首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 105 毫秒
1.
Data series for the same time interval of characteristic solar parameters (sunspot number R; flux at 2.8 GHz), ionospheric parameters (critical frequency of the E-region) and atmospheric parameters (stratospheric and tropospheric temperatures T) have been analysed by the maximum-entropy method, in order to study the occurrence of periodicities in those parameters in the range from 12 to 150 days. Digital filtering of the most pronounced of the detected periods (mainly in the range between 19 to 33 days) shows a similar but not identical feature in the time interval 1974–1978. It is demonstrated that sunspot number and solar radio flux at 2.8 GHz behave in a similar way on the average, and at periods greater than 20 days. Although a number of similar periods occurred in solar, ionospheric and atmospheric parameters, cross-correlation estimations only show a relationship between periods in solar and ionospheric data, but none between solar data and stratospheric and tropospheric temperatures; exception: T (35 km) correlates with R at 12.3 days. The most obvious correlation was found between the critical frequency of the E layer and the solar flux at 2.8 GHz at a frequency of approximately 1/23 days–1.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   

2.
We have considered an ionospheric plasma model that includes the thermal effect along with the newly born ionic effect and derived a group travel time for the low-frequency whistlers with a view to employing it as a diagnostic tool in the ionosphere. The mathematical development shows that the thermal effect contribution varies with ( i – )–7/2 whereas that of the newly born ionic effect varies with i – )–5/2. Both the effects are discussed separately. It is concluded that the effects are reasonably countable in the ionosphere. The investigations finally conclude that both the effects should be taken into the whistler waves, otherwise the method might cause a discrepancy in the results, which could affect their accuracy.  相似文献   

3.
The masers of E-type methanol in orion KL and SGR B2   总被引:2,自引:0,他引:2  
Using a simplified model the statistical equilibrium and radiative transfer equations of E-type-CH3OH are solved for Orion KL and SgrB2. According to our calculation results and the observation data taken by Matsakiset al. (1980) and Morimotoet al. (1985a, b), the physical conditions of both sources are estimated. In theJ 2-J 1 E methanol maser region of Orion KL, the density, kinetic temperature, dust temperature, and the fractional abundance are 0.8–2×106 cm–3, 150, 30–90 K, 0.8–8×10–6. In the 4–1-30 E and 5–1-40 E methanol maser region of Sgr B2 the correspondance physical conditions above are 104 cm3, 45, 23 K, and 7×10–7, respectively.  相似文献   

4.
The data from the Apollo-14 and Apollo-16 Active Seismic Experiments have been reanalyzed and show that a power-law velocity variation with depth,v(z)110z 1/6 m s–1 (0<z<10 m), is consistent with both the travel times and amplitudes of the first arrivals for source-to-geophone separations up to 32 m. The data were improved by removing spurious glitches, by filtering and stacking. While this improved the signal-to-noise ratios, it was not possible to measure the arrival times or amplitudes of the first arrivals beyond 32 m. The data quality precludes a definitive distinction between the power-law velocity variation and the layered-velocity model proposed previously. However, the physical evidence that the shallow lunar regolith is made up of fine particles adds weight to the 1/6-power velocity model because this is the variation predicted theoretically for self-compacting spheres.The 1/6-power law predicts the travel time,t(x), varies with separation,x, ast(x)=t 0(x/x 0)5/6 and, using a first-order theory, the amplitude,A(x), varies asA(x)=A 0(x/x 0)–(13–m)/12,m>1; the layervelocity model predictst(x)=t 0(x/x 0) andA(x)=A 0(x/x 0)–2, respectively. The measured exponents for the arrival times were between 0.63 and 0.84 while those for the amplitudes were between –1.5 and –2.2. The large variability in the amplitude exponent is due, in part, to the coarseness with which the amplitudes are measured (only five bits are used per amplitude measurement) and the variability in geophone sensitivity and thumper-shot strengths.A least-squares analysis was devised which uses redundancy in the amplitude data to extract the geophone sensitivities, shot strengths and amplitude exponent. The method was used on the Apollo-16 ASE data and it indicates there may be as much as 30 to 40% variation in geophone sensitivities (due to siting and coupling effects) and 15 to 20% variability in the thumper-shot strengths. However, because of the low signal-to-noise ratios in the data, there is not sufficient accuracy or redundancy in the data to allow high confidence in these results.  相似文献   

5.
Araujo-Pradere  E.A.  Fuller-Rowell  T.J. 《Solar physics》2001,204(1-2):315-322
Recent theoretical model simulations of the ionospheric response to geomagnetic storms have provided the understanding for the development of an empirical storm-time ionospheric model (STORM). The empirical model is driven by the previous time-history of a p, and is designed to scale the quiet-time F-layer critical frequency (f o F 2) to account for storm-time changes in the ionosphere. The model provides a useful, yet simple tool for modeling of the perturbed ionosphere. The quality of the model prediction has been evaluated by comparing with the observed ionospheric response during the Bastille Day (July 2000) storm. With a maximum negative D st of −290 nT and an a p of 400, this magnetic perturbation was the strongest of year 2000. For these conditions, the model output was compared with the actual ionospheric response from all available stations, providing a reasonable latitudinal and longitudinal coverage. The comparisons show that the model captures the decreases in electron density particularly well in the northern summer hemisphere. In winter, the observed ionospheric response was more variable, showing a less consistent response, imposing a more severe challenge to the empirical model. The value of the model has been quantified by comparing the root mean square error (RMSE) of the STORM predictions with the monthly mean. The results of this study illustrate that the STORM model reduces the RMSE at the peak of the disturbance from 0.36 to 0.22, a significant improvement over climatology.  相似文献   

6.
We report on eight X-ray bursts detected by ASTRON from the Rapid Burster (RB) on 13 and 28 April and 16 August, 1983. Six of them (trailing bursts), with durations of 1.5–2 min, rise times of 5–10 s and intervals of 1–1.5 hours, exhibit spectral softening during the burst decay and may be related to the type I bursts. Two of the bursts (triangle bursts) observed on 28 April at interval of 28 min with much longer rise times (30–50 s) and longer durations (3 min), do not show distinct spectral softening. Persistent flux from RB on 16 August was estimated asF p(2.0–2.4)×10–9 erg cm–2 s–1. Spectral evolution of two trailing bursts was investigated by fitting their spectra in consecutive time intervals with the blackbody (BB), isothermal scattering photosphere (SP) and thermal bremsstrahlung (TB) models. Around the burst maxima the SP model fits the data best whereas in the burst tails the TB model is generally better. The BB model is worse than at least one of the two others. Interpretation of the burst spectra in terms of the BB radiation leads to improbably small neutron star mass and radius (M<0.86M ,R NS<5 km) if the peak luminosity does not exceed the Eddington limit. Interpretation of the spectra around the burst maxima (3–15 s from the burst onset) in terms of an isothermal SP yields reasonable constraints onM,R NS, and distanceD. For instance, for the hydrogen photosphere we obtainedM=(1.0–2.1)M R NS=(7.1–16.4) km ifD=11 kpc. If one postulatesM=1.4M , thenD=(8.5–13) kpc for hydrogen photosphere; if, besides,D=11 kpc, thenR NS=(8.1–13.3) km. It follows also from the SP-interpretation that the photosphere radius may increase up to 20–30 km in maxima of the trailing bursts when the luminosity becomes close to the Eddington luminosity.  相似文献   

7.
E. Kirsch 《Solar physics》1973,28(1):233-246
Solar neutron emission during large flares is investigated by using neutron monitor data from the mountain stations Chacaltaya (Bolivia), Mina Aguilar (Argentine), Pic-du-Midi (France) and Jungfraujoch (Switzerland). Registrations from such days on which large flares appeared around the local noon time of the monitor station are superimposed with the time of the optical flare as reference point.No positive evidence for a solar neutron emission was found with this method, However, by using an extrapolation of the neutron transport functions given by Alsmiller and Boughner a rough estimation of mean upper limits for the solar neutron flux is possible. The flux limits are compared with Lingenfelter's model calculations.From the Chacaltaya measurements it follows: N 02.8 × 10–3 N cm–2 s–1 per proton flare, E > 50 MeV, if P0 = 125 MV N 01.4 × 10–2 N cm–2 s–1 per proton flare, E > 50 MeV, if P 0 = 60 MV and from Pic-du-Midi measurements: N 06.7 × 10–3 N cm–2 s–1 per proton flare, E > 50 MeV, if P 0 = 125 MV N 04 × 10–2 N cm–2 s–1 per proton flare, E > 50 MeV, if P 0 = 60 MV P 0 = characteristic rigidity of the producing proton spectrum on the Sun.The flux limits estimated for some special proton flares are consistent with Lingenfelter's predictions for the acceleration phase but are too small for the slowing down phase. Therefore it is believed that Lingenfelter's assumption of isotropic proton emission from the flare region is not fulfilled.  相似文献   

8.
Methanol 72–81 A + is mapped for the first time in Orion KL. Analysing the observed data and solving the statistical equilibrium and radiative transfer equations, it is concluded that line series ofJ 2–(J+1)1 A + (J=7,8,9) is in quasi-thermal emission rather than the masers in Orion KL. The maser spots of methanolJ 2J 1 E (J=6,7) and 80–71 A + are distributed in the northeast part of the contour plot of 72–81 A +. The physical conditions of the regions of maser seriesJ 0–(J–1)1 A + (J=7,8,9) are discussed. Also from the calculation results another maser seriesJ 1–(J–1)2 A (J=10,11,12) that might coexist with maser seriesJ 2J 1 E, is found. The sizes of the 2-dimension Gaussian fit plots of methanol 72–81 A + and HCOOCH3 10(0,10)–9(0,9)A are almost the same, and the main parts overlap each other.  相似文献   

9.
The analysis of the Th/U ratio in meteorites and the evolutionary ages of globular clusters favour values of the cosmic age of (19±5)×109 yr. This evidence together with a Hubble parameterH 0>70 km s–1 Mpc–1=(14×109 yr)–1 cannot be reconciled in a Friedmann model with =0. It requires a cosmological constant in the order of 10–56 cm–2, equivalent to a vacuum density v =10–29 g cm–3 The Friedmann-Lemaître models (>0) with a hot big-bang have been calculated. They are based on a present value of the baryonic matter density of 0=0.5×10–30 g cm–3 as derived from the primordial4He and2H abundances.For a Hubble parameter ofH 0=75 km s–1 Mpc–1, our analysis favours a set of models which can be represented by a model with Euclidean metric (density parameter 0=1.0, deceleration parameterq 0=–0.93, aget 0=19.7×109 yr) and by a closed model with perpetual expansion (0=1.072,q 0=–1.0, aget 0=21.4×109 yr). A present density parameter close to one can indeed be expected if the conjecture of an exponential inflation of the very early universe is correct.The possible behaviour of the vacuum density is demonstrated with the help of Streeruwitz' formula in the context of the closed model with an inflationary phase at very early times.  相似文献   

10.
Bogod  V. M.  Grebinskij  A. S. 《Solar physics》1997,176(1):67-86
We present here the results of emission tomography studies, based on a new differential deconvolution method (DDM) of Laplace transform inversion, which we use for reconstruction of the coronal emission measure distributions in the quiet Sun, coronal holes and plage areas. Two methods are explored. The first method is based on the deconvolution of radioemission brightness spectra in a wide wavelength range (1 mm–100 cm) for temperature profile reconstructions from the corona to the deeper chromosphere. The second method uses radio brightness measurements in the cm–dm range to give a coronal column emission measure (EM).Our results are based on RATAN-600 observations in the range 2.0–32 cm supplemented by the data of other observatories during the period near minimum solar activity. This study gives results that agree with known estimates of the coronal EM values, but reveals the absence of any measurable quantities of EM in the transition temperature region 3 × 104 –105 K for all studied large-scale structures. The chromospheric temperature structure (T e = 20,000–5800 K) is quite similar for all objects with extremely low-temperature gradients at deep layers.Some refraction effects were detected in the decimeter range for all Types of large-scale structures, which suggests the presence of dense and compact loops (up to N e =(1–3)× 109 cm-3 number density) for the quiet-Sun coronal regions with temperature T e > 5× 10-5 K.  相似文献   

11.
Elemental abundances of the VH group of cosmic radiation have been measured in the energy interval 250–550 MeV nucl–1 in a balloon exposure at Sioux Falls (South Dakota) of a plastic detector LeXAN stack. The so obtained abundances have been extrapolated to the sources in the frame of the homogeneous model correcting for energy loss. After taking into account solar modulation, the best fit to model values has led to a escape mean free path e = 5E –0.4 g cm–2, whereE is the energy in GeV nucl–1, forE>1 GeV nucl–1, and a constant e = 5 g cm–2 forE1 GeV nucl–1. When turning to the diffusion model, also including an energy loss term, a diffusion coefficientD=3×1028 cm2 s–1 has been estimated.  相似文献   

12.
By processing 494 observations of Comet Harrington–Abell, we obtained a unified system of elements that includes its turn around the Sun during which it closely approached Jupiter to a minimum distance of 0.037 AU in 1974. A study of the cometary orbit before and after the approach showed that, probably, at the approach of the comet to Jupiter, apart from the well-known gravitational perturbations, its motion was affected by an additional force. An improvement of the cometary orbit by assuming that an additional acceleration inversely proportional to the square of the distance to Jupiter exists in its motion yielded the following values: (4.57 ± 0.42) × 10–10 and (–7.20 ± 0.42) × 10–10 AU day–2 for the radial and transversal acceleration components, respectively. As a plausible explanation of the changes in the cometary orbit, we additionally considered a model based on the hypothesis of partial disintegration of the cometary nucleus. The parameter that characterizes the instant displacement of the center of inertia along the jovicentric radius vector was estimated to be –1.83 ± 0.75 km. Based on a unified numerical theory of cometary motion, we determined the nongravitational parameters using Marsden's model for two periods: A 1 = (11.68 ± 1.74) × 10–10 AU day–2, A 2 = (0.53 ± 0.0357) × 10–10 AU day–2 for 1975–1999 and A 1 = (5.92 ± 5.86) × 10–10 AU day–2, A 2 = (0.08 ± 0.028) × 10–10 AU day–2 for 1955–1969, under the assumption that the nongravitational acceleration changed at the approach of the comet to Jupiter.  相似文献   

13.
The distribution of galaxies in the pencil-beam surveys of Broadhurstet al. which proved periodical across 8–10 consecutive steps in a flat dust model withq 0=0.5 is found to reveal extended periodicity up to 16–17 phase-coherent steps, covering the total sample, in a flat, moderately inflationary model withq 0=–0.5 (vacuum/dust ratio 2/1). In the latter model the vacuum component helps to reach the critical density and lengthens the expansion time-scale. It is shown that the explanation of the found periodicity as a consequence of space compactification as suggested by G. Paál twenty years ago in connection with apparent quasar periodicities is still possible.  相似文献   

14.
Colliding comets in the Solar System may be an important source of gamma ray bursts. The spherical gamma ray comet cloud required by the results of the Venera Satellites (Mazets and Golenetskii, 1987) and the BATSE detector on the Compton Satellite (Meeganet al., 1992a, b) is neither the Oort Cloud nor the Kuiper Belt. To satisfy observations ofN(>P max) vsP max for the maximum gamma ray fluxes,P max > 10–5 erg cm–2 s–1 (about 30 bursts yr–1), the comet density,n, should increase asn a 1 from about 40 to 100 AU wherea is the comet heliocentric distance. The turnover above 100 AU requiresn a –1/2 to 200 AU to fit the Venera results andn a 1/4 to 400 AU to fit the BATSE data. Then the masses of comets in the 3 regions are from: 40–100 AU, about 9 earth masses,m E; 100–200 AU about 25m E; and 100–400 AU, about 900m E. The flux of 10–5 erg cm–2 s–1 corresponds to a luminosity at 100 AU of 3 × 1026 erg s–1. Two colliding spherical comets at a distance of 100 AU, each with nucleus of radiusR of 5 km, density of 0.5 g cm–3 and Keplerian velocity 3 km s–1 have a combined kinetic energy of 3 × 1028 erg, a factor of about 100 greater than required by the burst maximum fluxes that last for one second. Betatron acceleration in the compressed magnetic fields between the colliding comets could accelerate electrons to energies sufficient to produce the observed high energy gamma rays. Many of the additional observed features of gamma ray bursts can be explained by the solar comet collision source.  相似文献   

15.
Properties of solar-flare EUV flashes measured via a type of ionospheric event, called a sudden frequency deviation (SFD), are presented. SFD's are sensitive to bursts of radiation in the 1–1030 Å wavelength range. He ii 303.8 Å, O v 629.7 Å, HL 972.5 Å and C iii 977.0 Å have essentially the same impulsive time dependence as the 1–1030 Å flash responsible for SFD's. Soft X-rays (2–20 Å) and certain EUV lines have a much slower time dependence than the 1–1030 Å flash. Most SFD's have some fine structure, but marked quasi-periodicity in EUV flashes is quite rare. EUV flashes are closely associated with hard X-ray bursts, white-light emission, microwave radio bursts and small bright impulsive kernels in the H flare. The intensity of EUV flashes depends on the central meridian distance of the H flare location; the intensity decreases at the limb. The total energy radiated in the 10–1030 Å flash for the largest events observed is about 1031 ergs.  相似文献   

16.
Yasnov  L.V.  Bogod  V.M.  Fu  Q.  Yan  Y. 《Solar physics》2003,215(2):343-355
Based on spectral observations of active region NOAA 8545 on 19 May 1999, we describe the processes responsible for non-thermal long-lasting radio emission and for narrow-band non-drifting bursts observed at the same time. Non-thermal long-lasting radio emission consisted of two components: short-duration (1–2 s) microbursts with fluxes about 0.001 s.f.u. and continuum emission with growing spectrum in the range of 1000–2000 MHz. Energetic electrons continuously existed in the active region for more than 2.2 hours. The nature and parameters of microbursts were discussed by Bogod, Mercier, and Yasnov (2001). Here we consider the continuum source nature. It is shown that the model, taking into account the cyclotron loss-cone instability of hot electrons and the generation of plasma waves at the upper hybrid frequency, may explain the observed continuum source parameters. For the narrow-band non-drifting bursts we consider two models: the first taking into account an excitation of weak shock waves across the magnetic field and the second with an excitation of the upper hybrid waves under the double plasma resonance. Continuum source parameters are close to the last model. Our estimations for the magnetic field strength are as follows: H=120–126 G, which is valid for the region where the electron density of background plasmas n=(1.4–1.9) ×109 cm–3; H=180–190 G for the region where n=(3.0–4.3) ×109 cm–3; H=290 G for the region where n e=2.5×1010 cm–3; and H=350 G for the region where n e=3.5×1010 cm–3. The speed of the fast electrons is about 0.10–0.14 c.  相似文献   

17.
In a closed gravitationally-bound Universe we are subject to an inward accelerationa 0. One consequence of this acceleration is that matter will radiate and create a black-body spectrum throughout the Universe. Using the valuea 0=7.623×10–12 ms–2 and a radiation formula from a previously-described cosmological model (Wåhlin, 1981), we obtain a black-body temperature of 2.766 K.  相似文献   

18.
By use of the reddening free [m 1], [c 1], and indices data inuvby photometric system for three classical cepheids whose reddening values had been determined with the aid of photometry of field stars, three intrinsic relations of [m 1]–(b–y), [c 1]–(b–y), and –(b–y) have been established. It was shown that these three relations can be used to determine the colour excesses for other classical cepheids.  相似文献   

19.
According to the tangential method the productAR 0 is determined with 145.7 km s–1 from measurements of the line profiles of the 21-cm line of the neutral hydrogen by Weaver and Williams (1973). The recent individual measurements of Oort's constantA and of the distanceR 0 of the Sun from the galactic centre yields 138.5 km s–1. The mean value 142.1 kms–1 leads toA=14.56 km s–1 kpc–1 andR 0=9.76 kpc. At the galactocentric distanceR nearR 0 the angular velocity is represented by (R)=25.84–2.98 (R–9.76)+0.075 (R–9.76)2. The mass of the Galaxy amounts to 1-92×1011 .

Herrn Kollegen Prof. Dr W. Gleisberg zum 70. Geburtstag am 26.12.1973 gewidmet.

Mitteilungen Serie A.  相似文献   

20.
On the basis of Sobolev's method, the population of 30 levels of hydrogen atom is determined allowing for the radiative and collision processes of the heating and ionization of the medium with velocity gradient gradv=10–9–10–11s–1, electron temperatureT e=104 K-2×104 K and electron densityN e=1010 cm–3–1011 cm–3. The central source radiation is characterized by a power spectrum with spectral indices varying from 0 to 2. A region of possible physical conditions is found where the thermal diffuse radiation of the envelope exceeds the emission in the Balmer H line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号