首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 545 毫秒
1.
A dramatic demonstration of the role of intergranular solubility in promoting chemical equilibration during metamorphism is found in the unusual zoning of garnet in pelitic schist exposed at Harpswell Neck, Maine, USA. Many garnet crystals have irregular, patchy distributions of Mn, Cr, Fe and Mg in their inclusion‐rich interiors, transitioning to smooth, concentric zoning in their inclusion‐poor outer rims; in contrast, zoning of Ca and Y is comparatively smooth and concentric throughout. We re‐assess the disputed origin of these zoning features by examining garnet growth in the context of the thermal and structural history of the rocks, and by evaluating the record of fluid–rock interaction revealed in outcrop‐scale veining and fluid‐inclusion assemblages. The transition in the character of garnet zoning correlates with the onset of a synkinematic, simple‐shear‐dominated phase of garnet growth and with a shift in the composition of the intergranular fluid from CO2‐rich to H2O‐rich. Compositional variations in garnet are therefore best explained by a two‐stage growth history in which intergranular diffusive fluxes reflect differences in the concentration of dissolved species in these two contrasting fluids. Interiors of garnet crystals grew in the presence of a CO2‐rich fluid, in which limited solubility for Mn and Cr (and perhaps Fe and Mg) produced patchy disequilibrium overprint zoning, while appreciable solubility for Ca and Y permitted their rock‐wide equilibration. Rims grew in the presence of an H2O‐rich fluid, in which high intergranular concentrations for all elements except Cr enabled diffusion over length scales sufficient for rock‐wide equilibration. This striking example of partial chemical equilibrium during reaction and porphyroblast growth implies that thermal effects may commonly be subsidiary in importance to solubilities in the intergranular medium as determinants of length scales for metamorphic equilibration.  相似文献   

2.
This paper reports an occurrence of medium-pressure granulite facies calc-silicate rocks intercalated with pelitic gneisses in the Higo metamorphic terrane, central Kyushu, Japan, which is classified as a low- P /high- T (andalusite-sillimanite type) metamorphic belt. Three equilibrium stages are recognized in the calc-silicate rock based on reaction textures: M1 stage characterized by an assemblage of porphyroblastic garnet + coarse-grained clinopyroxene + plagioclase included in the clinopyroxene; M2 stage by two kinds of breakdown products of garnet, one is plagioclase + coronitic clinopyroxene within garnet and the other is plagioclase + vermicular clinopyroxene surrounding garnet; and M3 stage by amphibole replacing clinopyroxene. The key assemblage in the calc-silicate rock common to M1 and M2 stages is Grt + Cpx + Pl ± Qtz, which constrains the pressure and temperature ( P – T ) conditions for these stages by Fe–Mg exchange reaction and the two univariant net-transfer reactions: 2Grs + Alm + 3Qtz = 3Hd + 3An or 2Grs + Prp + 3Qtz = 3Di + 3An. The P – T conditions for M1 and M2 stages were estimated to be about 8.4 ± 1.9 kbar and 680 ± 122 °C, and 6.7 ± 1.9 to 8.9 ± 2.2 kbar and 700 ± 130 to 820 ± 160 °C, respectively. Estimates are consistent with an isobaric heating P – T path. The high peak temperature conditions at normal crustal depths and the prograde isobaric heating path probably require heat advection due to melt migration during the high- T metamorphism.  相似文献   

3.
A detailed study of retrograde alteration of a staurolite porphyroblast and its surrounding matrix of mica schist has made use of petrographic, modal, and microprobe analysis. Retrogression was to the garnet zone of metamorphism and apparently occurred largely after a temperature decline of 70–100° C. The event caused metasomatic removal of Zn but may have been isochemical relative to other analyzed elements. The best estimate of the overall reaction is: 1 staurolite+3.018 biotite+3.550 quartz+0.629 albite +0.014 anorthite+0.678 NaCl+14.004 H2O =3.274 Na-rich muscovite+3.561 chlorite +0.273 ilmenite+0.110 chloritoid+0.039 garnet +0.339 ZnCl2.Non-systematic variation in composition of analyzed minerals is revealed by statistical treatment of replicate analyses. Such variation involves monovalent and divalent cations within many minerals, but is most pronounced within retrograde muscovite. Muscovite variation involves Si and Al as well as FM and alkalis and does not follow a phengite law of charge-coupled substitution.Relative to the core of the retrograded staurolite crystal, zoning is seen in averaged muscovite compositions and in development of incompatible mineral assemblages, which include chloritoid well within retrograded staurolite but biotite within the matrix. A local gradient in the chemical potential of an Al-bearing component was likely present during retrogression.Alteration of staurolite was probably accomplished by reaction and diffusion through the medium of an intergranular fluid phase. Relative to staurolite, migration of elements involved immigration of considerable amounts of Mg, Na, K, and H and expulsion of Al, Fe, Zn, and O. It is inferred that concentration of Al within the fluid phase was considerably lower than those of monovalent and divalent cations.Preservation of considerable staurolite and evidence for a local concentration gradient of Al in the fluid phase suggest that limited amounts of H2O were available. Expulsion of Zn suggests that much water was not consumed locally but exited the terrane. An attempt at resolution of this dilemna involves fracture-channelized infiltration of H2O into the rock. A more regional petrographic study of retrogression suggests that H2O which entered the rock may have been liberated initially by prograde dehydration at a moderately greater depth of 2–3 km.Results of this study, especially the non-phengitic nature of crystal-chemical substitution within muscovite, indicate chemical reaction under conditions of disequilibrium. Apparently, extent of retrogression was controlled by availability of H2O rather than by thermochemical equilibria.  相似文献   

4.
Devolatilization reactions during prograde metamorphism are a key control on the fluid distribution within subduction zones. Garnets in Mn-rich quartz schist within the Sanbagawa metamorphic belt of Japan are characterized by skeletal structures containing abundant quartz inclusions. Each quartz inclusion was angular-shaped, and showed random crystallographic orientations, suggesting that these quartz inclusions were trapped via grain boundary cracking during garnet growth. Such skeletal garnet within the quartz schist formed related to decarbonation reactions with a positive total volume change (?V t > 0), whereas the euhedral garnet within the pelitic schists formed as a result of dehydration reaction with negative ?V t values. Coupled hydrological–chemical–mechanical processes during metamorphic devolatilization reactions were investigated by a distinct element method (DEM) numerical simulation on a foliated rock that contained reactive minerals and non-reactive matrix minerals. Negative ?V t reactions cause a decrease in fluid pressure and do not produce fractures within the matrix. In contrast, a fluid pressure increase by positive ?V t reactions results in hydrofracturing of the matrix. This fracturing preferentially occurs along grain boundaries and causes episodic fluid pulses associated with the development of the fracture network. The precipitation of garnet within grain boundary fractures could explain the formation of the skeletal garnet. Our DEM model also suggests a strong influence of reaction-induced fracturing on anisotropic fluid flow, meaning that dominant fluid flow directions could easily change in response to changes in stress configuration and the magnitude of differential stress during prograde metamorphism within a subduction zone.  相似文献   

5.
The frequency of occurrence of minerals in 1876 samples of Sanbagawa pelitic schist in central Shikoku is summarized on the basis of microscopic observation accompanied, in part, by use of an electron microprobe. All samples contain quartz, plagioclase, phengite, chlorite and graphite. More than 90% of samples contain clinozoisite, titanite and apatite. Garnet is present in 95% of samples from the garnet zone, and biotite is present in 64% of samples from the albite‐biotite zone. Calcite is found in about 40% of samples of the pelitic schist collected from outcrop, but occurs in 95% of the pelitic schist from drill cores. Calcite was apparently ubiquitous in the pelitic schist during the Sanbagawa metamorphism, but must have been dissolved recently by the action of surface or ground water. The mineral assemblages of the Sanbagawa pelitic schist have to be analyzed in the system with excess calcite, quartz, albite (or oligoclase), clinozoisite, graphite and fluid that is composed mainly of H2O, CO2 and CH4. In the presence of calcite, reactions that produce garnet, rutile, oligoclase, biotite and hornblende, some of which define isograds of the metamorphic belt, should be written as mixed volatile equilibria that tend to take place at lower temperature than the dehydration reactions that have been proposed. The presence of calcite in pelitic schist suggests that fluid composition is a variable as important in determining mineral assemblages as pressure and temperature. Thus Ca‐bearing phases must be taken into account to analyze the phase relations of calcite‐bearing pelitic schist, even if CaO content of Sanbagawa pelitic schist is low. As calcite is a common phase, the mineral assemblages of the biotite zone pelitic schist may contravene the mineralogical phase rule and warrant further study.  相似文献   

6.
The biotite isograd in pelitic schists of the Waterville Formationinvolved reaction of muscovite + ankerite + rutile + pyrite+graphite + siderite or calcite to form biotite + plagioclase+ ilmenite. There was no single reaction in all pelites; eachrock experienced a unique reaction depending on the mineralogyand proportions of minerals in the chlorite-zone equivalentfrom which it evolved. Quartz, chlorite, and pyrrhotite werereactants in some rocks and products in others. All inferredbiotite-forming reactions involved decarbonation and desulfidation;some were dehydration reactions and others were hydration reactions.P-T conditions at the biotite isograd were near 3500 bars and400 °C. C-O-H-S fluids in equilibrium with the pelitic rockswere close to binary CO2-H2O mixtures with XCO2 = 0.02–0.04.During the biotite-forming reaction, pelitic rocks (a) decreasedby 2–5 percent in volume, (b) performed – (4–11)kcal/liter P-V work on their surroundings, (c) absorbed 38–85kcal/liter heat from their surroundings, and (d) were infiltratedby at least 0.9–2.2 rock volumes H2O fluid. The biotite isograd sharply marks the limit of a decarbonationfront that passed through the terrane during regional metamorphism.Decarbonation converted meta-shales with 6–10 per centcarbonate to carbonate-free pelitic schists. One essential causeof the decarbonation event was pervasive infiltration of theterrane by at least 1–2 rock volumes H2O fluid early inthe metamorphic event under P-T conditions of the biotite isograd.Average shale contains 4–13 per cent siderite, ankerite,and/or calcite, but average pelitic schist is devoid of carbonateminerals. If the Waterville Formation serves as a general modelfor the metamorphism of pelitic rocks, it is likely that worldwidemany pelitic schists developed by decarbonation of shale caused,in part, by pervasive infiltration of metamorphic terranes byseveral rock volumes of aqueous fluid during an early stageof the metamorphic event.  相似文献   

7.
Fluid infiltration at great depth during regional metamorphism plays a major role in mass transport and is responsible for significant rheological changes in the rock. Calc-silicate rocks of the Kajalbas area of Delhi Fold Belt, Rajasthan, are characterised by foliation parallel alternate bands of amphibole-rich and clinopyroxene–plagioclase feldspar-rich layers of varying thicknesses (mm to decimetre thick). Textural relation suggests that the amphibole grains formed from clinopyroxene and plagioclase in the late phase of regional deformation. Algebraic analysis of the reaction textures and mineral compositions was performed with the computer program C-Space to obtain the balanced chemical reactions that led to the formation of amphibole-rich bands. The computed balanced reaction is 70.74 Clinopyroxene + 27.23 Plagioclase + 22.018 H2O + 5.51 K++ 1.00 Mg2++ 27.15 Fe2+ = 22.02 Amphibole + 67.86 SiO2 aqueous + 36.42 Ca2++ 8.98 Na+. The constructed reaction suggests that aqueous fluid permeated the calc-silicate rock along mm to decimetre thick channels, metasomatized the clinopyroxene–plagioclase bearing rocks to form the amphibole-rich layers. The regional deformation presumably created the fluid channels thereby allowing the metasomatic fluid to enter the rock system. The above reaction has large negative volume change for solid phases indicating reaction-induced permeability. Thermodynamic calculations suggest that the fluid–rock interaction occurred at 665 ±05°C and 6.6 ±0.25 kbar (corresponding to ~20 km depth). Textural modeling integrating the textural features and balanced chemical reaction of the calc-silicate rocks of Mesoproterozoic Phulad Shear Zone thus indicate that extremely channelled fluid flow was reaction enhanced and caused major change in the rock rheology.  相似文献   

8.
This paper reports the occurrence of vesvianite + wollastonite + grossular + diopside + microcline + quartz assemblage in an enclave of calc-silicate rocks occurring within quartzofeldspathic gneiss near Tatapani in the western part of Chhotanagpur Gneissic Complex. The enclave contains phlogopite-absent and phlogopite-bearing calc-silicate rocks, the latter being much more abundant than the former. The above assemblage occurs in the phlogopite-absent rock. Phlogopite-bearing rock contains the assemblage phlogopite + salite + microcline + plagioclase + quartz. A strong schistosity is developed in both the calc-silicate rocks and the minerals are syntectonic with the major foliation-forming event in the area. The vesuvianite-bearing assemblage is formed by amphibolite facies regional metamorphism of a calcareous protolith at pressure < 4 kbar and XCO 2 (fluid) < 0.15.  相似文献   

9.
Calc-silicate boudins from the Rauer Group, East Antarctica, were metamorphosed under granulite facies conditions during late Proterozoic (ca. 1,000 Ma) M3 metamorphism. Boudin cores contain low to moderate aCO 2 assemblages including wollastonite, grossularandradite (grandite) garnet, clinopyroxene, scapolite, plagioclase, quartz±calcite. Petrological and stable isotopic evidence suggests that these core assemblages resulted from pre-peak M3 infiltration of water-rich fluids; there is no evidence for a pervasive fluid phase under peak M3 conditions. The boudins are separated from the surrounding Fe-rich pelites and semi-pelites by a series of concentric, high-variance reaction zones developed under peak M3 conditions. Variations in mineral assemblage, mineral composition and whole rock composition across these zones suggest that they formed by diffusional masstransfer, controlled principally by a chemical potential gradient in Ca across the original calc-silicate-paragneiss lithological boundary. As a consequence of the nearcomplete decarbonation of the calc-silicatesbefore the M3 peak, development of the diffusion-controlled reaction zones did not liberate significant CO2 during granulite facies metamorphism. Similar calcite-poor, low aCO 2 calc-silicate horizons in other granulite facies terrains are unlikely to have been important local fluid sources during deep crustal metamorphism.  相似文献   

10.
Unaltered metasediments of the Mary Kathleen Fold Belt are composed predominantly of layered amphibolite-facies scapolitic calc-silicate rocks in which minimal infiltration of externally derived fluids occurred during regional metamorphism. There were substantial differences in volatile activities between different layers in the layered sequences, in particular: a CO2/a H 2 O inferred from reaction progress estimates and analysis of biotite-clinopyroxene-fluid phase relations; a NaCl/a H 2 O inferred from scapolite compositions; and a HCl/a H 2 O inferred from biotite compositions. In one outcrop in which a clinopyroxene-producing reaction dominated, differences in approximate X CO 2of up to 0.25 occurred between several samples collected over 50 metres. Variations in a H 2 O/a HCl of up to one order of magnitude are inferred at 1 to 50 m scales from biotite-Cl contents, and variations in NaCl contents of scapolite from 0.0 to up to 0.6 Cl atoms in the Cl–CO3–SO4 site reflect a large variation of a NaCl in the coexisting fluid at similar scales. Most calcsilicate layers internally buffered fluid compositions in the H2O–CO2–NaCl–HCl system. Local occurrences of NaCl-rich scapolite suggest that some layers may have been in equilibrium with halite during early prograde metamorphism. At peak metamorphic temperatures, disolution of halite was complete but layers containing high-NaCl scapolite continued to buffer fluid at high values of a NaCl. Fluid immiscibility does not appear to have affected the progress of the devolatilization reactions. Although fluid was predominantly internally buffered, moderate quantities of fluid were released by prograde mineral reactions in many layers, up to 30 cm3 fluid per 100 cm3 rock. Numerous episodes of fluid escape were required, probably via microfractures, such that the released fluid did not obviously influence reaction progress in the layers through which it passed. The anomaly of beautifully preserved internal buffering signatures and the requirement for produced fluid locally to pass across layers in a deforming rock sequence suggest that the escaping fluid did not leave any readily observable tracks. This is explained by rapid rates of fracture propogation and fluid migration therein. This internally buffered system contrasts strongly with adjacent calc-silicate rocks that show evidence for infiltration of externally derived fluids at high fluid/rock ratios, and highlights the broad range of fluid behaviour that can be expected in deforming, heterogeneous rock sequences.  相似文献   

11.
Abstract

Unlike many Phanerozoic orogens, where the primary effects of orogenic events can be easily determined, Precambrian orogens are commonly characterised by repeated tectonothermal events making it challenging to decipher the geological history. The Capricorn Orogen is a complex Precambrian intraplate orogen located within the West Australian Craton that has been subjected to four separate reworking tectonic events between 1820 and 900?Ma. Although direct U–Pb ages for metamorphism have been obtained for the younger events, there is only limited geochronological data for the oldest event, the 1820–1770?Ma Capricorn Orogeny. This is primarily because of multiple episodes of deformation and metamorphism overprinting and obscuring the original tectonic fabrics and destroying metamorphic chronometers. In this study, we use in situ U–Pb monazite and xenotime geochronology, from a feldspathic metasandstone, a quartz–muscovite–chlorite–garnet pelitic schist, a quartz–muscovite–tourmaline schist and a garnet–biotite–plagioclase pelitic gneiss, to obtain the first direct age constraints for metamorphism during the Capricorn Orogeny in the northern Gascoyne Province. Metamorphism was synchronous with the 1820–1775?Ma magmatism in the northern part, and possibly in the southern part, of the Gascoyne Province. Furthermore, our results hint at a late stage hydrothermal fluid event at ca 1750–1730?Ma, post-dating the magmatism in the northern Gascoyne Province.  相似文献   

12.
Abstract Ductilely deformed amphibolite facies tectonites comprise two adjacent terranes in east-central Alaska. These terranes differ in protoliths, structural level and cooling ages. A structurally complex zone of gently north-dipping tectonites separates the two terranes. The northern, structurally higher Taylor Mountain terrane includes garnet amphibolite, biotite ± hornblende gneiss, marble, quartzite, metachert, pelitic schist and cross-cutting granitoids of intermediate composition (including the Late Triassic to Early Jurassic Taylor Mountain batholith). Lithological associations and isotopic data from the granitoids indicate an oceanic or marginal basin origin for the Taylor Mountain terrane. 40Ar/39Ar metamorphic cooling ages from the Taylor Mountain terrane are latest Triassic to earliest Middle Jurassic. The southern, structurally lower Lake George subterrane of the Yukon-Tanana terrane is made up of quartz-biotite schist and gneiss, augen gneiss, pelitic schist, garnet amphibolite and quartzite; we interpret it to comprise a continental margin and granitoid belt built on North American crust. Metamorphic cooling ages from the Lake George subterrane are almost entirely Early Cretaceous. Geothermobarometric analysis of garnet rims and adjacent phases in garnet amphibolite and pelitic schist from the Taylor Mountain terrane and Lake George subterrane indicate peak metamorphic conditions of 7.5-12 kbar at 555-715° C in the northern part of the Taylor Mountain terrane, in which NNE-vergent shear fabrics are preserved; 6.5-10.8 kbar at 520-670° C within the contact zone between the two terranes, in which NW-vergent shear fabrics predominate; and 6.8-11.8 kbar at 570-700° C in the Lake George subterrane of the Yukon-Tanana terrane, in which NW-vergent shear is recorded in the northern part of the study area and SE-vergent shear in the southern part. Where the two shear-sense directions occur together in the northern Lake George subterrane and, locally, in the contact zone, fabrics that record NW-vergent shear are more penetrative and preceded fabrics that record SE-vergent shear. We interpret the pressure, temperature, kinematic and age data to indicate that the metamorphism of the Taylor Mountain terrane and Lake George subterrane took place during different phases of a latest Palaeozoic through early Mesozoic shortening episode resulting from closure of an ocean basin now represented by klippen of the Seventymile-Slide Mountain terrane. High- to intermediate-pressure metamorphism of the Taylor Mountain terrane took place within a SW-dipping (present-day coordinates) subduction system. High- to intermediate-pressure metamorphism of the Lake George subterrane and the structural contact zone occurred during NW-directed overthrusting of the Taylor Mountain, Seventymile-Slide Mountain and Nisutlin terranes, and imbrication of the continental margin in Jurassic time. The difference in metamorphic cooling ages between the Taylor Mountain terrane and adjacent parts of the Lake George subterrane is best explained by Early Cretaceous unroofing of the Lake George subterrane caused by crustal extension, recorded in its younger top-to-the-SE fabric.  相似文献   

13.
Abstract The Llano Uplift in central Texas is a Grenville aged (c. 1.1 Ga) metamorphic terrane consisting predominantly of amphibolite facies mineral assemblages. The formation of these assemblages has been attributed to the emplacement of relatively late granite plutons throughout the area. Two types of granitic intrusion have previously been recognized: (1) Town Mountain Granites, which occur as relatively large, circular-shaped bodies of coarse-grained granite, and (2) Younger Granites which are present as smaller and more irregular bodies of finer-grained granite. In the central part of the uplift, wollastonite-bearing calc-silicate rocks occur within the Valley Spring Gneiss. The development of these calc-silicate rocks has been linked to infiltrating fluids presumably derived from spatially associated Younger Granites. The stability of coexisting quartz, calcite, wollastonite, grossular and anorthite and coexisting quartz, calcite, wollastonite, andradite and hedenbergite shows that the calc-silicate rocks equilibrated under H2O-rich conditions with χCO2 <0.10. Fluid inclusions present within the calc-silicate minerals are H2O-rich with salinities of <17 wt% equivalent NaCl. The absence of any detectable CO2 in the fluid inclusions may indicate entrapment of the inclusions at lower pressures and more H2O-rich conditions compared to the stability of the peak metamorphic mineral assemblage. Homogenization temperatures, measured for texturally primary inclusions, range from 360 to 368° C corresponding to a density range from 0.53 to 0.82 g/cm3. Isochores for these fluid inclusions, when combined with the stability of the solid-solid equilibria Grs + Qtz = Wo + An, yield formation conditions of 500–550° C at 1–2 kbar. This indicates that the granitic intrusions involved in the formation of the Blount Mountain calc-silicates were emplaced at a pressure of at least 1–2 kbar.  相似文献   

14.
镁铝麻粒岩泛指一类全岩化学成分富镁、铝的麻粒岩相变质岩,是研究超高温变质作用的峰期变质条件和变质演化历史的重要对象,但目前对它的原岩属性和岩石成因的认识仍十分有限。本文以柴达木地块西缘的花土沟超高温变质地体为例,在野外调查基础上,对镁铝麻粒岩和泥质片麻岩进行了岩相学和全岩地球化学分析,发现镁铝麻粒岩与含浅色体的泥质片麻岩的SiO2、TiO2、P2O5 含量相似,TFe2O3、Al2O3、MnO、CaO、Na2O含量虽有差异但变化范围存在交集。此外,两类岩石具有相似的微量和稀土元素配分曲线,结合两者的矿物组合也存在相似性,提出花土沟镁铝麻粒岩的原岩可能是与泥质片麻岩类似的泥质沉积岩。从低角闪岩相变泥质岩到含浅色体的泥质片麻岩,再到镁铝麻粒岩,其全岩化学成分向着贫铝、钙、钾、钠,富铁、镁的趋势变化。其中,高XMg值(0.51~0.69)是镁铝麻粒岩与其他泥质片麻岩(XMg=0.34~0.43)的最大差别。通过对变泥质岩的相平衡模拟和理论计算,发现部分熔融和熔体丢失能解释大部分的变化趋势,但基本不影响全岩XMg值;只有在进变质升温过程中丢失含石榴子石的熔体才能造成变泥质岩的镁铝麻粒岩化。此外,富石榴子石的泥质残留体相比附近的含浅色体泥质片麻岩,贫硅、钠、钾,富集铝、铁、镁、锰、钙,重稀土元素含量显著高于后者,上述地球化学特征对应石榴子石熔体的加入而后长英质熔体的丢失,支持野外观察到的熔体携带石榴子石迁移的现象。最后,对镁铝麻粒岩只呈透镜体产出的原因做出了推测,即熔体很难带着石榴子石完成长距离迁移,只有被长英质正片麻岩包围的泥质沉积物,其进变质加热阶段形成的熔体才能携带石榴子石完全迁出原岩,促成变泥质岩透镜体的镁铝麻粒岩化,目前仍需更多的相关研究来验证这一推测。在世界其他高温-超高温变质岩区,石榴子石熔体的迁出和泥质岩的镁铝麻粒岩化可能也不同程度有所保留和记录。  相似文献   

15.
W.L. Griffin  A. Raheim 《Lithos》1973,6(1):21-40
Amphibolite-facies gneisses of the Frei group include pelitic migmatites, mica schists, quartzites, marbles, augen-gneisses and ecologites. Field relations indicate that the eclogites are supracrustal rocks metamorphosed in situ. Kyanit- Kspar-quartz that the assemblages in the gneisses indicate PH2O <Pload.Late-tectonic dolerite sills in the gneisses show corona-forming reactions leading to omphacite-garnet-plagioclase associations. Pyroxene-garnet pairs formed by these reactions yield equilibration temperatures near 700°C, though the experimentally determined equilibrium positions of the reactions cover a wide range of T and P. The dolerites were probably intruded between 4.5 and 9 Kb and cooled rapidly; the corona-forming reactions were initially overstepped and proceeded metastably at the T and P of the surrounding eclogite terrane.During retrogression of eclogites to granulite-facies assemblages (cpx + gnt + lag + qtz), omphacite loses Na and Al as plagioclase (An10–20) exsolves in perthite-like textures, and garnet loses Ca as it is resorbed. Similar reactions are seen between pyroxene and garnet in the coronites and eclogitic metadolerites. These reactions are ascribed to uplift during cooling of the terrane.  相似文献   

16.
Calc-silicate rocks occur as elliptical bands and boudins intimately interlayered with eclogites and high-pressure gneisses in the Münchberg gneiss complex of NE Bavaria. Core assemblages of the boudins consist of grossular-rich garnet, diopside, quartz, zoisite, clinozoisite, calcite, rutile and titanite. The polygonal granoblastic texture commonly displays mineral relics and reaction textures such as post kinematic grossular-rich garnet coronas. Reactions between these mineral phases have been modelled in the CaO-Al2O3-SiO2-CO2-H2O system with an internally consistent thermodynamic data base. High-pressure metamorphism in the calc-silicate rocks has been estimated at a minimum pressure of 31 kbar at a temperature of 630d? C with XH2, O ≥ 0.03. Small volumes of a CO2-N2-rich fluid whose composition was buffered on a local scale were present at peak-metamorphic conditions. The P-T conditions for the onset of the amphibolite facies overprint are about 10 kbar at the same temperature. XCo2 of the H2O-rich fluid phase is regarded to have been <0.03 during amphibolite facies conditions. These P-T estimates are interpreted as representing different stages of recrystallization during isothermal decompression. The presence of multiple generations of mineral phases and the preservation of very high-pressure relics in single thin sections preclude pervasive post-peak metamorphic fluid flow as a cause of a re-equilibration within the calc-silicates. The preservation of eclogite facies, very high-pressure relics as well as amphibolite facies reactions textures in the presence of a fluid phase is in agreement with fast, tectonically driven unroofing of these rocks.  相似文献   

17.
《Ore Geology Reviews》2003,22(1-2):17-39
Many talc deposits occur in the Hwanggangri Mineralized Zone (HMZ) in dolomitic marbles of the Cambro-Ordovician Samtaesan Formation within 1 km of the contact with the Cretaceous Muamsa Granite. Talc commonly forms fine-grained, fibrous aggregates, or pseudomorphs after tremolite; abundant tremolite is included as impurities in the talc ore. Talc generally was derived from tremolite in calc-silicate rock within the dolomitic marble. Calc-silicate rock, consisting mainly of tremolite and diopside, was generated from silicic metasomatism during the prograde stage, which promoted decarbonation reactions until dolomite was exhausted locally. Hydrothermal alteration of calc-silicate rock to talc is marked by the addition of Mg and Si, and the leaching of Ca; Cr, Co, and Ni were relatively immobile during the retrograde stage. Contact metamorphism related to the granite intrusion generated the successive appearance of tremolite, diopside, and forsterite, or wollastonite-bearing assemblages in the marble, depending on the bulk rock composition. The XCO2 content of the metamorphic fluids rose initially above XCO2=0.6, and decreased steadily toward a water-rich composition with increasing temperature above 600 °C in the calcitic marble, while buffered reaction of the dolomitic marble occurred at higher XCO2 conditions above 600 °C. Talc mineralization developed under metastable conditions with infiltration of large amounts of igneous fluids along a fault-shattered zone during the retrograde stage and is characterized by the loss of Ca2+ with the addition of Mg2+. Oxygen and carbon isotopic variations of carbonate and calc-silicate minerals are in agreement with theoretical relationships determined for decarbonation products of contact metamorphism. Talc formation temperatures obtained from oxygen isotope fractionation, TXCO2 relationships, and activity diagrams range from 380 to 400 °C.  相似文献   

18.
The type and kinetics of metamorphic CO2-producing processes in metacarbonate rocks is of importance to understand the nature and magnitude of orogenic CO2 cycle. This paper focuses on CO2 production by garnet-forming reactions occurring in calc-silicate rocks. Phase equilibria in the CaO–FeO–Al2O3–SiO2–CO2–H2O (CFAS–CO2–H2O) system are investigated using PT phase diagrams at fixed fluid composition, isobaric TX(CO2) phase diagram sections and phase diagram projections in which fluid composition is unconstrained. The relevance of the CFAS–CO2–H2O garnet-bearing equilibria during metamorphic evolution of calc-silicate rocks is discussed in the light of the observed microstructures and measured mineral compositions in two representative samples of calc-silicate rocks from eastern Nepal Himalaya. The results of this study demonstrate that calc-silicate rocks may act as a significant CO2 source during prograde heating and/or early decompression. However, if the system remains closed, fluid–rock interactions may induce hydration of the calc-silicate assemblages and the in situ precipitation of graphite. The interplay between these two contrasting processes (production of CO2-rich fluids vs. carbon sequestration through graphite precipitation) must be considered when dealing with a global estimate of the role exerted by decarbonation processes on the orogenic CO2 cycle.  相似文献   

19.
Anatectic migmatites in medium- to low-pressure granulite facies metasediments exposed in the Larsemann Hills, East Antarctica, contain leucosomes with abundant quartz and plagioclase and minor interstitial K-feldspar, and assemblages of garnet–cordierite–spinel–ilmenite–sillimanite. Qualitative modelling in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2, in conjunction with various PT calculations indicate that the high-grade retrograde evolution of the terrane was dominated by decompression from peak conditions of c. 7 kbar at c. 800 °C to 4–5 kbar at c. 750 °C. Extensive partial melting during decompression involved the replacement of biotite by the assemblage cordierite–garnet–spinel within the leucosomes. These leucosomes represent the site of partial melt generation, the cordierite–garnet–spinel–ilmenite assemblage representing the solid products and excess reactants from the melting reaction. The extraction and accumulation of this decompression-generated melt led to the formation of syntectonic pegmatites and extensive granitic plutons. Leucosome development and terrane decompression proceeded during crustal transpression, synchronous with upper crustal extension, during a progressive Early Palaeozoic collisional event. Subsequent retrograde evolution was characterized by cooling, as indicated by the growth of biotite replacing spinel and garnet, thin mantles of cordierite replacing spinel and quartz within metapelites, and garnet replacing orthopyroxene and hornblende within metabasites. P–T calculations on late mylonites indicate lower grade conditions of formation of c. 3.5 kbar at c. 650 °C, consistent with the development of late cooling textures.  相似文献   

20.
Tungsten mineralisation in the NE Hindu Kush terrain occurs 8 km NW of the Tirich Boundary Zone suture between Karakoram and Eastern Hindu Kush. Scheelite occurs mainly in calc-silicate rocks and subordinately in tourmalinites associated with metasediments at Miniki Gol, Chitral. The investigated area underwent two phases of deformation and was metamorphosed up to sillimanite grade, followed by the emplacement of leucogranite and hydrothermal activity. The mineral assemblages of the calc-silicate rocks, comprising clinozoisite, quartz, calcic-amphibole, plagioclase, chlorite, biotite, calcite, sphene, garnet and scheelite, clearly express a skarn type environment. The coexistence of the scheelite grains with clinozoisite and the occurrence of anomalous values of ZrO2 and Ta2O5 in the scheelite grains imply a genetic link between the scheelite mineralisation and post-magmatic hydrothermal fluids. The enrichment of Zr, Hf, Be, Sn, W, Th, U, Ga, Nb, F and Y along with total REE in the scheelite-bearing calc-silicate rocks compared with the associated metasediments assigns that the rocks at Miniki Gol have undergone a pronounced hydrothermal activity. Strong positive correlations between Zr, Hf, Nb, Y, Ta, F and REE, and the mobility of REE are consistent with this consideration. Aqueous fluid inclusions in the scheelite-bearing calc-silicate rocks display very low salinity, suggesting a mixing of magmatic fluids with meteoric water. The formation of intergrown scheelite and clinozoisite indicates a high pH and CO2-deficient fluid. The tungsten mineralization may be related to the Miniki Gol leucogranite which occurs at a distance of only 400 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号