首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the rotation profile of solar-like stars with magnetic fields. A diffu-sion coefficient of magnetic angular momentum transport is deduced. Rotating stellar models with different mass incorporating the coefficient are computed to give the rotation profiles. The total angular momentum of a solar model with only hydrodynamic instabilities is about 13 times larger than that of the Sun at the age of the Sun, and this model can not reproduce quasi-solid rotation in the radiative region. However, the solar model with magnetic fields not only can reproduce an almost uniform rotation in the radiative region, but also a total angular momentum that is consistent with the helioseismic result at the 3 σ level at the age of the Sun. The rotation of solar-like stars with magnetic fields is almost uniform in the radiative region, but for models of 1.2-1.5 M⊙, there is an obvious transition region between the convective core and the radiative region, where angular velocity has a sharp radial gradient, which is different from the rotation profile of the Sun and of massive stars with magnetic fields. The change of angular velocity in the transition region increases with increasing age and mass.  相似文献   

2.
In this paper we give general relativistic expressions for the angular momentum and rotational kinetic energy of slowly rotating stars. These expressions contain contributions from the presure, gravitational red shift, and Doppler shift, and the motion of inertial frames. These contributions are not negligible, e.g., there are stable neutron star models for which the angular velocity of inertial frames at the center is about 70% the angular velocity of the star. These expressions are useful in the study of pulsars if pulsars are rotating neutron stars.  相似文献   

3.
During CO observations of new Southern objects with the 15-m SEST mm telescope (Cerro La Silla, Chile) we have found that the globule connected with the object CLN127-128 rotates with an angular velocity 4.3 · 10-14 s-1, which corresponds to the velocity of extremely fast rotating globules. The object CLN127-128 is a chain of three stars; two of them are connected with bright nebulae, and the third is a suspected Herbig Ae/Be star. All three stars are bright in near IR, which is specific for the existence of circumstellar shells (or disks) around them. The specific angular momentum of the globule confirms that it is in virial equilibrium. Besides the finding of a rotating globule, CO observations suggest the presence of a blue-shifted outflow from CLN127-128 with a velocity of -1.1 km/s (in the system connected with the globule).  相似文献   

4.
The evolutionary behaviour of rotating low-mass stars in the mass range 0.2 and 0.9M has been investigated during the pre-Main-Sequence phase. The angular momentum is conserved locally in radiative regions and totally in convective regions, according to a predetermined angular velocity distribution depending on the structure of the star. As the stars contract toward the zero-age Main Sequence, they spin up under the assumption that the angular momentum is conserved during the evolution of the stars. When the stars have differential rotations, their inner regions rotate faster than the outer regions. The effective temperatures and luminosities of rotating low-mass stars are obtained lower than those of non-rotating stars. They have lower central temperature and density values compared to those of non-rotating stars.  相似文献   

5.
We consider the evolution of a rotating star with a mass of 16M and an angular momentum of 3.25 × 1052 g cm2 s?1, along with the hydrodynamic transport of angular momentum and chemical elements in its interiors. When the partial mixing of matter of the turbulent radiative envelope and the convective core is taken into account, the efficiency of the angular momentum transport by meridional circulation in the stellar interiors and the duration of the hydrogen burning phase increase. Depending on the Schmidt number in the turbulent radiative stellar envelope, the ratio of the equatorial rotational velocity to the circular one increases with time in the process of stellar evolution and can become typical of early-type Be stars during an additional evolution time of the star on the main sequence. Partial mixing of matter is a necessary condition under which the hydrodynamic transport processes can increase the angular momentum of the outer stellar layer to an extent that the equatorial rotational velocity begins to increase during the second half of the evolutionary phase of the star on the main sequence, as shown by observations of the brightest stars in open star clusters with ages of 10–25 Myr. When the turbulent Schmidt number is 0.4, the equatorial rotational velocity of the star increases during the second half of the hydrogen burning phase in the convective core from 330 to 450 km s?1.  相似文献   

6.
Nearly all of the initial angular momentum of the matter that goes into each forming star must somehow be removed or redistributed during the formation process. The possible transport mechanisms and the possible fates of the excess angular momentum are discussed, and it is argued that transport processes in discs are probably not sufficient by themselves to solve the angular momentum problem, while tidal interactions with other stars in forming binary or multiple systems are likely to be of very general importance in redistributing angular momentum during the star formation process. Most, if not all, stars probably form in binary or multiple systems, and tidal torques in these systems can transfer much of the angular momentum from the gas around each forming star to the orbital motions of the companion stars. Tidally generated waves in circumstellar discs may contribute to the overall redistribution of angular momentum. Stars may gain much of their mass by tidally triggered bursts of rapid accretion, and these bursts could account for some of the most energetic phenomena of the earliest stages of stellar evolution, such as jet-like outflows. If tidal interactions are indeed of general importance, planet-forming discs may often have a more chaotic and violent early evolution than in standard models, and shock heating events may be common. Interactions in a hierarchy of subgroups may play a role in building up massive stars in clusters and in determining the form of the upper initial mass function (IMF) . Many of the processes discussed here have analogues on galactic scales, and there may be similarities between the formation of massive stars by interaction-driven accretion processes in clusters and the buildup of massive black holes in galactic nuclei.  相似文献   

7.
A very well-known property of close binary stars is that they usually rotate slowly than a similar type single star. Massive stars in close binary systems are supposed to experience an exchange of mass and angular momentum via mass transfer and tidal interaction, and thus the evolution of binary stars becomes more complex than that of individual stars. In recent times, it has become clear that a large number of massive stars interact with binary companions before they die. The observation also reveals that in close pairs the rotation tends to be synchronized with the orbital motion and the companions are naturally tempted to invoke tidal friction. We here introduce the effect of tidal angular momentum in the model of wind driven non-conservative mass transfer taking mass accretion rate as uniform with respect to time. To model the angular momentum evolution of a low mass main sequence companion star can be a challenging task. So, to make the present study more interesting, we have considered initial masses of the donor and gainer stars at the proximity of bottom-line main sequence stars and they are taken with lower angular momentum. We have produced a graphical profile of the rate of change of tidal angular momentum and the variation of tidal angular momentum with respect to time under the present consideration.  相似文献   

8.
We analyse the angular momentum evolution from the red giant branch (RGB) to the horizontal branch (HB) and along the HB. Using rotation velocities for stars in the globular cluster M13, we find that the required angular momentum for the fast rotators is up to 1–3 orders of magnitude (depending on some assumptions) larger than that of the Sun. Planets of masses up to 5 times Jupiter's mass and up to an initial orbital separation of ~2 au are sufficient to spin-up the RGB progenitors of most of these fast rotators. Other stars have been spun-up by brown dwarfs or low-mass main-sequence stars. Our results show that the fast rotating HB stars have been probably spun-up by planets, brown dwarfs or low-mass main-sequence stars while they evolved on the RGB. We argue that the angular momentum considerations presented in this paper further support the 'planet second parameter' model. In this model, the 'second parameter' process, which determines the distribution of stars on the HB, is interaction with low-mass companions, in most cases with gas-giant planets, and in a minority of cases with brown dwarfs or low-mass main-sequence stars. The masses and initial orbital separations of the planets (or brown dwarfs or low-mass main-sequence stars) form a rich spectrum of different physical parameters, which manifests itself in the rich varieties of HB morphologies observed in the different globular clusters.  相似文献   

9.
Our Galaxy is a complex machine in which several processes operate simultaneously: metal-poor gas is accreted, is chemically enriched by dying stars, and then drifts inwards, surrendering its angular momentum to stars; new stars are formed on nearly circular orbits in the equatorial plane and then diffuse through orbit space to eccentric and inclined orbits; the central stellar bar surrenders angular momentum to the surrounding disc and dark halo while acquiring angular momentum from inspiralling gas; the outer parts of the disc are constantly disturbed by satellite objects, both luminous and dark, as they sweep through pericentre. We review the conceptual tools required to bring these complex happenings into focus. Our first concern must be the construction of equilibrium models of the Galaxy, for upon these hang our hopes of determining the Galaxy’s mean gravitational field, which is required for every subsequent step. Ideally our equilibrium model should be formulated so that the secular evolution of the system can be modelled with perturbation theory. Such theory can be used to understand how stars diffuse through orbit space from either the thin gas disc in which we presume disc stars formed, or the debris of an accreted object, the presumed origin of many halo stars. Coupling this understanding to the still very uncertain predictions of the theory of stellar evolution and nucleosynthesis, we can finally extract a complete model of the chemodynamic evolution of our reasonably generic Galaxy. We discuss the relation of such a model to cosmological simulations of galaxy formation, which provide general guidance but cannot be relied on for quantitative detail.  相似文献   

10.
Horizontal branch stars should show significant differential rotation with depth. Models that assume systematic angular momentum exchange in the convective envelope and local conservation of angular momentum in the core produce HB models that preserve a rapidly rotating core. A direct probe of core rotation is available. The nonradial pulsations of the EC14026 stars frequently show rich pulsation spectra. Thus their pulsations probe the internal rotation of these stars, and should show the effects of rapid rotation in their cores. Using models of sdB stars that include angular momentum evolution, we explore this possibility and show that some of the sdB pulsators may indeed have rapidly rotating cores.  相似文献   

11.
Pre-Main-Sequence stars with masses between 2 and 5 M (Herbig Ae/Be stars) have radiative subphotospheric envelopes. However, they possess strong stellar winds and show definite signs of activity which could be linked to surface magnetic field. Therefore, they must lose angular momentum at a significant rate.We investigate the effect of such angular momentum losses on the internal structure of these stars, and on the distribution of angular velocity inside them. This paper presents a preliminary analysis guided by an analogy with laboratory and geophysical fluids. We propose that the friction exerted at the stellar surface by the angular momentum losses produces a mixed layer below the surface, separated from the unperturbed interior by an interface. Using scaling laws established by experimental studies of sheared stratified fluids, we discuss a simplified model for the evolution of the mixed layer.Although this model is still too preliminary to allow quantitative predictions, we show that for a reasonable choice of parameters, the mixed layer penetrates into the stellar interior on a time-scale of 106 years, comparable to the Kelvin time-scale for the Herbig Ae/Be stars.  相似文献   

12.
The evolution of a rotating star with a mass of 16M at the hydrogen burning phase is considered together with the hydrodynamic processes of angular momentum transport in its interior. Shear turbulence is shown to limit the amplitude of the latitudinal variations in mean molecular weight on a surface of constant pressure in a layer with variable chemical composition. The resulting nonuniformity in the mean molecular weight distribution and the turbulent energy transport along the surface of constant pressure reduce the absolute value of the meridional circulation velocity. Nevertheless, meridional circulation remains the main mechanism of angular momentum transport in the radial direction in a layer with variable chemical composition. The intensity of the processes of angular momentum transport by meridional circulation and shear turbulence is determined by the angular momentum of the star. At a fairly high angular momentum, more specifically, at J = 3.69 × 1052 g cm2 s?1, the star during the second half of the hydrogen-burning phase in its convective core has characteristics typical of classical early Be stars.  相似文献   

13.
Recent observations of white dwarfs in globular clusters indicate that these stars may get a velocity kick during their time as giants. This velocity kick could originate naturally if the mass loss while on the asymptotic giant branch is slightly asymmetric. If white dwarfs get a kick comparable to the orbital velocity of the binary, the initial Runge–Lenz vector (eccentricity vector) of the orbit is damped to be replaced by a component pointing toward the cross-product of the initial angular momentum and the force. The final eccentricity may be of the order of unity and if the kick is sufficiently large, the system may be disrupted. These results may have important ramifications for the evolution of binary stars and planetary systems.  相似文献   

14.
Chi Yuan  Patrick Cassen 《Icarus》1985,64(3):435-447
The gravitational collapse of molecular clouds or cloud cores is expected to lead to the formation of stars that begin their lives in a state of rapid rotation. It is known that, in at least some specific cases, rapidly rotating, slf-gravitating bodies are subject to instabilities that cause them to assume ellipsoidal shapes. In this paper we investigate the consequences of such instabilities on the angular momentum evolution of a star in the process of formation from a collapsing cloud, and surrounded by a protostellar disk, with a view toward applications to the formation of the Solar System. We use a specific model of star formation to demonstrate the possibility that such a star would become unstable, that the resulting distortion of the star would generate spiral density waves in the circumstellar disk, and that the torque associated with these waves would regulate the angular momentum of the star as it feeds angular momentum to the disk. We conclude that the angular momentum so transported to the disk would not spread the disk to, say, Solar System dimensions, by the action of the spiral density waves alone. However, a viscous disk could effectively extract stellar angular momentum and attain Solar System size. Our results also indicate that viscous disks could feed mass and angular momentum to a growing protostar in such a manner that distortions of the star would occur before gravitational torques could balance the influx of angular momentum. In other situations (in which the viscosity was small), a gap could be cleared between the disk and star.  相似文献   

15.
On the basis of 'sticky particle' calculations, it is argued that the gas features observed within 10 pc of the Galactic Centre — the circumnuclear disc (CND) and the ionized gas filaments — as well as the newly formed stars in the inner 1 pc can be understood in terms of tidal capture and disruption of gas clouds on low angular momentum orbits in a potential containing a point mass. The calculations demonstrate that a dissipative component forms a 'dispersion ring', an asymmetric elliptical torus precessing counter to the direction of rotation, and that this shape can be maintained for many orbital periods. For a range of plausible initial conditions, such a structure can explain the morphology and kinematics of the CND and of the most conspicuous ionized filament. While forming the dispersion ring, a small cloud with low specific angular momentum is drawn into a long filament which repeatedly collides with itself at high velocity. The compression in strong shocks is likely to lead to star formation even in the near tidal field of the point mass. This process may have general relevance to accretion on to massive black holes in normal and active galactic nuclei.  相似文献   

16.
We present new models for the formation of disc galaxies that improve upon previous models by following the detailed accretion and cooling of the baryonic mass, and by using realistic distributions of specific angular momentum. Under the assumption of detailed angular momentum conservation, the discs that form have density distributions that are more centrally concentrated than an exponential. We examine the influence of star formation, bulge formation, and feedback on the outcome of the surface brightness distributions of the stars. Low angular momentum haloes yield disc galaxies with a significant bulge component and with a stellar disc that is close to exponential, in good agreement with observations. High angular momentum haloes, on the other hand, produce stellar discs that are much more concentrated than an exponential, in clear conflict with observations. At large radii, the models reveal distinct truncation radii in both the stars and the cold gas. The stellar truncation radii result from our implementation of star formation threshold densities, and are in excellent agreement with observations. The truncation radii in the density distribution of the cold gas reflect the maximum specific angular momentum of the gas that has cooled. We find that these truncation radii occur at H  i surface densities of roughly 1 M pc−2, in conflict with observations. We examine various modifications to our models, including feedback, viscosity, and dark matter haloes with constant-density cores, but show that the models consistently fail to produce bulge less discs with exponential surface brightness profiles. This signals a new problem for the standard model of disc formation: if the baryonic component of the protogalaxies out of which disc galaxies form has the same angular momentum distribution as the dark matter, discs are too compact.  相似文献   

17.
In this paper, we study the angular momentum properties of simulated dark matter haloes at high redshifts that likely host the first stars in the Universe. Calculating the spin distributions of these  106– 107 M  haloes in redshift slices from   z = 15  to 6, we find that they are well fit by a lognormal distribution as is found for lower redshift and more massive haloes in earlier work. We find that both the mean value of the spin and dispersion are largely unchanged with redshift for all haloes. Our key result is that subsamples of low- and high-spin, 106 and  107 M  , haloes show difference in clustering strength. In both mass bins, higher spin haloes are more strongly clustered in concordance with a tidal torquing picture for the growth of angular momentum in dark matter haloes in the cold dark matter paradigm.  相似文献   

18.
Some difficulties in explaining the slow rotation of CP stars are discussed. The most likely hypotheses are (1) a loss of angular momentum involving a magnetic field during “pre-main sequence” evolution and (2) the slow rotation existed from the very start of the creation of these stars. The braking hypothesis is supported by only one property of CP stars— the lower the mass of the star is, the greater the difference between its average rotation velocity vsini and that of normal stars. On the other hand, there is another property— the lower the rotation speeds of CP stars are, the greater their fraction among normal stars. The latter property supports the hypothesis that the lower the initial rotation speed of a star is when it is created, the greater the probability will become chemically peculiar. This property is inherent in chemically peculiar stars both with and without a magnetic field. It is proposed that the cause of the slow rotation of CP stars must be sought in the very earliest phases of their formation, as should the cause of the separation into chemically peculiar magnetic, chemically peculiar nonmagnetic, and normal stars.__________Translated from Astrofizika, Vol. 48, No. 2, pp. 229–245 (May 2005).  相似文献   

19.
We study the small perturbations in spherical and thin disc stellar clusters surrounding a massive black hole. Because of the black hole, stars with sufficiently low angular momentum escape from the system through the loss cone. We show that the stability properties of spherical clusters crucially depend on whether the distribution of stars is monotonic or non-monotonic in angular momentum. It turns out that only non-monotonic distributions can be unstable. At the same time, instability in disc clusters is possible for both types of distribution.  相似文献   

20.
Stellar radiation zones are the seat of meridional currents. This circulation has a strong impact on the transport of angular momentum and the mixing of chemicals that modify the evolution of stars. First, we recall in details the dynamical processes that are taking place in differentially rotating stellar radiation zones and the assumptions which are adopted for their modelling in stellar evolution. Then, we present our new results of numerical simulations which allow us to follow in 2D the secular hydrodynamics of rotating stars, assuming that anisotropic turbulence enforces a shellular rotation law and taking into account the transport of angular momentum by internal gravity waves. The different behaviors of the meridional circulation in function of the type of stars which is studied are discussed with their physical origin and their consequences on the transport of angular momentum and of chemicals. Finally, we show how this work is leading to a dynamical vision of the evolution of rotating stars from their birth to their death. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号