首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The formation of the complex linear dunes in the central Taklimakan Sand Sea is discussed based on analyses of wind regimes, sand grain size distributions on the topography of the dunes, and a combination of geomorphic and geophysical investigations into the morphology of the dunes. Complex linear dune formation is shown to have ?ve stages. Analysis clearly shows that under the control of wind regime, sand supply and other factors, the simple linear dunes move sideways while they evolve. This is the main cause for the formation of complex linear dunes in the central Taklimakan Sand Sea. We have not collected enough evidence to show whether the complexity of the complex linear dunes is left over from previous wind regimes or whether the previous wind regimes had different dominant wind directions compared to those of modern winds. The evolutionary processes of complex linear dunes in the region partly support the theory of ‘barchan evolution’ but do not support the ‘roll‐vortex’ and ‘bimodal wind regime’ hypotheses. After the complex linear dunes were developed, the local wind regime and the other controls such as sand supply suggest it is possible for them to maintain their linear shape. The evolutionary process discussed is limited to the region indicated in this paper, and may not be applicable to the whole Taklimakan Sand Sea. There are different evolutionary processes in different dune?elds because of variations in the factors that control complex linear dune formation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
Within the greater Ar Rub' al Khali (Empty Quarter) sand sea lies an internal depocentre, the Al Liwa Basin, which comprises a variety of mega‐scale dune types. Crescentic dunes dominant the north of the basin while megadunes of stellate or star form are a major landform of the south‐eastern reaches. Their development into dune fields is determined by the style and rate of dune–dune interactions, the boundary conditions imposed by a multi‐modal wind regime, fluctuating groundwater levels, and sediment availability under an assortment of climatic conditions throughout the Quaternary. As a result, dune field patterns are a collective response to these perturbations in space, time and environment. The R‐statistic is a collective measure of these responses, and is a metric capable of identifying the degree of pattern maturity or self‐organization of the aeolian system, and the pathways from which patterns evolve. The spatial signature of the southerly located star dunes is characterized by two definitive patterns of organization: the first, one of complete spatial randomness, the second, a low degree of spatial uniformity. In isolation, these results appear to be unrelated to those for crescentic dunes of the region in which a significantly higher degree of pattern dispersion is the norm. However, when spatial statistical measures are integrated with the theoretical understanding of dune–dune interactions and the involvement of environmental agents, the complex morphodynamic pathways and linkages between regional dune fields is better understood. In this case, both constructive (e.g. merging, lateral linking) and regenerative activity (e.g. calving) have played important roles in the development of dune size, and associated adjustments in spacing, and dune numbers, and subsequently dune field patterns. Synergetic patterns are emblematic of this vast dunescape, whereby transitional geographic, morphologic, dimensional and environmental modifications exist between the mega‐crescentic and mega‐stellate dunes of the Empty Quarter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This paper describes the appearance and maintenance of crescentic dunes in high wind speed conditions on a frozen beach at Schiermonnikoog, The Netherlands. The dunes were cresentic forms with horns. They were barchanoidal in plan view, but had reverse morphologies to typical barchans: the highest and steepest slopes were upwind and led to long low slopes downwind. Slipfaces were absent. It is hypothesized that such crescentic dunes may be a stable aerodynamic form under high to very high (c. 15–20 m s−1) flow conditions. © 1997 by John Wiley & Sons, Ltd.  相似文献   

4.
Longitudinal dune fields characterized by nearly uniform interdune spacing are distinguished from longitudinal dune fields characterized by fairly variable interdune spacing and high frequencies of dune coalescence. The empirical and theoretical evidence indicating that the former may be due to helical air currents aligned with the dunes is reviewed. Hypotheses arguing that the latter may arise indirectly from horizontal pressure gradients or bidirectional wind regimes are discussed. Evenly spaced linear sand banks aligned with tidal currents may be shown mathematically to result from energy optimalization within two-dimensional, sand-transporting flow regimes, and a similar simple or non-rotational flow model is considered for the problem of desert longitudinal dunes. An initial complex or rotational flow analysis is undertaken to discern the likely significance of roll vortices in desert sediment transport. An ‘evolutionary timescale’ is estimated for the formation of desert longitudinal dune fields. A simple analysis is performed for the effect of regional sand mass change on longitudinal dune field ordering. Recommendations are made for future empirical and theoretical research.  相似文献   

5.
In this work we analyze a dark erg on Mars that could be considered a mega‐dune (draa) where secondary dunes of different morphology are superposed over a main crescent‐shaped bedform (primary dune). The presence of a complex, multi‐directional wind regime is indicated as one of the main causes for the accumulation of a tall draa, presenting an analogy to the Great Sand Dunes in Colorado. In both cases, main regional winds from the SW blow in opposition to winds from the NE which are enhanced by the topography. Such a complex wind regime leads to the development of star and reversing dunes and is accurately predicted by atmospheric models on a regional and local scale. Signs of activity in the form of grainflow scars are also noted over the slip faces of many dunes, suggesting that easterly winds are actively shaping the study draa in the present‐day climatic setting. The presence of this draa on Mars suggests a complex interaction between regional and local topographically controlled flows and a consistent availability of sand. The future study of an analogue terrestrial site such as the Great Sand Dunes could be fundamental for understanding the evolution of similar Martian dune fields. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
As with most dune fields, the White Sands Dune Field in New Mexico forms in a wind regime that is not unimodal. In this study, crescentic dune shape change (deformation) with migration at White Sands was explored in a time series of five LiDAR‐derived digital elevation models (DEMs) and compared to a record of wind direction and speed during the same period. For the study period of June 2007 to June 2010, 244 sand‐transporting wind events occurred and define a dominant wind mode from the SW and lesser modes from the NNW and SSE. Based upon difference maps and tracing of dune brinklines, overall dune behavior consists of crest‐normal migration to the NE, but also along‐crest migration of dune sinuosity and stoss superimposed dunes to the SE. The SW winds are transverse to dune orientations and cause most forward migration. The NNW winds cause along‐crest migration of dune sinuosity and stoss bedforms, as well as SE migration of NE‐trending dune terminations. The SSE winds cause ephemeral dune deformation, especially crestal slipface reversals. The dunes deform with migration because of differences in dune‐segment size, and differences in the lee‐face deposition rate as a function of the incidence angle between the wind direction and the local brinkline orientation. Each wind event deforms dune shape, this new shape then serves as the boundary condition for the next wind event. Shared incidence‐angle control on dune deformation and lee‐face stratification types allows for an idealized model for White Sands dunes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Simple, and locally compound, transverse and barchanoid dunes dominate the 2000 km2 Skeleton Coast dunefield in northwestern Namibia/South West Africa. Dune height and spacing are closely correlated (r = 0-89) and decrease across the dunefield from southwest to northeast, with an accompanying change from transverse to barchanoid ridges and ultimately barchans. The dunes are aligned transverse to the dominant strong south and south southwest onshore winds. Alignment patterns indicate that surface roughness changes between coastal plain and dunes cause dune-forming winds to swing to the right over the dunes, but resume their original direction beyond. Grain size and sorting vary at three scales: the dune, the dune landscape and through the dunefield. Overall the sands, derived from three localities by deflation from beaches supplied by vigorous longshore drift, become progressively finer and better sorted across the dunefield paralleling changes in dune height and spacing. A statistically significant relationship (r = ?0?65) was established between dune spacing and the phi grain size of the coarser fraction of the dune sands, demonstrating the importance of the protective effects of coarse grains, and suggesting that the morphometry of simple transverse dunes may be controlled by the scale of turbulence associated with the threshold wind speed required to move the coarsest fraction of the dune sand.  相似文献   

8.
A simple model for the dynamics of dunes associated with vegetation is proposed. Using the model, the formation processes of transverse dunes, parabolic dunes and elongated parabolic dunes are simulated according to two environmental factors: (i) the amount of sand at the source; (ii) the wind force. The results have qualitative correspondence to the real counterpart, and the simplicity of the algorithm and the consequent ease of handling this model provide us with wide applicability for the investigation of the complex interplay between vegetation and dunes. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
Monitoring surface change on a Namib linear dune   总被引:1,自引:0,他引:1  
In tackling the apparently intractable problem of linear dune initiation and maintenance there has been a move away from large-scale deductive models to smaller-scale field studies of individual dunes. This paper reports a study of surface change on a large, complex linear dune in the Namib Desert, southern Africa. The dune surface responds to a markedly seasonal wind regime. In summer westerly winds erode sand from the west flank of the dune and deposit it on the easterly lee side of the dune crest. In winter this pattern is reversed. Easterly winds erode sand from the east slope and deposit it on the west slope. The crest therefore moves back and forth some 15 m each year returning at the end of a year's cycle to its position at the beginning. The position of the base of the dune appears to remain fixed, even though sand is moving throughout the dune system. The dune does extend northward along some resultant of the westerly and easterly winds. Despite relatively high levels of activity, especially at the dune crest, there is no evidence of the breakdown of the linear dune form. The conclusion must therefore be that linear dunes can be maintained in bimodal wind regimes and are not necessarily related to unidirectional parallel regimes as others have suggested.  相似文献   

10.
Reticulate dunes are one of the commonest dune types, and yet the least understood. Reticulate dunes at southeastern Tengger Desert are constituted by NE-SW trending primary ridges and nearly vertical secondary ridges. The result of field work studying the morphodynamics and formation mechanism for reticulate dunes in this area shows that the primary ridges were formed by dominant northwest wind and the secondary ridges developed and maintained by alternating dominant wind and subdominant northeast wind on the basis of the primary ridges. Viewed from morphodynamics, reticulate dunes correspond to the complex transverse dune on which the longitudinal element superimposed. Project supported by the National Natural Science Foundation of China (Grant No. NSFC-49501001).  相似文献   

11.
In this work, we perform an analysis of large dark dunes within Moreux Crater and Herschel Crater on Mars using High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) data sets. These data allow us to conduct a detailed analysis of dune morphology and slip faces, concluding that the studied dune fields are influenced by topographically‐controlled complex wind directions. Our morphological analysis reveals that inside Moreux Crater in particular, the topographic setting dominates the wind flow direction, leading to the development of a sand transport pathway encircling the central peak of the crater. The dune fields in Herschel Crater are also affected by winds controlled by variable topography as suggested by the presence of complex dunes and dune fields. Our analysis indicate that the studied dune systems is not the result of paleo‐wind regimes. Furthermore, we perform thermal inertia measurements using thermal emission spectrometer (TES) data, which indicate that the studied dune fields consist of medium sand 250–500 µm in diameter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
As a basic form of pattern analysis, the parameters of dune spacing, defect density, crest orientation and crest length are measured from remote images and treated statistically for dunes at White Sands in New Mexico, the Algodones in California, the Agneitir in Mauritania, and the Namib in Namibia. Statistical populations are identified from frequency plots of dune spacing and crest length, field‐scale calculations of defect density, and rose diagrams of crest orientation. Single populations characterize simple dune fields (White Sands), whereas multiple populations characterize compound/complex dunes (Algodones, Namib), and complex dune fields (Agneitir). As time increases, dune fields show an increase in dune spacing and crest length, a decrease in defect density, more tightly clustered crest orientation, and a reduction in the variance associated with measurements of these parameters. The results are consistent with models of dune fields as self‐organizing complex systems in which a characteristic pattern emerges as a function of constructional time. Because pattern evolution is a function of time, it may be possible to use pattern analysis to augment current methods of age determination. Statistically defined populations can be used in geomorphic backstripping to unstack generations of simple patterns that give rise to complex patterns, and to reconstruct each generation in terms of construction time and palaeo‐wind regime. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
An association between salt pans or dry lake beds and distinctive crescentic lake-floor sand mounds (1–10 m high, tens to hundreds of metres wide) is commonplace in desert systems. In the Makgadikgadi Basin of northern Botswana, a debate about the formative processes of these landforms has persisted despite numerous morphometric, sedimentary and geochronological analyses, with mound landforms variously inferred to be aeolian dunes, subaqueous dunes, spring mounds or shoreline remnants. We propose a new formative mechanism which draws on the interaction between uneven moisture distribution on the pan surface and mobile aeolian sediments. We use a numerical model (ViSTA), which couples vegetation and aeolian sand transport dynamics, together with optically stimulated luminescence (OSL) dating of a mound in the Makgadikgadi Basin to investigate the feasibility of this ‘sticky mound hypothesis’. We find that under a range of modelled environmental conditions, uneven moisture distribution on the pan surface can lead to the development and stabilization of crescentic aeolian dunes, with these dunes growing upwind from the point of initial deposition, corresponding with the chronological data gained from OSL dating of a mound feature. On removal of this moisture, the modelled dunes erode and dissipate. These findings suggest that the formative mechanism of the mounds could be dependent on the interaction between differential drying of the pan surface and the competence of the aeolian sediment transport system across the pan floor.  相似文献   

14.
Basically, sand dunes are patterns resulting from the coupling of hydrodynamic and sediment transport. Once grains move, they modify the surface topography which in turns modifies the flow. This important feedback mechanism lies at the core of continuous dune modelling. Here we present an updated review of such a model for aeolian dunes, including important modifications to improve its predicting power. For instance, we add a more realistic wind model and provide a self‐consistent set of parameters independently validated. As an example, we are able to simulate realistic barchan dunes, which are the basic solution of the model in the condition of unidirectional flow and scarce sediments. From the simulation, we extract new relations describing the morphology and dynamics of barchans that compare very well with existing field data. Next, we revisit the problem of the stability of barchan dunes and argue that they are intrinsically unstable bed‐forms. Finally, we perform more complex simulations: first, a barchan dune under variable wind strength and, second, barchan dune fields under different boundary conditions. The latter has important implications for the problem of the genesis of barchan dunes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The longitudinal dunes of the Simpson Desert, in the vicinity of Birdsville, have been reworked largely during the Holocene from dunes deposited up to 80000 years ago or earlier. The widespread asymmetry of these roughly northward-trending dunes, with steeper eastern faces and more gentle western faces, supports wind-rose data showing sand-transporting winds from the southwest obliquely intersecting the dunes. While this suggests a change in the wind pattern since the dune field was oriented, it does not indicate that the dunes are necessarily shifting leeward (eastward) as a consequence. It is hypothesized that the direction of migration is controlled by the extent to which the dunes are vegetated. Relatively well-vegetated dunes can accrete sand on their gentle stoss slopes and erode on their lee slopes causing them to shift westward and hence obliquely into the wind, a condition that probably prevails in wetter regions and during episodes of relatively humid climate. In contrast, in very dry areas or during arid phases, sand can move unimpeded up a sparsely vegetated stoss face and over the crest to form an avalanche or slip face on the lee side, thereby causing the dunes to shift eastward. Despite evidence that longitudinal dune crests can shift laterally to some extent, the dunes in the western part of the Simpson Desert have not migrated, either westward or eastward, more than 100m or so from their Pleistocene cores. Aeolian transport and partial or complete removal of iron cutans from around quartz grains results in dunes of widely varying colour yet of similar age.  相似文献   

16.

The Tarim Desert Highway in Xinjiang, China, the longest one in the world, has a length of 562 km, about 80% of which runs across, from north to south, the Taklimakan Desert. Obviously, the main problem of the road maintenance is the blown sand disaster. The research results showed: (1) the physical environment along the desert highway is characterized by strong winds, fine and loose ground materials, different dunes and so on, which provides the dynamical condition and material source for the formation of blown sand disaster to the road and its shelter system. Meanwhile, the trend and cross-section of the road and the structure of the shelter system, as damage objects, play important roles in the formation process of blown sand disaster; (2) the blown sand disaster to the shelter system is original from the intrusion of the drift sands and mobile dunes outside the shelter system, and the wind erosion and sand deposit caused by the air stream changes on the ground in the shelter system. The main damage object in the Tarim Desert Highway is the shelter system presently. The damage forms include wind erosion, sand burying and dune covering; and (3) the damaged length of the blocking sand fences is 83.7%, 88.4%, 72.4%, 72.8% and 40.3% and the damaged area of the straw checkerboard belts is 73.1%, 58.2%, 44.5%, 35.4% and 36.6%, in turn, in 5 different landform units from north to south, and, the disasters to fences and the straw checkerboard belts are 79.5% and 57.6% in the compound dunes while they are 64.6% and 37.7% in the interdunes respectively.

  相似文献   

17.
The blown sand disaster to the Tarim Desert Highway in Xinjiang, China   总被引:1,自引:0,他引:1  
The Tarim Desert Highway in Xinjiang, China, the longest one in the world, has a lengthof 562 km, about 80% of which runs across, from north to south, the Taklimakan Desert. Obviously,the main problem of the road maintenance is the blown sand disaster. The research resultsshowed: (1) the physical environment along thedesert highway is characterized by strong winds,fine and loose ground materials, different dunes and so on, which provides the dynamical conditionand material source for the formation of blown sand disaster to the road and its shelter system.Meanwhile, the trend and cross-section of the road and the structure of the shelter system, asdamage objects, play important roles in the formation process of blown sand disaster; (2) theblown sand disaster to the shelter system is original from the intrusion of the drift sands and mobiledunes outside the shelter system, and the wind erosion and sand deposit caused by the air streamchanges on the ground in the shelter system. The main damage object in the Tarim Desert High-way is the shelter system presently. The damage forms include wind erosion, sand burying anddune covering; and (3) the damaged length of the blocking sand fences is 83.7%, 88.4%, 72.4%,72.8% and 40.3% and the damaged area of the straw checkerboard belts is 73.1%, 58.2%, 44.5%,35.4% and 36.6%, in turn, in 5 different landform units from north to south, and, the disasters tofences and the straw checkerboard belts are 79.5% and 57.6% in the compound dunes while theyare 64.6% and 37.7% in the interdunes respectively.  相似文献   

18.
Sunset Crater in north‐central Arizona (USA) is a 900‐year‐old scoria‐cone volcano. Wind action has redistributed its widespread tephra deposit into a variety of aeolian dune forms that serve as a terrestrial analog for similar landforms and aeolian processes on Mars. Fieldwork was conducted to collect essential geomorphological and sedimentological data, and to establish a baseline for the type and morphometry of dunes, physical properties, interactions with topography, and saltation pathways. Our analyses focused primarily on coppice dunes, falling dunes, wind ripples, and sand streaks. For all collected volcaniclastic aeolian sediment samples, the sand‐size fraction dominated, ranging from almost 100% sand to 74.6% sand. No sample contained more than 1.6% silt. The composition is overwhelmingly basaltic with non‐basaltic particles composing 2 to 6% of the total. Coppice (nebkha) dunes form where clumps of vegetation trap saltating particles and create small mounds or hummocks. Mean grain size for coppice dune samples is coarse sand. Measured dune height for 15 coppice dunes ranged from 0.3 to 3.3 m with a mean of 1 m. Mean length was 6.7 m and mean width was 4.8 m. Falling dunes identified in this study are poorly developed and thin, lacking a prominent ramp‐like structure. Mean wavelength for three sets of measured ripples ranged from 22 to 36 cm. Sand streaks extend downwind for more than a kilometer and are up to 200 m in width. They commonly occur on the lee side of mesas and similar landforms and are typically the downwind continuation of falling dunes. Falling dunes, wind ripples, and sand streaks have been identified on Mars, while coppice dunes are similar to Martian shadow or lee dunes in which sand accumulates in the lee of obstacles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Extensive coastal dune ?elds occur on the Quaternary strandplain associated with the São Francisco River mouth. Two different generations of dunes are identi?ed. One is inactive, already ?xed by vegetation, comprising parabolic dunes. The other generation is active, bordering the present‐day shoreline and transgressing over the inactive dune ?eld. Three morphological provinces in the active coastal dune ?elds are recognized. On the updrift side of the São Francisco River mouth, they are: (a) sand‐sheet with shrub coppice and shadow dunes; (b) isolated dunes of the barchan‐transversal type up to 5 m high, and interdune areas; and (c) a 23 m high compound dune, with superimposed small dunes. The same provinces are recognized on the downdrift side of the river mouth, with two important exceptions: the barchan‐transversal and compound dunes are replaced, respectively, by (i) zibar‐type dunes up to 5 m high, and (ii) a 19 m high precipitation dune, which is associated with numerous blowouts. The prevailing eastern winds from August to January favour the development of the aeolian bedforms and the migration of dunes. The shoreline orientation almost transversal to the winds and the great supply of ?ne‐grained sediments contribute to the formation of barchan‐transversal types and compound dunes in the updrift side. On the other hand, in the downdrift side the shoreline orientation is almost parallel to the prevailing winds. This fact, in association with a coarser grain size in the beachface, favours the formation of zibar‐type and precipitation dunes with numerous blowouts. The rate of migration of individual dunes is about 20 to 24 m per year. This study suggests that the aeolian sedimentation is a relatively recent phenomenon at the Quaternary strandplain of the São Francisco River. The ?rst generation of dune ?elds initiated some time after 3000 years BP and the second generation originated some centuries ago. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
Eolian sand dune deposits of the Upper Cretaceous Djadokhta Formation at Tugrikiin Shiree, southern Mongolia, yield not only dinosaur skeletal remains but also numerous trace fossils produced by invertebrates. This paper describes the trace fossil Entradichnus meniscus, a long unlined and unbranched trail that is filled with meniscate laminae and occurs characteristically in positive epirelief. The trail is straight to gently meandering, parallel to the foreset laminae of the eolian dunes, and exhibits a significant preferred orientation parallel to the depositional dip of the cross‐stratification laminae. In addition, almost all the crescentic internal laminae of the trail show concave down‐dips. These features indicate that the trails were produced beneath the slipface of eolian dunes by the downward burrowing of the trace‐makers. This occurrence mode of E. meniscus of the Mongolian Cretaceous is very similar to that described from the Jurassic eolian dune deposits in North America. Hence, the downward burrowing of the E. meniscus animal might be a common feature in arid eolian dune deposits at least during the Jurassic and Cretaceous, and possibly reflecting a behavioral response to the morphology of large sand dunes under an arid climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号