overlain by an overburden of low to moderate conductivity. The results cover a horizontal coplanar coil configuration and two frequencies, 7837 Hz and 51 250 Hz. The models studied are single or multiple, poor conductors (conductance lower than 0.1 S) embedded in a host rock of high but finite resistivity (5000 Ωm) and overlain by a layer of overburden with finite thickness and low to moderate conductivity (conductance up to 2 S). On the basis of the modelling results, limits of detectability for poor conductors have been studied for the various model structures. The results indicate that the anomaly from a steeply dipping, plate-like conductor will decrease significantly when the conductor is embedded in a weakly conductive host rock and is overlain by a conductive overburden. However, an anomaly is obtained, and its magnitude can even increase with increasing overburden conductivity or frequency. The plate anomaly remains practically constant when only the overburden thickness is varied. Changes in overburden conductivity will cause the plate-anomaly values to change markedly. If the plate conductance is less than that of the overburden, a local anomaly opposite in sign to the normal type of anomaly will be recorded. Another major consequence is that conductors interpreted with free-space models will be heavily overestimated in depth or underestimated in conductance, if in reality induction and current channelling in the host rock and overburden make even a slight contribution to the anomalous EM field. The lateral resolution for the horizontal coplanar coil system was found to be about 1.7 times the sensor altitude. Similarly, the lateral extension of a horizontal conductive ribbon, required to reach the semi-infinite (half-space) behaviour, is more than three times the sensor altitude. Finally, screening of a steeply dipping plate, caused by a small, conductive horizontal ribbon, is much more severe than screening of the same plate by an extensive horizontal layer.  相似文献   

10.
The VLF filtering technique of Karous and Hjelt has been applied to fixed-loop step-response transient electromagnetic data. This allows the data measured in each channel to be converted to an equivalent current-density pseudosection. For a conductive half-space, the maximum value of the equivalent current density starts near the transmitter loop and migrates outwards as a function of delay time. The rate of migration tends to increase as a function of delay time, with the increase being faster for a surficial conductive layer than it is for a half-space. Theoretical and field examples show that the currents tend to be more persistent in the relatively conductive areas, so that a pseudosection which is the average of the current densities at all delay times will highlight the more conductive zones. In resistive ground, it is not so critical to average the pseudosections as a particular delay time may give a better idea of the conductivity structure. For example, the latest possible delay time will reveal the most conductive features.  相似文献   

11.
The interpretation of magnetotelluric (MT) measurements carried out on shallow (several hundred metres deep) basins and on the surrounding highly resistive rock outcrops can be difficult due to different forms of distortion, mainly 3D effects. A good example for study of this problem is the Mór Graben, which is the transition zone between the Bakony and Vértes Mountains (W-Hungary), where more than 20 MT soundings have been made with stations spaced about 2 km apart to determine the structure of a conductivity anomaly at a depth of about 3–4 km.

The statistical treatment of the different distortions due to varying sediment cover (the S-effect or static shift) and to the steep wall of the resistive basement outcrops (edge effect), etc., enabled the estimation of the actual parameters of the conductive formation. The interpretation of the field data is supported by numerical modelling.  相似文献   


12.
邢台地震区大地电磁观测与研究   总被引:2,自引:0,他引:2  
在邢台地震区进行了大地电磁观测,并对该地区电性结构与地震的关系进行了研究.该地区地下电性结构较复杂,电性在纵向及横向都存在着显著的变化.一维结果表明,该地区电性纵向分布可分五层,第三层为高导层,埋深约10-20 km.在地震震源集中区,高导层深度有较大变化.电性横向分布也有明显变化.总体上看,地震区内电阻较高,可是地震并不发生在电阻率最高的地点,而多发生在电性变化较大地段.  相似文献   

13.
SeaBed Logging (SBL) is an application of the marine controlled source electromagnetic (CSEM) method that is used to directly detect and characterize possible hydrocarbon-bearing prospects. Although the CSEM method has been used by academia for more than three decades, the application as a direct hydrocarbon indicator was first introduced about five years ago. The central idea of SBL is the guiding of electromagnetic energy in thin resistive layers within conductive sediments. Even if it has been well known for a long time that electromagnetic signals can propagate from a conductive region to another via resistive regions such as air or resistive parts of the lithosphere, the application to hydrocarbon exploration has not been developed until recently. This might be due to the uncertainty of getting any significant response from thin resistive layers such as hydrocarbon reservoirs since electromagnetic energy is highly attenuated in conductive sediments. Thus, during the early development phase of the SBL technique, a scaled laboratory experiment was performed to validate if a thin resistive layer (e.g. hydrocarbons) buried within conductive media (e.g. sediments) could be remotely detected by using electric dipoles as sources and receivers. Data from this experiment were compared to a forward modelling code for layered media, and the comparison showed good agreement between experimental and theoretical results. This suggested that thin resistive layers buried in conductive media are detectable due to the guiding of the electromagnetic field within the resistor. The successful results were vital for realizing the application of marine CSEM as a hydrocarbon exploration technique. We here present the results of the first scaled SBL experiment.  相似文献   

14.
The electrical properties of several tens of metres of lateritic weathering mantle were investigated by using electrical resistivity tomography (ERT) in two basement areas of eastern Senegal. The field survey was conducted along two profiles providing continuous coverage. Colour-modulated pseudosections of apparent resistivity vs. pseudo-depth were plotted for all survey lines, giving an approximate image of the subsurface structure. In the area underlain by granitic basement, the pseudosection suggests a very inhomogeneous weathered layer in which the apparent resistivity changes more rapidly than thickness. In the second area, underlain by schists, the lateral changes in electrical properties are less pronounced than those of the granitic area. Interpretation of 2D Wenner resistivity data yielded considerable detail about the regolith, even without pit information. In both areas, the near-surface topsoil comprising undersaturated lateritic material is highly resistive. The intermediate layer with low resistivities (e.g., 20–100 Ωm) contains clays including small quantities of water. The third, highly resistive layer reflects the granitic basement. Comparison of ERT survey results with pit information shows general agreement and suggests that ERT can be used as a fast and efficient exploration tool to map the thick lateritic weathering mantle in tropical basement areas with hard rock geology.  相似文献   

15.
There is growing interest in the use of transient electromagnetic (TEM) sounding for shallow geotechnical, environmental and groundwater investigations. Two commonly used transmitterreceiver configurations for TEM sounding are 1) loop-loop or its variation, in-loop configuration and 2) wire-loop configuration. The less common configuration of a horizontal electric dipole (HED) transmitter and receiver is treated in this study and called wire-wire configuration.Two important problems of shallow investigation in hard and soft rocks respectively are, defining 1) a fractured/fissured zone of medium resistivity, sandwiched between an overlying surface weathered rock of low resistivity and an underlying fresh compact rock of high resistivity and 2) a body of resistive sand buried in conductive clay. Lateral change in the middle layer resistivity is modeled by including a 3-D body of anomalous resistivity. The effect of perturbing the resistivity of the 3-D inclusion and the host middle layer for the wire-wire configuration is compared with that of the commonly used loop-loop configuration. The wire-wire configuration is found more sensitive to the model perturbations than the loop-loop configuration.1-D inversion of synthetic 1-D data sets for the wire-wire configuration finds resolution and estimation errors to be less than 10 percent for all the model parameters. For 3-D models, 1-D inversion results give a resolution error of 10 percent or less for the depth to, resistivity and thickness of, the 3-D inclusion. The estimate is within 10 percent of the true value for the first parameter but 40 percent for the other two. Resolution as well as estimation of the basement resistivity is always very poor.Using the wire-wire configuration, it is theoretically possible to define a buried resistive layer and any lateral change in its resistivity, subject to the above limitations of 1-D inversion. However, the basement resistivity cannot be estimated with reasonable accuracy in the presence of a lateral inhomogeneity in the overlying layer.  相似文献   

16.
To understand the crustal electric structure of the Puga geothermal field located in the Ladakh Himalayas, wide band (1000 Hz–0.001 Hz) magnetotelluric (MT) study have been carried out in the Puga area. Thirty-five MT sites were occupied with site spacing varying from 0.4 to 1 km. The measurements were carried out along three profiles oriented in east–west direction. After the preliminary analysis, the MT data were subjected to decomposition techniques. The one-dimensional inversion of the effective impedance data and the two-dimensional inversion of the TE (transverse electric) and TM (transverse magnetic) data confirm the presence of low resistive (5–25 Ω m) near surface region of 200–300 m thick in the anomalous geothermal part of the area related to the shallow geothermal reservoir. Additionally, the present study delineated an anomalous conductive zone (resistivity less than 10 Ω m) at a depth of about 2 km which is possibly related to the geothermal source in the area. A highly resistive basement layer separates the surface low resistive region and anomalous conductive part. The estimated minimum temperature at the top of conductive part is about 250 °C. The significance of the deeper conductive zone and its relation to the geothermal anomaly in the area is discussed.  相似文献   

17.
The in-loop pulse electromagnetic response of a stratified earth has been expressed in terms of an apparent resistivity- time plot using the PEM response over a homogeneous half-space which is typically unipolar with monotonic decay. This half-space response characteristic provides a unique relationship between Crone PEM channel amplitude and the apparent half-space resistivity. The possibility to resolve a thin intermediate conductive and resistive layer with the in-loop PEM system has been investigated. The system is well in shallow geoelectric mapping.  相似文献   

18.
Magnetotelluric (MT) measurements were conducted at Iwate volcano, across the entirety of the mountain, in 1997, 1999, 2003, 2006, and 2007. The survey line was 18 km in length and oriented E–W, comprising 38 measurements sites. Following 2D inversion, we obtained the resistivity structure to a depth of 4 km. The surface resistive layer (~ several hundreds of meters thick) is underlain by extensive highly conductive zones. Based on drilling data, the bottom of the highly conductive zone is interpreted to represent the 200 °C isotherm, below which (i.e., at higher temperatures) conductive clay minerals (smectite) are rare. The high conductivity is therefore mainly attributed to the presence of hydrothermally altered clay. The focus of this study is a resistive body beneath the Onigajo (West-Iwate) caldera at depths of 0.5–3 km. This body appears to have impeded magmatic fluid ascent during the 1998 volcanic unrest, as inferred from geodetic data. Both tectonic and low-frequency earthquakes are sparsely distributed throughout this resistive body. We interpret this resistive body as a zone of old, solidified intrusive magma with temperatures in excess of 200 °C. Given that a similar relationship between a resistive body and subsurface volcanic activity has been suggested for Asama volcano, structural controls on subsurface magmatic fluid movement may be a common phenomenon at shallow levels beneath volcanoes.  相似文献   

19.
Airborne electromagnetic (AEM) methods are increasingly being used as tools of geological mapping, groundwater exploration and prospecting for coal and lignite. In such applications, quantitative interpretation is commonly based on the layered-earth model. A new approach, a damped least-squares inversion with singular value decomposition, is proposed for interpretation of time-domain, towed-bird AEM data. Studies using theoretical and field AEM data indicate that inversion techniques are dependable and provide fast converging solutions. An analysis has been made of the accuracy of model parameter determination, which depends on resistivity and thickness distribution. In the common case of conductive overburden, upper-layer resistivity and thickness are usually well determined, although situations exist where their separation becomes difficult. In the case of a resistive layer overlying a conductive basement, the layer thickness is the best-determined parameter. In both cases, estimates of basement resistivity are the least reliable. Field data obtained with the Chinese-made M-l AEM system in Dongling, Anhui Province, China, were processed using the described inversion algorithm. The survey area comprised fluvial Cenozoic clays and weathered Mesozoic sediments. Inversion of AEM data resulted in accurate depth-to-bedrock sections and realistic estimates of the resistivities of overburden and bedrock which agree with the results of drilling and resistivity sounding.  相似文献   

20.
局部畸变问题曾经困扰大地电磁资料反演解释几十年,大地电磁三维数值模拟技术的发展为剖析局部畸变特点和得到可靠的反演成像结果提供了技术基础。本文采用三维数值模拟成像方法对典型三维局部畸变模型进行模拟分析。三维数值模拟结果显示:电场分量垂直电性分界面的极化模式视电阻率曲线(对应二维情况下TM模式)在穿越低阻异常体界面时,曲线会先上移后下移,而在穿越高阻异常体界面时,曲线会先下移后上移,这与电性分界面处积累面电荷产生的二次电场有关。三维模型中XY模式、YX模式视电阻率和相位在三维异常体附近的水平变化是呈现近似垂向对称的,该现象与电场垂直跨越电性界面时视电阻率的变化规律是吻合的,当测线分别沿X方向和Y方向展布时,三维情况下的XY和YX模式分别对应二维情况下的TM模式。低阻小异常体对区域构造响应的畸变影响比高阻小异常体要严重。低阻小异常体对二维区域响应的两种极化模式视电阻率和相位都有非常明显的畸变影响,相比较而言对TE模式的畸变要大于TM模式,因此我们在做二维反演解释时,可优先考虑拟合TM模式数据。位于小异常体中心上方测点的三维畸变响应虽然与对应真实二维区域响应的差异比较大,但可以等效于某种二维模型响应,这种由局部畸变造成的假二维响应在实际野外数据的解释中是需要注意的。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号