首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human‐induced changes to the channel and 18·6 km2 catchment of Second Creek, in Knox County, Tennessee (USA), have included deliberate channel realignment, channelization of some reaches in culverts or cement‐lined channels, the addition of coarse particles, and intentional and unintentional changes in catchment hydrology. Field observations and measurements made between 1997 and 2001 showed active adjustment of the stream channel. Channel bank erosion is the dominant adjustment, but aggradation also occurs. One change following urbanization is an increase in bed particle size due to the addition of particles of anthropogenic origin. Such particles constitute 2–21 per cent of particles sampled at eight sites along the stream, and their D50 exceeds the D50 of natural particles at five of the sites. The downstream portion of the catchment has been urbanized for more than 150 years, but urbanizing activity has continued throughout the catchment, occurring not as a discrete perturbation, but as a set of disturbances with varying spatial and temporal scales. Spatial patterns of erosion and deposition in the channel are complex and do not show an upstream–downstream trend. Effective, although unintended, decoupling of the most manipulated reaches has hindered the propagation of changes in channel morphology and channel materials in this urbanized stream system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
The impact of afforestation on stream bank erosion and channel form   总被引:1,自引:0,他引:1  
Modification of the land use of a small catchment through coniferous afforestation is shown to have influenced stream bank erosion and channel form. Field mapping and erosion pin measurements over a 19-month period provides evidence of more active bank erosion along forested channel reaches than along non-forested. Extrapolation of downstream increases in bankfull width, bankfull depth, and channel capacity with increasing basin area for the non-forested catchment has demonstrated that afforestation of the lower part of the catchment has had a marked effect on channel form. Channel widths within the forest are up to three times greater than that predicted from the regression. These changes in bankfull width have led to stream bed aggradation and the development of wide shallow channels within the forest, and channel capacities within the forest are over two times that predicted from the basin area. The relationship between channel sinuosity and valley gradient for non-forested reaches of the river also indicated decreased sinuosity resulting from afforestation. These changes in channel form result from active bank erosion within the forest with coarse material being deposited within the channel as point-bars and mid-channel bars. Active bank erosion is largely attributed to the suppression by the forest of a thick grass turf and its associated dense network of fine roots, and secondly to the river attempting to bypass log jams and debris dams in the stream channel.  相似文献   

3.
Analysis of the bankfull cross-sections of headwater streams in Ado-Ekiti region of Southwestern Nigeria and their comparison with data from other tropical environments and temperate latitudes reveal that the channel capacities of streams in the humid tropics are relatively smaller than those of temperate regions, averaging 1.51 m2 with a coefficient of variation of 87 per cent. This is attributed to the small stream discharge, the predominantly low and highly seasonal flows of the streams, the low shear stress of stream load, and the stabilizing and protective influence of riparian vegetation and surface incrustations. The chanel capacities of the urban streams (mean = 1.13m2) are about 47 per cent smaller than those of the natural streams (mean = 2.12 m2) in the same ecological zone. In terms of hydraulic efficiency, the urban streams also have relatively inefficient cross-sections and larger width/depth ratios than their rural or natural counterparts. Resurveys of seventeen monumented cross-sections reveal that while channel shoulder width increased by only 6 per cent over a one-year period, channel depth and capacity decreased by 16 per cent and 4 per cent respectively; the observed decrease in channel size occurs entirely in the channel depth dimension. Thus the response of stream channels to the urbanization of small headwater catchments in the humid tropics is probably more of vertical accretion of channel bed and reduction in channel capacity rather than the widely-reported anomalous enlargement of urban streams through channel widening. The rapid rate of channel aggradation is attributed to excessive rates of sediment production and delivery to streams in urbanized catchments in the humid tropics, rapid deposition of sediments during small runoff events and on the falling stage of storm hydrographs, and the inability of the streams to evacuate the sediments delivered to them despite the increased discharge and peak flow associated with urbanization. The low competence of the urban streams is attributed to the predominance of low flows, very gentle bed slopes, and most importantly the widespread dumping of refuse into the channels thereby reducing flow velocity and promoting backwater flooding, ponding, and sedimentation. The correlations between drainage basin area, a surrogate for stream discharge, and channel capacity are very strong for the rural watersheds, and the regression analysis indicates a tendency towards a steady-state isometric relationship. Urban channels are, to a large extent, in disequilibrium with the urban hydrological state. However, spatial variations in the degree of urbanization of the catchments, and, therefore in runoff volume and velocity, exercise strong control on channel width, depth, and size. A model of the sequence of stream channel adjustment to the urbanization of small headwater catchments in the humid tropics is presented.  相似文献   

4.
The Afon Trannon, a gravel-bed river in mid-Wales with a catchment area of 72 km2, has recently been the subject of an engineering flood protection scheme. Following the enlargement and grading of the channel, lateral instability has produced considerable problems of maintenance. Geomorphological investigations are described which attempt to pinpoint the lessons of the scheme. Historical studies of floodplain sediments and channel change indicate firstly, an initially rather stable channel, but secondly a considerable, early history of channelization which may still have repercussions for system stability. This early channelization has now been modified in the recent scheme. Contemporary field study by survey and sediment tracing using the magnetic technique indicates the present instability of the sediments in a meandering channel given a trapezoidal cross-section and varied banks. Low-flow adjustments are as important as flood adjustments in the lower, straightened reach. Lessons for engineering schemes include the desirability of assessing erosion risk by rapid, cheap field techniques and historical investigations, and the consideration of more ecologically acceptable channel designs.  相似文献   

5.
Redwood Creek, north coastal California, USA, has experienced dramatic changes in channel configuration since the 1950s. A series of large floods (in 1955, 1964, 1972 and 1975) combined with the advent of widespread commercial timber harvest and road building resulted in extensive erosion in the basin and contributed high sediment loads to Redwood Creek. Since 1975, no peak flows have exceeded a 5 year recurrence interval. Twenty years of cross-sectional survey data document the downstream movement of a ‘sediment wave’ in the lower 26 km of this gravel-bedded river at a rate of 800 to 1600 m a−1 during this period of moderately low flows. Higher transit rates are associated with reaches of higher unit stream power. The wave was initially deposited at a site with an abrupt decrease in channel gradient and increase in channel width. The amplitude of the wave has attenuated more than 1 m as it moved downstream, and the duration of the wave increased from eight years upstream to more than 20 years downstream. Channel aggradation and subsequent degradation have been accommodated across the entire channel bed. Channel width has not decreased significantly after initial channel widening from large (>25 year recurrence interval) floods. Three sets of longitudinal surveys of the streambed showed the highest increase in pool depths and frequency in a degrading reach, but even the aggrading reach exhibited some pool development through time. The aggraded channel bed switched from functioning as a sediment sink to a significant sediment source as the channel adjusted to high sediment loads. From 1980 to 1990, sediment eroded from temporary channel storage represented about 25 per cent of the total sediment load and 95 per cent of the bedload exported from the basin.  相似文献   

6.
A model for describing river channel pro?le adjustments through time is developed and applied to a river responding to base‐level lowering in order to examine the effect of channel widening and downstream aggradation on equilibrium timescales. Across a range of boundary conditions, downstream aggradation controlled how quickly a channel reached equilibrium. Channel widening either increased or decreased the equilibrium timescale, depending on whether or not sediment derived from widening was deposited downstream. Results suggest that pro?le adjustments are more important than channel width adjustments in controlling equilibrium timescales for a channel responding to base‐level lowering. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
The Adige River drains 12 200 km2 of the Eastern Alps and flows for 213 km within this mountain range. Similar to other large rivers in Central Europe, the Adige River was subject to massive channelization works during the 19th century. Thanks to the availability of several historical maps, this river represents a very valuable case study to document the extent to which the morphology of the river changed due to channelization and to understand how much is left of its original morphodynamics. The study was based on the analysis of seven sets of historical maps dating from 1803–1805 to 1915–1927, on geomorphological analysis, on the application of mathematical morphodynamic theories and on the application of bar and channel pattern prediction models. The study concerns 115 km of the main stem and 29 km of its tributaries. In the pre‐channelization conditions, the Adige River presented a prevalence of single‐thread channel planforms. Multi‐thread patterns developed only immediately downstream of the main confluences. During the 19th century, the Adige underwent considerable channel adjustment, consisting of channel narrowing, straightening, and reduction of bars and islands. Multi‐thread and single‐thread reaches evolved through different evolutionary trajectories, considering both the channel width and the bar/vegetation interaction. Bar and channel pattern predictors showed good correspondence with the observed patterns, including the development of multi‐thread morphologies downstream of the confluences. Application of the free‐bar predictor helped to interpret the strong reduction – almost complete loss – of exposed sediment bars after the channelization works, quantifying the riverbed inclination to form alternate bars. This morphological evolution can be observed in other Alpine rivers of similar size and similar massive channelization, therefore, a simplified conceptual model for large rivers subjected to channelization is proposed, showing that a relatively small difference in the engineered channel width may have a strong impact on the river dynamics, specifically on bar formation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
Delta channels are important landforms at the interface of sediment transfer from terrestrial to oceanic realms and affect large, and often vulnerable, human populations. Understanding these dynamics is pressing because delta processes are sensitive to climate change and human activity via adjustments in, for example, mean sea level and water/sediment regimes. Data collected over a 40-year period along a 110-km distributary channel of the Yellow River Delta offer an ideal opportunity to investigate morphological responses to changing water and sediment regimes and intensive human activity. Complementary data from the delta front provide an opportunity to explore the interaction between delta channel geomorphology and delta-front erosion–accretion patterns. Cross-section dimensions and shape, longitudinal gradation and a sediment budget are used to quantify spatial and temporal morphological change along the Qingshuigou channel. Distinctive periods of channel change are identified, and analysis provides a detailed understanding of the temporal and spatial adjustments of the channel to specific human interventions, including two artificial channel diversions and changes in water and sediment supply driven by river management, and downstream delta-front development. Adjustments to the diversions included a short-lived period of erosion upstream and significant erosion in the newly activated channel, which progressed downstream. Channel geomorphology widened and deepened during periods when management increased water yield and decreased sediment supply, and narrowed and shallowed during periods when management reduced water yield and the sediment load. Changes along the channel are driven by both upstream and downstream forcing. Finally, there is some evidence that changing delta-front erosion–accretion patterns played an important role in the geomorphic evolution of the deltaic channel; an area that requires further investigation. © 2020 John Wiley & Sons, Ltd.  相似文献   

9.
1 INTRODUCTION Increasing attention is being given to sedimentation hazards downstream from reservoirs as dams built during the past century accumulate progressively greater volumes of sediment. The sediment storage both decreases reservoir capacity and operating efficiency of the dam, and creates a 搒ediment-shadow?downstream where sediment-starved flows commonly erode channel boundaries and create long-term channel instabilities. Numerous studies have documented downstream channel change…  相似文献   

10.
Urbanization can lead to accelerated stream channel erosion, especially in areas experiencing rapid population growth, unregulated urban development on erodible soils, and variable enforcement of environmental regulations. A combination of field surveys and Structure‐from‐Motion (SfM) photogrammetry techniques was used to document spatial patterns in stream channel geometry in a rapidly urbanizing watershed, Los Laureles Canyon (LLCW), in Tijuana, Mexico. Ground‐based SfM photogrammetry was used to map channel dimensions with 1 to 2 cm vertical mean error for four stream reaches (100–300 m long) that were highly variable and difficult to survey with a differential GPS. Regional channel geometry curves for LLCW had statistically larger slopes and intercepts compared with regional curves developed for comparable, undisturbed reference channels. Cross‐sectional areas of channels downstream of hardpoints, such as concrete reaches or culverts, were up to 64 times greater than reference channels, with enlargement persisting, in some cases, up to 230 m downstream. Percentage impervious cover was not a good predictor of channel enlargement. Proximity to upstream hardpoint, and lack of riparian and bank vegetation paired with highly erodible bed and bank materials may account for the instability of the highly enlarged and unstable cross‐sections. Channel erosion due to urbanization accounts for approximately 25–40% of the total sediment budget for the watershed, and channel erosion downstream of hardpoints accounts for one‐third of all channel erosion. Channels downstream of hardpoints should be stabilized to prevent increased inputs of sediment to the Tijuana Estuary and local hazards near the structures, especially in areas with urban settlements near the stream channel. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
Analytical results concerning open channel flows are presented, assuming that the cross-section is defined by a power law relationship between the channel width and the channel depth. Explicit equations to compute the normal flow depth are derived by considering the liquid discharge, the channel roughness height and the cross-section geometry (based on knowledge of the power law exponent, the reference width, and the reference depth) as known quantities.Such equations are deduced by writing the physical quantities as a power expansion in the power law exponent and expressing the wetted perimeter using a Gauss hypergeometric function. With the designed procedure, an accurate estimations of the integrals required to invert the uniform flow formula are obtained, at least for cross-sections characterized by aspect ratios of technical interest.Two relationships are proposed between the normal depth and the flow discharge. The first relationship is shown to work well for any discharge, provided that the width to depth ratio is sufficiently large. If this is not the case, the second procedure must be used for non-dimensional discharge larger than a given threshold, while the former procedure remains valid under the threshold.  相似文献   

12.
Knowledge on spatio-temporal variations in planform, hydraulic geometry, and bed-level variations of alluvial streams is required for planning and development of hydraulic structures and bank protection works. In the current study, a Geographic Information System (GIS) has been used to analyze topographical maps, multi-temporal remotely sensed imagery, and hydrologic and hydraulic data to extract the morphological parameters of the Upper Tapi River, India. The river has been found to have consistent migration towards the northern direction, with erosion/deposition on right/left banks. The river has not experienced any major meander except in the lower reaches of the Upper Tapi Gorge and minor braiding conditions at the location where the river emerges from mountainous topography to the plain region. The analyzed river cross sections were found to be depth dominated, and contain large flows within the channel banks. The cross-sections exhibited moderate channel bed adjustments in 1994, 2006, and 2007 wherein excessive sediment flux and stream power were capable of causing morphological changes in the river. High intensity rainfall in the subcatchment resulted in high sediment flux into the river during 1994, which was reported to cause significant aggradation at the downgauging station. The analysis of sediment flux into the river in conjunction with decadal land use land cover, revealed that sediment yield from the catchment was reduced during 2000–2010 due to an increase in water bodies in the form of minor hydraulic structures. The entry of comparatively less sediment laden water into the river, resulted in moderate bed degradation especially in 2006 and 2007 as observed at the downstream station. The methodology applied in the current study is generic in nature and can be applied to other rivers to identify their morphological issues.  相似文献   

13.
The process of dam removal establishes the channel morphology that is later adjusted by high-flow events. Generalities about process responses have been hypothesized, but broad applicability and details remain a research need. We completed laboratory experiments focused on understanding how processes occurring immediately after a sediment release upon dam removal or failure affect the downstream channel bed. Flume experiments tested three sediment mixtures at high and low flow rates. We measured changes in impounded sediment volume, downstream bed surface, and rates of deposition and erosion as the downstream bed adjusted. Results quantified the process responses and connected changes in downstream channel morphology to sediment composition, temporal variability in impounded sediment erosion, and spatial and temporal rates of bedload transport. Within gravel and sand sediments, the process response depended on sediment mobility. Dam removals at low flows created partial mobility with sands transporting as ripples over the gravel bed. In total, 37% of the reservoir eroded, and half the eroded sediment remained in the downstream reach. High flows generated full bed mobility, eroding sands and gravels into and through the downstream reach as 38% of the reservoir eroded. Although some sediment deposited, there was net erosion from the reach as a new, narrower channel eroded through the deposit. When silt was part of the sediment, the process response depended on how the flow rate influenced reservoir erosion rates. At low flows, reservoir erosion rates were initially low and the sediment partially exposed. The reduced sediment supply led to downstream bed erosion. Once reservoir erosion rates increased, sediment deposited downstream and a new channel eroded into the deposits. At high flows, eroded sediment temporarily deposited evenly over the downstream channel before eroding both the deposits and channel bed. At low flows, reservoir erosion was 17–18%, while at the high flow it was 31–41%.  相似文献   

14.
Few studies have precisely documented the response of stream channels to short-term flow variability. This paper examines the impact of sequential flows of various magnitudes on the morphology of a low-energy river in northeastern Illinois, U.S.A. Between June 1986 and November 1988 channel cross-sections were surveyed on a semiannual basis at 26 locations along a 7.2 km stretch of the Des Plaines River. During this period an estimated 100-year flood, several bankfull flows, and an extreme low flow associated with a severe drought occurred. The response of the river channel to each of these events was relatively minor. Mean changes for the reach were generally less than 3 per cent for mean depth and less than 1 per cent for width. Statistical analysis indicates that net changes in width and depth over the entire period were not significantly different from zero. This lack of geomorphic response is attributable to low stream power, low hydrologic variability, fine bed materials, and cohesive banks along this stretch of river. Although dramatic changes in channel morphology did not occur, subtleties in geomorphic response were observed that reflect the temporal ordering of hydrologic events.  相似文献   

15.
Dam removals with unmanaged sediment releases are good opportunities to learn about channel response to abruptly increased bed material supply. Understanding these events is important because they affect aquatic habitats and human uses of floodplains. A longstanding paradigm in geomorphology holds that response rates to landscape disturbance exponentially decay through time. However, a previous study of the Merrimack Village Dam (MVD) removal on the Souhegan River in New Hampshire, USA, showed that an exponential function poorly described the early geomorphic response. Erosion of impounded sediments there was two‐phased. We had an opportunity to quantitatively test the two‐phase response model proposed for MVD by extending the record there and comparing it with data from the Simkins Dam removal on the Patapsco River in Maryland, USA. The watershed sizes are the same order of magnitude (102 km2), and at both sites low‐head dams were removed (~3–4 m) and ~65 000 m3 of sand‐sized sediments were discharged to low‐gradient reaches. Analyzing four years of repeat morphometry and sediment surveys at the Simkins site, as well as continuous discharge and turbidity data, we observed the two‐phase erosion response described for MVD. In the early phase, approximately 50% of the impounded sediment at Simkins was eroded rapidly during modest flows. After incision to base level and widening, a second phase began when further erosion depended on floods large enough to go over bank and access impounded sediments more distant from the newly‐formed channel. Fitting functional forms to the data for both sites, we found that two‐phase exponential models with changing decay constants fit the erosion data better than single‐phase models. Valley width influences the two‐phase erosion responses upstream, but downstream responses appear more closely related to local gradient, sediment re‐supply from the upstream impoundments, and base flows. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Processes induced by the channelization of the Raba River in the present century are examined to illustrate the response of a gravel-bed stream following narrowing and straightening of its channel. Up to 3 m of incision has occurred. The change from a slow and relatively steady degradation in the lower reaches to separate degradation events in the higher reaches is attributed to the differential rate of headcut retreat and to the control exerted by mid-channel bars upon the rate of river-energy dissipation. Progressive outwashing of finer grains from bed material has followed the diminishing sediment yield of the basin and the increase in stream power. The ensuing growth in mean grain size and changes in sediment fabric have increased boundary resistance to flow and reduced particle susceptibility to entrainment. Downstream magnification of peak discharges has become increasingly pronounced with the advancing incision. The decrease in flood-plain storage and self-acceleration of flows passing the relatively deep and straight channel has caused flood waves to become progressively more flashy in nature. An increase in channel depth and reduction in gradient caused by downward and backward erosion, as well as bed material coarsening has promoted the re-establishment of an equilibrium. Conversely, flow velocity increases due to flow concentration in the deepened channel. Reduction in grain mobility allows the river to attain a new equilibrium at flow-velocity and stream-power levels higher than before the channelization. Numerous disadvantages of the applied regulation scheme and its failure to reduce flood hazard raise the question of its maintenance. To be successful, any regulation design must take into account changes in sediment supply and flood hydrographs resulting from the simultaneous alterations in basin management.  相似文献   

17.
Channel cross‐sectional changes since construction of Livingston Dam and Lake Livingston in 1968 were studied in the lower Trinity River, Texas, to test theoretical models of channel adjustment, and to determine controls on the spatial extent of channel response. High and average flows were not significantly modified by the dam, but sediment transport is greatly reduced. The study is treated as an opportunistic experiment to examine the effects of a reduction in sediment supply when discharge regime is unchanged. Channel scour is evident for about 60 km downstream, and the general phenomena of incision, widening, coarsening of channel sediment and a decrease in channel slope are successfully predicted, in a qualitative sense, by standard models of channel response. However, there is no consistent channel response within this reach, as various qualitatively different combinations of increases, decreases or no change in width, depth, slope and roughness occur. These multiple modes of adjustment are predicted by the unstable hydraulic geometry model. Between about 60 km and the Trinity delta 175 km downstream of the dam, no morphological response to the dam is observed. Rather than a diminution of the dam's effects on fluvial processes, this is due to a fundamental change in controls of the fluvial system. The downstream end of the scour zone corresponds to the upstream extent of channel response to Holocene sea level rise. Beyond 60 km downstream, the Trinity River is characterized by extensive sediment storage and reduced conveyance capacity, so that even after dam construction sediment supply still exceeds transport capacity. The channel bed of much of this reach is near or below sea level, so that sea level rise and backwater effects from the estuary are more important controls on the fluvial system than upstream inputs. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
The mining of alluvial tin in the Ringarooma basin began in 1875, reached a peak in 1900–20, and had virtually ceased by 1982. During that time 40 million m3 of mining waste were supplied to the main river, quickly replacing the natural bed material and requiring major adjustments to the channel. Based on estimates of sediment supply from more than 50 widely scattered mines and the frequency of flows capable of transporting the introduced load, the river's transport history is reconstructed using a mass-conservation model. Because of the lengthy time period (110 years) and river distance (75 km) involved, the model cannot predict detailed change but it does reproduce the main pattern of sediment movement in which successive phases of aggradation and degradation progress downstream. Peak storage is predicted in that part of the river where braiding and anastomosis are best developed. Aggradation was most rapid in the upper reaches close to major supply points, becoming slower and later with distance downstream. Channel width increased by up to 300 per cent where the valley floor was broad and braiding became relatively common. Bridges had frequently to be replaced. While bed levels were still rising in lower reaches, degradation began in upper ones, notably after 1950, and by 1984 had progressed downriver over 30 km. Rates of incision reached 0·5 m yr?1, especially in the early 1970s when record high flows occurred. As a result of degradation the bed material became gravelly through either reexposure of the original bed or lag concentration of coarser fractions. Also a narrower unbraided channel has developed. The river is beginning to heal itself and upper reaches now have reasonably stable beds but at least another 50 years will be required for the river to cleanse its channel of mining debris.  相似文献   

19.
Seasonal and event variations in stream channel area and the contributions of channel precipitation to stream flow were studied on a 106‐ha forested headwater catchment in central Pennsylvania. Variations in stream velocity, flowing stream surface width and widths of near‐stream saturated areas were periodically monitored at 61 channel transects over a two‐year period. The area of flowing stream surface and near‐stream saturated zones combined, ranged from 0·07% of basin area during summer low flows to 0·60% of total basin area during peak storm flows. Near‐stream saturated zones generally represented about half of the total channel area available to intercept throughfall and generate channel precipitation. Contributions of routed channel precipitation from the flowing stream surface and near‐stream zones, calculated using the Penn State Runoff Model (PSRM, v. 95), represented from 1·1 to 6·4% of total stream flow and 2·5–29% of total storm flow (stream flow–antecedent baseflow) during the six events. Areas of near‐stream saturated zones contributed 35–52% of the computed channel precipitation during the six events. Channel precipitation contributed a higher percentage of stream flow for events with low antecedent baseflow when storm flow generated by subsurface sources was relatively low. Expansion of channel area and consequent increases in volumes of channel precipitation with flow increases during events was non‐linear, with greater rates of change occurring at lower than at higher discharge rates. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
We adapted Newton's law of cooling to model downstream water temperature change in response to stream‐adjacent forest harvest on small and medium streams (average 327 ha in size) throughout the Oregon Coast Range, USA. The model requires measured stream gradient, width, depth and upstream control reach temperatures as inputs and contains two free parameters, which were determined by fitting the model to measured stream temperature data. This model reproduces the measured downstream temperature responses to within 0.4 °C for 15 of the 16 streams studied and provides insight into the physical sources of site‐to‐site variation among those responses. We also use the model to examine how the pre‐harvest to post‐harvest change in daily maximum stream temperature depends on distance from the harvest reach. The model suggests that the pre‐harvest to post‐harvest temperature change approximately 300 m downstream of the harvest will range from roughly 82% to less than 1% of that temperature change that occurred within the harvest reach, depending primarily on the downstream width, depth and gradient. Using study‐averaged values for these channel characteristics, the model suggests that for a stream representative of those in the study, the temperature change approximately 300 m downstream of the harvest will be 56% of the temperature change that occurred within the harvest reach. This adapted Newton's law of cooling procedure represents a highly practical means for predicting stream temperature behaviour downstream of timber harvests relative to conventional heat budget approaches and is informative of the dominant processes affecting stream temperature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号