首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the variation in soil erodibility along hillslopes in a Prairie landscape. The soil loss produced by simulated rainfall on undisturbed soils was used as an index of relative soil erodibility. Relative erodibility, and several soil properties, were measured at the summit, shoulder, midslope footslope and toeslope of 11 slope transects in an area of cultivated grassland soils on hummocky glacial till. The variation of erodibility with slope position was statistically significant, and slope position explained about 40 per cent of the variation in the erodibility measurements. Erodibility was 14 per cent higher on the shoulder and midslope, and 21 per cent lower on the toeslope, than on the summit and footslope. Local variation in erodibility along slopes was considered to be an important control on patterns of soil erosion in the landscape. The variation of erodibility along the slopes reflected soil property trends. The greatest erodibility was associated with upper slope positions where soils tended to be shallow, coarse, poorly leached and low in organic matter, while lower erodibility was found at lower slope positions with deep, organic-rich and leached soils. Of the individual soil properties considered, silt and sand content were the most highly correlated with erodibility. The results, together with results from other studies, also suggest that net erosion and erodibility are positively related.  相似文献   

2.
The extrapolation of results from field trials to larger areas of land for purposes of regional impact assessment is an important issue in geomorphology, particularly for landform properties that show high stochastic variability in space and time, such as shallow landslide erosion. It is shown in this study, that by identifying the main driver for spatial variability in shallow landslide erosion at field scales, namely slope angle, it is possible to develop a set of generic functions for assessing the impact of landslides on selected soil properties at larger spatial scales and over longer time periods. Research was conducted within an area of pastoral soft‐rock Tertiary hill country in the North Island of New Zealand that is subject to infrequent high intensity rainfall events, producing numerous landslides, most of which are smaller than several hundred square metres in size and remove soil to shallow depths. All landslides were mapped within a 0·6 km2 area and registered to a high resolution (2 m) slope map to show that few landslides occur on slopes < 20° and 95% were on slopes > 24°. The areal density of landslides from all historical events showed an approximately linear increase with slope above 24°. Integrating landslide densities with soil recovery data demonstrates that the average value of a soil property fluctuates in a ‘saw‐tooth’ fashion through time with the overall shape of the curve controlled by the frequency of landslide inducing storm events and recovery rate of the soil property between events. Despite such fluctuations, there are gradual declines of 7·5% in average total carbon content of topsoil and 9·5% in average soil depth to bedrock, since the time of forest clearance. Results have application to large‐scale sediment budget and water quality models and to the New Zealand Soil Carbon Monitoring System (CMS). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
V-shaped gullies are formed on slopes in the Rif Mountains where stony colluvium covers a truncated Luvisol in finegrained, early pleistocene slope deposits. The colluvium resulted from large-scale deforestation of summit areas in recent times. A number of properties related to the response of soil material to rainfall were investigated. Colluvium has a high infiltration capacity compared to the Luvisol. Consequently, the deposition of colluvium reduced overland flow and erosion by surface wash. Gully-forming processes on the other hand were activated by the superposition of permeable over impermeable material.  相似文献   

4.
梁承龙  刘芳 《地震工程学报》2022,44(5):1050-1058
裂缝常存在于边坡表面,地震作用会大幅降低裂缝边坡稳定性。针对双层土裂缝边坡稳定性问题,定义上下土层分界处高度与边坡高度之比为深度系数以描述双层土的分布,基于极限分析上限定理,构建“点到点”离散运动学机构,并在此机构中引入一条垂直张拉裂缝,结合拟静力法和强度折减法建立能量平衡方程求解裂缝边坡临界高度和安全系数上限解。计算结果与传统上限法进行对比,验证离散运动学机构的有效性及其解的优越性,同时探究土体非均质性及深度系数对裂缝边坡稳定性以及裂缝深度和位置的影响规律。结果表明,地震作用会降低边坡稳定性;随着地震力增大,边坡临界滑动面逐渐加深,裂缝深度略微增大,裂缝位置逐渐远离坡面;对于具体的双层土边坡会存在一个特定的深度系数使边坡安全系数达到最值,同时裂缝会穿越至下层土且深度发生突增。  相似文献   

5.
Soil erosion is one of the most important environmental problems. In the case of small scale areas where soil properties and climate have relatively uniform characteristics, vegetation cover and topography (i.e. ground slope) are the main factors that affect the amount of soil erosion. Lack of vegetation cover on bare soil areas, including forest road side slopes, especially in mountainous regions with steep slopes, may significantly increase the erosion rate. Determining and classifying erosion risks in such areas can help preventing environmental impacts. In this study, remotely sensed data and elevation data were used to extract and classify bare soil erosion risk areas for a study area selected from Hatila Valley Natural Protected Area in northeastern Turkey. High resolution IKONOS imagery was used to apply land use classification in ERDAS Imagine 9.0. To generate erosion risk map of the bare soil areas, classified image was superimposed on top of slope map, generated based on a Digital Elevation Model (DEM) in ArcGIS 9.2. The results indicated that 1.43, 5.85, 34.62, 53.16, and 4.94% of the bare soil areas in the study area were under very low, low, medium, high, and very high erosion risks, respectively. The overall classification accuracy of 82.5% indicated the potential of the proposed methodology.  相似文献   

6.
采用振动台物理模拟试验方法,以4种不同覆土厚度的层状边坡模型为研究对象,水平输入振幅逐渐增大的正弦波加速度,分析了结构面上覆不同厚度土层对动力作用下边坡的稳定影响.研究了在动力作用下边坡的破坏位置和性质、破坏形式及最危险覆土厚度,验证了坡面放大效应与高程的关系,采用MIDAS/GTS软件对模型试验进行振型分析,分析了模型边坡的自振频率与覆土厚度的变化关系.试验结果表明:①模型破坏时最先出现的裂缝在边坡的中上部,且6 cm覆土厚度的模型对振动的响应最大,对应到实际工程中时12m厚度土层覆盖的边坡是最应该注意防护的.②不同厚度的土层破坏的形式不同:当土层厚度较薄时模型破坏较迅速,基本沿结构面发生整体滑动破坏,且滑动呈现一定的流体特性;当覆土较厚时裂缝先在模型中上部出现,随着振动的持续裂缝继续发展,最后发生整体性崩塌.③随着高程的增加峰值加速度总体呈放大趋势,但最大值出现在边坡中上部而非坡顶,说明不仅均质边坡有加速度的高程放大效应,层状边坡也具有加速度的高程放大效应.  相似文献   

7.
Variability of interrill erosion at low slopes   总被引:2,自引:0,他引:2  
Numerous models and risk assessments have been developed in order to estimate soil erosion from agricultural land, with some including estimates of nutrient and contaminant transfer. Many of these models have a slope term as a control over particle transfer, with increased transfer associated with increased slopes. This is based on data collected over a wide range of slopes and using relatively small soil flumes and physical principals, i.e. the role of gravity in splash transport and flow. This study uses laboratory rainfall simulation on a large soil flume to investigate interrill soil erosion of a silt loam under a rainfall intensity of 47 mm h?1 on 3%, 6% and 9% slopes, which are representative of agricultural land in much of northwest Europe. The results show: (1) wide variation in runoff and sediment concentration data from replicate experiments, which indicates the complexities in interrill soil erosion processes; and (2) that at low slopes processes related to surface area connectivity, soil saturation, flow patterns and water depth may dominant over those related to gravity. Consequently, this questions the use of risk assessments and soil erosion models with a dominant slope term when assessing soil erosion from agricultural land at low slopes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Transfer of atmospheric N deposition on shallow‐soil forested basins on the Canadian Shield to receiving water bodies may be enhanced by rapid preferential flow along the soil–bedrock interface (BR runoff) on basin slopes. Controls on BR runoff, partitioning of event and pre‐event water contributions to this flow, and implications of this partitioning for N fluxes in BR runoff were studied under natural and artificial inputs to an instrumented slope. BR runoff as a fraction of water inputs to the slope increased with antecedent soil wetness and input depth. Event water contributions to BR runoff initially increased with antecedent soil wetness, but then declined at large antecedent soil wetness. Export of applied NH4+ from the slope was maximized when event water contributions containing large NH4+ concentrations dominated BR runoff; however, there was no relationship between the fraction of NO3? application transported in BR runoff and either application input or the event water fraction of that runoff. The applicability of our results to other shallow‐soil areas of the Canadian Shield is limited by artificial N inputs to the slope in excess of natural loads and by low rates of N mineralization and negligible nitrification in the slope's soils. Nevertheless, the study reinforces the need to consider how the hydrologic, geometric and pedologic properties of forest slopes interact with biotic and abiotic soil processes to control N transport and transformation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
In undisturbed tropical montane rainforests massive organic layers accommodate the majority of roots and only a small fraction of roots penetrate the mineral soil. We investigated the contribution of vegetation to slope stability in such environments by modifying a standard model for slope stability to include an organic layer with distinct mechanical properties. The importance of individual model parameters was evaluated using detailed measurements of soil and vegetation properties to reproduce the observed depth of 11 shallow landslides in the Andes of southern Ecuador. By distinguishing mineral soil, organic layer and above‐ground biomass, it is shown that in this environment vegetation provides a destabilizing effect mainly due to its contribution to the mass of the organic layer (up to 973 t ha? 1 under wet conditions). Sensitivity analysis shows that the destabilizing effect of the mass of soil and vegetation can only be effective on slopes steeper than 37.9°. This situation applies to 36% of the study area. Thus, on the steep slopes of this megadiverse ecosystem, the mass of the growing forest promotes landsliding, which in turn promotes a new cycle of succession. This feedback mechanism is worth consideration in further investigations of the impact of landslides on plant diversity in similar environments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Natural loess slopes are characterized by a strong geological structure, which is an important factor in maintaining slope stability. The magnitude and duration of the earthquake may disturb the soil structure at different levels degrees, locally changing the arrangement between soil particles. The process of rainfall humidification weakens the cementation between soil particles, and the disturbance and humidification change the structural state of the soil, which in turn causes sliding of the slope along with the decay of soil mechanical properties. As slope instability is often the result of a series of post-earthquake ripple effects, it is of great scientific significance to study the mechanism of slope instability due to the structural decay of earthquake-damaged loess exacerbated by rainfall. In this paper, the impact of structural decay of loess on slope stability is simulated by GEOSTUDIO software under three conditions: pre-earthquake rainfall, post-earthquake rainfall and earthquake, taking the landslide in Buzi Village, Min County, Gansu Province as an example. The comparative analysis of the calculation results shows that the structural properties of the slope without earthquake disturbance are influenced by infiltration amount. When it is fully saturated, the structural properties are similar to those of saturated soil, and the safety factor is reduced by 12.9%. In addition, the earthquake intensity and duration have different degrees of structural damage to the soil. When the structure is fully damaged, it is similar to that of remodelled soil, and the safety factor is reduced by 45.84%. Notably, the process of the earthquake and the following humidification generates the most serious damage to the loess structure, with a reduction in the safety factor of up to 56.15%. The quantitative analysis above obviously illustrates that the post-earthquake rainfall causes the most severe damage to structural loess slopes, and the resulting landslide hazard should not be underestimated.  相似文献   

11.
There are very few experimental studies identifying hydrological pathways within rain forest slopes. Such knowledge is, however, necessary to understand why forest disturbance affects rainfall–riverflow response and nutrient migration. This study examines flow pathways within lowland rain forest slopes comprising Udults of the Ultisol soil order. Experimentation was conducted on four SE Asian hillslope units (each 5 × 5 m in plan) in the Bukit Timah catchment (Singapore Island), and in the W8S5 catchment (Sabah, Borneo Island). The flow pathways were identified by artificial tracer experiments. We evaluated how well hydrometric calculations based on tensiometry and permeametry measurements predicted the tracer patterns. The tracer work indicated much faster subsurface flows at Bukit Timah than W8S5 for the storms studied. Some explanation of the greater subsurface waterflows at Bukit Timah in comparison to W8S5 is afforded by the less steep moisture release curves which maintain hydraulic conductivity as the soil dries. Vertical flow of the tracer through the upper 1 m of soil predominated (>90 per cent of percolation) in the Bukit Timah slopes. In some contrast, a major component (approximately 60 per cent) of the tracer percolation was directed laterally within the W8S5 slopes. The flow vectors calculated using the hydrometric methods did, however, grossly under‐estimate the degree of lateral deflection of waterflow generated at W8S5 and to a lesser extent over‐estimated it at Bukit Timah. In part, these errors may relate to the inability of traditional hydrometric techniques to fully characterize the effect of the large and small ‘natural soil pipes’ present within both catchments. In conclusion, the study indicates that marked variations in flow vectors exist within the Udult great group of SE Asian soils and hydrometric calculations may be poor predictors of these dominant pathways. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Soil erosion plays an important role in plant colonization of semi‐arid degraded areas. In this study, we aimed at deepening our knowledge of the mechanisms that control plant colonization on semi‐arid eroded slopes in east Spain by (i) determining topographic thresholds for plant colonization, (ii) identifying the soil properties limiting plant establishment and (iii) assessing whether colonizing species have specific plant traits to cope with these limitations. Slope angle and aspect were surrogates of erosion rate and water availability, respectively. Since soil erosion and water availability can limit plant establishment and both can interact in the landscape, we analysed variations in colonization success (vegetation cover and species number) with slope angle on 156 slopes, as a function of slope aspect. After determining slope angle thresholds for plant colonization, soil was sampled near the threshold values for soil analysis [nitrogen, phosphorous, calcium carbonate (CaCO3), water holding capacity]. Plant traits expressing the plant colonizing capacity were analysed both in the pool of species colonizing the steep slopes just below the threshold and in the pool of species inhabiting gentler slopes and absent from the slopes just below the threshold. Results show that the slope angle threshold for plant colonization decreased from north to south. For the vegetation cover, threshold values were 63°, 50°, 46°, 41° for the north, east, west and south slope aspect classes, respectively, and 65°, 53°, 49° and 45° for the species richness and the same aspect classes. No differences existed in soil properties at slope angle threshold values among slope aspects and between slope positions (just below and above the threshold) within slope aspect classes. This suggests that variations between slope aspect classes in the slope angle threshold result from differences in the colonizing capacity of plants which is controlled by water availability. Long‐distance dispersal and mucilage production were preferably associated with the pool of colonizing species. These results are discussed in the perspective of a more efficient ecological restoration of degraded semi‐arid ecosystems where soil erosion acts as an ecological filter for plant establishment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Hydrodynamic characteristics of rill flow on steep slopes   总被引:4,自引:0,他引:4       下载免费PDF全文
Rill erosion is a dominant sediment source on sloping lands. However, the amount of soil loss from rills on steep slopes is vastly more than that on gentle slopes because of differences in rill shape and hydraulic patterns. The aims of this paper are to determine the hydrodynamic characteristics of rills and the friction coefficients in steep slope conditions and to propose modifications of some hydraulic parameters used in soil loss prediction models. A series of inflow experiments was conducted on loess slopes. The results show that the geometric and hydraulic properties of rill on the steep loess slopes, which are characterized by the mean width of cross sections, mean velocity and mean depth of flow, are related to discharge and slope gradient in power functions. However, the related exponents to discharge are 0.26, 0.48 and 0.26, respectively, which are different from the exponents derived in previous studies, which were conducted on gentle slopes. The Manning roughness coefficient ranged from 0.035 to 0.071, with an average of 0.0536, and the Darcy–Weisbach friction coefficients varied from 0.4 to 1.9. The roughness coefficients are closely related to the Reynolds numbers and flow volumes; however, the correlations vary with slope gradient. The roughness coefficients are directly proportional to the Reynolds number and the flow volume on steep slopes, in contrast with the roughness coefficients found on gentle slopes, which decrease as the Reynolds number and flow volume increase. This difference is caused by the interactions among the hydraulics of the flow, the shape of the rills and the sediment concentrations on steep slopes. The results indicate that parameters used in models to predict rill erosion have to be modified according to slope gradient. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Surface geochemical mapping of Rn, Hg and pH on the summit of Kilauea volcano, Hawaii, has shown some of the characteristics of outgassing. Rn concentrations measured in shallow ground gas are highest (10 to 155 units, i.e. up to 0.016 nCi/l222Rn) over deep structures associated with the summit caldera, low (1 to 5 units) over the upper rift zones (which are underlain by shallow intrusions) and low to negative (1 to -3 units) over most of the volcanically inactive peripheral areas. High Rn concentrations were measured over peripheral well-developed structures such as the Kaoiki and Koae fault systems (45 and 12 units, respectively). The pattern of Rn values broadly suggests the existence of a summit-wide convection system interrupted locally by specific permeable structures. The low pH (3.5 to 5.6) of soils over the caldera is suggested to be largely due to the sulfurous component of the ground gas. The low concentrations of Hg (5 to 80 ppb) in these soils are postulated as being partly a function of subsurface complexing of Hg with the abundant sulfur. The shallow intrusions below the upper rift zones appear to have outgassed much of their sulfur content, so soils in these areas are only slightly acid (5.6 to 6.2), allowing the accumulation of Hg to concentrations of several thousands of ppb. These conditions change during extrusive (and intrusive) events with the increases in shallow subsurface temperatures and volatiles in ground gas producing an increase in Rn concentration, and a decrease in soil Hg due to volatilization. After such events, Rn concentration decreases, and soil Hg increases significantly.  相似文献   

15.
Forest soil is an important component of the natural environment, and is a primary medium for many biological activities. In this study, soil loss and displacement by excavator and bulldozer (heavy equipments) were measured on cut and fills slopes of forest roads located in Mazandaran province, lran. The volumes of soil losses were estimated by prismoidal analyses of cut and fill slopes deformation between two time treatments (under subgrading and two years later) in slope classes of 30-50% and 50-70%. Weights of soil losses were calculated by multiplying the volumes of soil losses (cm^3) to the general bulk density (1.3g/cm^3). Soil displaced area by heavy equipment was evaluated according to earth working width. Results indicated that heavy equipment has significant effect on deformation of cut slope gradient and fill slope length (p〈0.0001). During the two-year period, the cut (p〈0.0002) and fill (p〈0.0001) slope gradients were significantly deformed in different slope classes. The average soil loss by excavator and bulldozer were 160.35 t/ha·yr and 429.09 t/ha·yr, respectively. Moreover, the soil displaced area during the subgrading process by bulldozer was greater than excavator in both two slope classes (p〈0.05). Soil loss and displacement in forest roads can be rednced by applying powerful excavators in subgrading project, especially in steep terrains.  相似文献   

16.
This paper takes into consideration landslide phenomena in the clayey slopes facing the built-up area of Pomarico which is situated in the southern part of the “Fossa Bradanica”, in Basilicata (Italy). Based on the great number of geologic, geomorphologic and historic informations a geotechnical model of the slope was built. Particular attention has been paid to define the geotechnical parameters of the soil and which mechanical models are to be used. The studies point out a correlation between the water level in the detritus cover and the stability condition of the slope showing that phenomena at first located at the foot of the slope spread quickly towards its summit as the piezometric height increases.  相似文献   

17.
Depending on the severity of the fire, forest fires may modify infiltration and soil erosion processes. Rainfall simulations were used to determine the hydrological effects of fire on Andisols in a pine forest burned by a wildfire in 2007. Six burned zones with different fire severities were compared with unburned zones. Infiltration, runoff and soil loss were analysed on slopes of 10% and 30%. Forest floor and soil properties were evaluated. Unburned zones exhibited relatively low infiltration (23 and 16 mm h?1 on 10% and 30% slope angles, respectively) and high average runoff/rainfall ratios (43% and 50% on 10% and 30% slope angles, respectively), which were associated with the extreme water repellency of the forest floor. Nonetheless, this layer seems to provide protection against raindrop impact and soil losses were found to be low (8 and 16 g m?2 h?1 for 10% and 30% slope angles, respectively). Soil cover, soil structure and water repellency were the main properties affected by the fire. The fire reduced forest floor and soil repellency, allowing rapid infiltration. Moreover, a significant decrease was noted in soil aggregate stabilities in the burned zones, which limited the infiltration rates. Consequently, no significant differences in infiltration and runoff were found between the burned and the unburned zones. The decrease in post‐fire soil cover and soil stability resulted in order‐of‐magnitude increases in erosion. Sediment rates were 15 and 31 g m?2 h?1 on the 10% and 30% slope angles, respectively, in zones affected by light fire severity. In the moderate fire severity zones, these values reached 65 and 260 g m?2 h?1 for the 10% and 30% slope angles, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Ice‐ and snow‐melted water flow over partially thawed frozen soil of cultivated slopes causes serious soil erosion, which results in soil degradation and affects productivity in Northeast China. Water flow velocity over frozen and nonfrozen soil shows importance in understanding meltwater erosion. In this work, a series of laboratory experiments were conducted to measure water flow velocity over frozen and nonfrozen soil slopes. Experiments were performed using the electrolyte trace method under the pulse boundary model, under conditions of 4 slope gradients (5°, 10°, 15°, and 20°), 3 flow rates (1, 2, and 4 L/min), and 7 sensors positioned at 0.1, 1.0, 2.0, 3.0, 4.0, 5.0, and 6.0 m away from the electrolyte injection point. Results showed that velocities over frozen soil slopes increased with flow rate and slope gradient. Flow velocities over nonfrozen soil slopes increased with flow rate and slope gradients from 5° to 15° and stabilized at 15°. Flow velocities over frozen soil slopes were 30%, 54%, 71%, and 91% higher than those over nonfrozen ones at slope gradients of 5°, 10°, 15°, and 20°. Flow velocities over frozen soil slopes under different flow rates of 1, 2, and 4 L/min were approximately 52%, 59%, and 79% higher than those over nonfrozen soil, respectively. This study can help in assessing the erosion of partially thawed frozen soil by meltwater flow.  相似文献   

19.
20.
Soil moisture is a key process in the hydrological cycle. During ecological restoration of the Loess Plateau, soil moisture status has undergone important changes, and infiltration of soil moisture during precipitation events is a key link affecting water distribution. Our study aims to quantify the effects of vegetation cover, rainfall intensity and slope length on total infiltration and the spatial variation of water flow. Infiltration data from the upper, middle and lower slopes of a bare slope, a natural grassland and an artificial shrub grassland were obtained using a simulated rainfall experiment. The angle of the study slope was 15° and rainfall intensity was set at 60, 90, 120, 150, and 180 mm/hr. The effect these factors have on soil moisture infiltration was quantified using main effect analysis. Our results indicate that the average infiltration depth (ID) of a bare slope, a grassland slope and an artificial shrub grassland slope was 46.7–73.3, 60–80, and 60–93.3 cm, respectively, and average soil moisture storage increment was 3.5–5.7, 5.0–9.4, and 5.7–10.2 mm under different rainfall intensities, respectively. Heavy rainfall intensity and vegetation cover reduced the difference of soil infiltration in the 0–40 cm soil layer, and rainfall intensity increased surface infiltration differences on the bare slope, the grassland slope and the artificial shrub grassland slope. Infiltration was dominated by rainfall intensity, accounting for 63.03–88.92%. As rainfall continued, the contribution of rainfall intensity to infiltration gradually decreased, and the contribution of vegetation cover and slope length to infiltration increased. The interactive contribution was: rainfall intensity * vegetation cover > vegetation cover * slope length > rainfall * slope length. In the grass and shrub grass slopes, lateral flow was found at a depth of 23–37 cm when the slope length was 5–10 m, this being related to the difference in soil infiltration capacity between different soil layers formed by the spatial cross-connection of roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号