首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Laboratory investigations on impulsive waves caused by underwater landslide   总被引:4,自引:0,他引:4  
Laboratory investigations have been performed on the submarine landslide generated waves by performing 120 laboratory tests. Both rigid and deforming-slide masses are considered. The effects of bed slope angle, initial submergence, slide geometry, shape and deformation on impulse wave characteristics have been inspected. Impulse wave amplitude, period, energy and nonlinearity are studied in this work. The effects of bed slope angle on energy conversion from slide into wave are also investigated. Laboratory-based prediction equations are presented for impulse wave amplitude and period in near and far-field and are successfully verified using the available data in previous laboratory and numerical works.  相似文献   

2.
This paper presents a new submarine landslide model based on the non-hydrostatic wave model NHWAVE of Ma et al. (2012). The landslide is modeled as a water–sediment mixture. The dense plume is driven by baroclinic pressure forcing introduced by spatial density variations. The model is validated using laboratory measurements of turbidity currents and of water wave generation by a granular landslide. The model is then utilized to study the dependence of landslide motion and associated tsunami wave generation on parameters including sediment settling velocity, initial depth of the landslide and slide density. Model results show that the slide motion and water waves which it generates are both sensitive to these parameters. The relative tsunamigenic response to rigid and deformable landslides of equal initial geometry and density is also examined. It is found that the wave energy is mostly concentrated on a narrow band of the dominant slide direction for the waves generated by rigid landslides, while directional spreading is more significant for waves generated by deformable landslides. The deformable landslide has larger speed and acceleration at the early stage of landslide, resulting in larger surface waves. The numerical results indicate that the model is capable of reasonably simulating tsunami wave generation by submarine landslides.  相似文献   

3.
严开  邹志利 《海洋工程》2018,36(4):70-77
为了研究真实海洋表面马蹄波的波形特征,通过物理模型试验研究了马蹄波的波形特征参数。研究中通过引入满足共振条件的扰动波成功在试验室内产生了马蹄波,测量和分析了马蹄波的波面升高和水平弧形波峰的几何特征,定义了新的垂向几何参数和水平几何特征参数,给出了不同水深情况下的这些参数的结果,得出了水深对马蹄波几何形态的影响。理论分析了马蹄波的横向结果,并与试验测量结果和弧形处理结果进行了对比。结果表明,马蹄波波形受水深影响较大;水深越浅,马蹄波的波面形状越接近椭圆余弦波,横向波长也越大。  相似文献   

4.
In the present study, the effect of shear current on the propagation of flexural gravity waves is analyzed under the assumptions of linearized shallow-water theory. Explicit expressions for the reflection and transmission coefficients associated with flexural gravity wave scattering by a step discontinuity in both water depth and current speed are derived. Further, trapping and scattering of flexural gravity waves by a jet-like shear current with a top-hat profile are examined and certain limiting conditions for the waves to exist are derived. The effects of change in water depth, current speed, incident wavelength and the angle of incidence on the group and phase velocities as well as on the reflection and transmission characteristics are analyzed through different numerical results.  相似文献   

5.
A lift based wave energy converter, namely, a cycloidal turbine, is investigated. This type of wave energy converter consists of a shaft with one or more hydrofoils attached eccentrically at a radius. The main shaft is aligned parallel to the wave crests and submerged at a fixed depth. In the two-dimensional limit, i.e. for large spans of the hydrofoil (or an array of these), the geometry of the converter is suitable for wave termination of straight crested Airy waves. Results from two-dimensional potential flow simulations, with thin hydrofoils modeled as either a point vortex or discrete vortex panel, are presented. The operation of the cycloidal turbine both as a wave generator as well as a wave-to-shaft energy converter interacting with a linear Airy wave is demonstrated. The impact on the performance of the converter for design parameters such as device size, submergence depth, and number of hydrofoils is shown. For optimal parameter choices, simulation results demonstrate inviscid energy conversion efficiencies of more than 99% of the incoming wave energy to shaft energy. This is achieved using feedback control to synchronize the rotational rate, blade pitch angle, and phase of the cycloidal wave energy converter to the incoming wave. While complete termination of the incoming wave is shown, the remainder of the energy is lost to harmonic waves traveling in the up-wave and down-wave directions.  相似文献   

6.
The internal kinematics for surface waves propagating over a locally constant depth are expressed as convolution integrals. Given the wave kinematics at the still water level (SWL), this provides explicit and exact potential flow expressions for the internal kinematics as convolutions in space with appropriate impulse response functions. These functions are derived in closed form and they are shown to decay exponentially. This effectively reduces the limits of the convolution integral to a horizontal distance of approximately three water depths from the water column of interest. The SWL kinematics must be provided within this region. The source of SWL kinematics may, e.g. be one of the recently developed highly accurate Boussinesq-type formulations. The method is valid for multidirectional, irregular waves of arbitrary nonlinearity at any constant water depth.  相似文献   

7.
Thewavetransformationandbreakingphenomenainshallowwater¥LiYucheng(1.DalianUniversityofTechnology,Dalian116023,China)Abstract:...  相似文献   

8.
It is well known that wave induced bottom oscillations become more and more negligible when the water depth exceeds half the wavelength of the surface gravity wave. However, it was experimentally demonstrated for regular waves that the bottom pressure oscillations at both first and second wave harmonic frequencies could be significant even for incoming waves propagating in deep water condition in the presence of a submerged plate [16]. For a water depth h of about the wavelength of the wave, measurements under the plate (depth immersion of top of plate h/6, length h/2) have shown bottom pressure variations at the wave frequency, up to thirty times larger than the pressure expected in the absence of the plate. In this paper, not only regular but also irregular wave are studied together with wave following current conditions. This behavior is numerically verified by use of a classical linear theory of waves. The wave bottom effect is explained through the role of evanescent modes and horizontally oscillating water column under the plate which still exist whatever the water depth. Such a model, which allows the calculation of the velocity fields, has shown that not only the bottom pressure but also the near bed fluid velocity are enhanced. Two maxima are observed on both sides of the location of the plate, at a distance of the plate increasing with the water depth. The possible impact of such near bed dynamics is then discussed for field conditions thanks to a scaling based on a Froude similarity. It is demonstrated that these structures may have a significant impact at the sea bed even in very deep water conditions, possibly enhanced in the presence of current.  相似文献   

9.
气旋天气过程引起的大浪是石臼港近海灾害性海浪之一。本文对1979年12月的一次气旋天气影响下的实测海浪进行了分析;论述了波要素的某些特点、波高与周期分布以及风与浪的关系;并讨论了风浪谱及其参量特征,得到了一个与实测谱接近的拟合谱形式。  相似文献   

10.
Solitary wave evolution over a shelf including porous damping is investigated using Volume-Averaged Reynolds Averaged Navier–Stokes equations. Porous media induced damping is determined based on empirical formulations for relevant parameters, and numerical results are compared with experimental information available in the literature. The aim of this work is to investigate the effect of wave damping on soliton disintegration and evolution along the step for both breaking and non-breaking solitary waves. The influence of several parameters such as geometrical configuration (step height and still water level), porous media properties (porosity and nominal diameter) or solitary wave characteristics (wave height) is analyzed. Numerical simulations show the porous bed induced wave damping is able to modify wave evolution along the step. Step height is observed as a relevant parameter to influence wave evolution. Depth ratio upstream and downstream of the edge appears to be the more relevant parameter in the transmission and reflection coefficients than porosity or the ratio of wave height–water depth. Porous step also modifies the fission and the solitary wave disintegration process although the number of solitons is observed to be the same in both porous and impermeable steps. In the absence of breaking, porous bed triggers a faster fission of the incident wave into a second and a third soliton, and the leading and the second soliton reduces their amplitude while propagating. This decrement is observed to increase with porosity. Moreover, the second soliton is released before on an impermeable step. Breaking process is observed to dominate over the wave dissipation at the porous bottom. Fission is first produced on a porous bed revealing a clear influence of the bottom characteristics on the soliton generation. The amplitude of the second and third solitons is very similar in both impermeable and porous steps but they evolved differently due to the effect of bed damping.  相似文献   

11.
为了探寻波浪破碎与波形不对称性的关系,通过对1/200缓坡上波浪破碎实验研究结果的进一步分析,运用最小二乘法,拟合了波形不对称性参数与相对水深的关系,以及用波形不对称性参数表示的波浪破碎指标表达式。所得规则波的结果与Kjeldsen的深水波结果相同,而不规则波的结果比规则波的小。研究还表明,这一破碎指标与相对水深有关系,随着水深变浅,指标值增大。  相似文献   

12.
An apparent wave is a part of the sea record observed between two successive upcrossings of the still water level. Integral formulas are given for intensities of encountered waves that overtake a ship sailing in directional sea with constant velocity. The formulas can be evaluated exactly in the case when the directional spectrum is known and the sea is assumed to be Gaussian, i.e. is a sum of noninteracting sinusoidal waves.  相似文献   

13.
Wave elevations and water particle velocities were measured in a laboratory surf zone created by the breaking of a narrow-band irregular wave train on a 1/35 plane slope. The incident waves form wave groups that are strongly modulated. It is found that the waves that break close to the shoreline generally have larger wave-height-to-water-depth ratios before breaking than the waves that break farther offshore. After breaking, the wave-height-to-water-depth ratio for the individual waves approaches a constant value in the inner surf zone, while the standard deviation of the wave period increases as the still water depth decreases. In the outer surf zone, the distribution of the period-averaged turbulent kinetic energy is closely correlated to the initial wave heights, and has a wider variation for narrow-band waves than for broad-band waves. In the inner surf zone, the distribution of the period-averaged turbulent kinetic energy is similar for narrow-band waves and broad-band waves. It is found that the wave elevation and turbulent kinetic energy time histories for the individual waves in a wave group are qualitatively similar to those found in a spilling regular wave. The time-averaged transport of turbulent kinetic energy by the ensemble-averaged velocity and turbulence velocity under the irregular breaking waves are also consistent with the measurements obtained in regular breaking waves. The experimental results indicate that the shape of the incident wave spectrum has a significant effect on the temporal and spatial variability of wave breaking and the distribution of turbulent kinetic energy in the outer surf zone. In the inner surf zone, however, the distribution of turbulent kinetic energy is relatively insensitive to the shape of the incident wave spectrum, and the important parameters are the significant wave height and period of the incident waves, and the beach slope.  相似文献   

14.
This paper investigates wave-by-wave control of a wave energy converter using incident wave prediction based on up-wave surface elevation measurement. The goal of control is to approach the hydrodynamically optimum velocity leading to optimum power absorption. This work aims to study the gains in energy conversion from a deterministic wave propagation model that accounts for a range of group velocities in deriving the prediction. The up-wave measurement distance is assumed to be small enough to allow a deterministic propagation model, and further, both wave propagation and device response are assumed to be linear. For deep water conditions and long-crested waves, the propagation process is also described using an impulse response function (e.g. [1]). Approximate low and high frequency limits for realistic band-limited spectra are used to compute the corresponding group velocity limits. The prediction time into the future is based on the device impulse response function needed for the evaluation of the control force. The up-wave distance and the duration of measurement are then determined using the group velocity limits above.A 2-body axisymmetric heaving device is considered, for which power capture is through the relative heave oscillation between the two co-axial bodies. The power take-off is assumed to be linear and ideal as well as capable of applying the necessary resistive and reactive load components on the relative heave oscillation. The predicted wave profile is used along with device impulse response functions to compute the actuator force components at each instant. Calculations are carried out in irregular waves generated using a number of uni-modal wave spectra over a range of energy periods and significant wave heights. Results are compared with previous studies based on the use of instantaneous up-wave wave-profile measurements, both without and with oscillation constraints imposed. Considerable improvements in power capture are observed with the present approach over the range of wave conditions studied.  相似文献   

15.
It is difficult to compute far-field waves in a relative large area by using one wave generation model when a large calculation domain is needed because of large dimensions of the waterway and long distance of the required computing points. Variation of waterway bathymetry and nonlinearity in the far field cannot be included in a ship fixed process either. A coupled method combining a wave generation model and wave propagation model is then used in this paper to simulate the wash waves generated by the passing ship. A NURBS-based higher order panel method is adopted as the stationary wave generation model; a wave spectrum method and Boussinesq-type equation wave model are used as the wave propagation model for the constant water depth condition and variable water depth condition, respectively. The waves calculated by the NURBS-based higher order panel method in the near field are used as the input for the wave spectrum method and the Boussinesq-type equation wave model to obtain the far-field waves. With this approach it is possible to simulate the ship wash waves including the effects of water depth and waterway bathymetry. Parts of the calculated results are validated experimentally, and the agreement is demonstrated. The effects of ship wash waves on the moored ship are discussed by using a diffraction theory method. The results indicate that the prediction of the ship induced waves by coupling models is feasible.  相似文献   

16.
应用基于势流理论的时域高阶边界元方法,建立一个完全非线性的三维数值波浪水槽,通过实时模拟推板造波运动的方式产生波浪。通过混合欧拉-拉格朗日方法和四阶Runge-Kutta方法更新自由水面和造波板的瞬时位置。利用所建模型分别模拟了有限水深波和浅水波,与试验结果、相关文献结果和浅水理论结果吻合较好,且波浪能够稳定传播。系统地讨论造波板的运动圆频率、振幅和水深等对波浪传播和波浪特性的影响,并对波浪的非线性特性进行分析,研究发现造波板运动频率、运动振幅以及水深均将对波浪形态和波浪非线性产生显著影响。结果为真实水槽造波机的运动控制以及波浪生成试验提供了依据,便于实验室设置更合理的参数来准确模拟不同条件下的波浪。  相似文献   

17.
A finite element model of Boussinesq-type equations was set up, and a direct numerical method is proposed so that the full reflection boundary condition is exactly satisfied at a curved wall surface. The accuracy of the model was verified in tests. The present model was used to further examine cnoidal wave propagation and run-up around the cylinder. The results showed that the Ursell number is a nonlinear parameter that indicates the normalized profile of cnoidal waves and has a significant effect on the wave run-up. Cnoidal waves with the same Ursell number have the same normalized profile, but a difference in the relative wave height can still cause differences in the wave run-up between these waves. The maximum dimensionless run-up was predicted under various conditions. Cnoidal waves hold entirely distinct properties from Stokes waves under the influence of the water depth, and the nonlinearity of cnoidal waves enhances rather than weakens with increasing wavelength. Thus, the variations in the maximum run-up with the wavelength for cnoidal waves are completely different from those for Stokes waves, and there are even significant differences in the variation between different cnoidal waves.  相似文献   

18.
Experimental study of long wave generation on sloping bottoms   总被引:1,自引:0,他引:1  
Low-frequency waves generated on steep (1:10) and mild (1:40) slopes by six series of bichromatic wave groups are studied experimentally. The shorelines for both slopes are replaced by horizontal reaches of small depth. This reduces the reflection of long waves near the shoreline significantly, which for the first time makes possible the explicit observation of outgoing breakpoint forced long waves. The breakpoint and released bound long wave mechanisms on the different slopes are compared. Generally, the breakpoint forced long waves dominate the low-frequency wave field on the steep slope, while the released bound long waves are found to be more significant on the mild slope. Two parameters indexing the effectiveness of the breakpoint mechanism are compared and the normalized slope tends to give more realistic results. Shoaling of bound long waves is analyzed and the shallow-water equilibrium limit ~ h−5/2 exhibits a good prediction of the variation of the bound long waves on both slopes.  相似文献   

19.
完全非线性深水波的数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
基于势流理论,并结合深水波质点运动从水面向下呈e指数衰减的特性,建立了完全非线性数值变深水槽模型,通过实时模拟活塞式造波机运动来产生波浪.采用时域高阶边界元法进行模拟,利用混合欧拉-拉格朗日方法和四阶Runge-Kutta方法追踪流体瞬时水面,应用镜像格林函数消除了水槽两个侧面的积分,在水槽末端布置人工阻尼层来消除反射...  相似文献   

20.
The short-term wave characteristics are required for design and operation of industrial facilities within the coastal areas. Water surface displacement measured using waverider buoy moored at 13 m water depth in the eastern Arabian Sea off the west coast of India have been analyzed to study the short-term statistics of waves covering full one year period. The study indicates that the values of the observed maximum wave height as a function of duration are not consistent with the theoretical expected value. There is significant variation (1.29–2.19) in the ratio between highest 1% wave and significant wave height compared to the theoretical value of 1.67. The data recorded at 13 m water depth indicates that the significant wave height is ∼8% lower than that predicted by the conventional Rayleigh distribution. The theoretical bivariate log-normal distribution represents the joint distributions of wave heights and periods for the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号