首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 382 毫秒
1.
Elevated concentrations of arsenic in the sediment and pore water in the Sundarban wetlands pose an environmental risk. Adsorption and desorption are hypothesized to be the major processes controlling arsenic retention in surface sediment under oxic/suboxic condition. This study aims to investigate sorption kinetics of As(III & V) and its feedback to arsenic mobilization in the mangrove sediment. It ranges from sand to silty clay loam and shows the adsorption of As(III & V) following the Langmuir relation. Estimates of the maximum adsorption capacity are 59.11 ± 13.26 μg g−1 for As(III) and 58.45 ± 8.75 μg g−1 at 30°C for As(V) in the pH range 4 to 8 and salinity 15–30 psu. Extent of adsorption decreases with increasing pH from 4 to 8 and desorption is the rate-limiting step in the reaction of arsenic with sediment. Arsenic in the sediment could be from a Himalayan supply and co-deposited organic matter drives its release from the sediment. Arsenic concentration in the sediment is well below its maximum absorption capacity, suggesting the release of sorbed arsenic in pore water by the microbial oxidation of organic matter in the sediment with less feedback of adsorption.  相似文献   

2.
Study area with an area of about 415 km2 is located from 31°40′ to 32°05′ northern latitudes and 48°45′ to 49°00′ eastern longitudes 85 km to the north-east of Ahwaz city, in the north of Khuzestan province, and south west of Iran. The purpose of this study is: (1) the determination of the pesticides concentration in the groundwater of the Shushtar plain (Mian-Ab) and (2) the assessment of geology, hydrogeology and anthropogenic activities impacts the groundwater quality. Thirty-seven groundwater samples were taken from product wells based on the standard methods. A simple and efficient automated method for extraction and preconcentration was used. In this method, a pyrrole-based polymer was synthesized and applied as an efficient sorbent for micro-solid-phase extraction. After extraction, analytes were desorbed in ethyl acetate and analyzed using gas chromatography–flame. The study area is surrounded by Aghajari Formation dominated by silt and clay sediments and the Bakhtiari Formation dominated by sand and gravel. Existence of these formations affects the aquifer sediments and the hydrogeological properties. In the study area, the sediments grade from gravel and sand in the north and east into silt and clay to the south and west, respectively. The topsoil in the south of the study area contains more clay sediments. In this study, the concentration of two common herbicides, i.e., 2,4-D and clodinafop propargyl and two pesticides, i.e., permethrin and diazinon, in the groundwater of Mian-Ab aquifer was assessed. Chemical analysis results showed that the 2,4-D residue in the groundwater has the highest concentration (15 ppm). About 50% of the samples have concentration values more than the maximum contamination level based on EPA drinking standard. The pesticides concentrations decrease from the north to the south of the study area. Pesticides influx to the groundwater in the south of the area is prevented or diminished due to the specific geological situation and soil type. Distribution pattern of population centers, which increase to the north of the study area, and the role of groundwater as the main source of drinking water are two important issues that must be considered in management of pesticides use in the area.  相似文献   

3.
In porous sediments of the Ishikari Lowland, there is a gradual increase in the background geothermal gradient from the Ishikari River (3–4 °C 100 m–1) to the southwest highland area (10 °C 100 m–1). However, the geothermal gradient at shallow depths differs in detail from the background distribution. In spite of convective heat-flow loss generally associated with groundwater flow, heat flow remains high (100 mW m–2) in the recharge area in the southwestern part of the Ishikari basin, which is part of an active geothermal field. In the northeastern part of the lowland, heat flow locally reaches 140 mW m–2, probably due to upward water flow from the deep geothermal field. Between the two areas the heat flow is much lower. To examine the role of hydraulic flow in the distortion of the isotherms in this area, thermal gradient vs. temperature analyses were made, and they helped to define the major components of the groundwater-flow system of the region. Two-dimensional simulation modeling aided in understanding not only the cause of horizontal heat-flow variations in this field but also the contrast between thermal properties of shallow and deep groundwater reservoirs. Electronic Publication  相似文献   

4.
The study region covers 1,650 km2 of the Mid-Ganga Basin in Bihar, experiencing intensive groundwater draft. The area forms a part of the Gangetic alluvial plain where high incidence of arsenic groundwater contamination (>50 μg/l) has recently been detected. Seventy-seven groundwater samples have been collected and analysed for major ions, iron and arsenic. Arsenic contamination (max 620 μg/l) is confined in hand pump zones (15–35 m) within the newer alluvium deposited during Middle Holocene to Recent age. The older alluvial aquifers are arsenic-safe and recorded maximum concentration as 9 μg/l. Out of 12 hydrochemical facies identified, four have been found arsenic-affected: Ca–HCO3, Mg–HCO3, Ca–Mg–HCO3 and Mg–Ca–HCO3. The geochemical evolution of groundwater, as investigated by graphical interpretation and statistical techniques (correlation, principal component analysis) revealed that dissolution of detrital calcite, dolomite and infiltration of rainwater are the major processes shaping the groundwater chemistry in the newer alluvium. Arsenic and iron showed strong positive correlation. Rainfall infiltration, carrying organic matter from recently accumulated biomass from this flood-prone belt, plays a critical role in releasing arsenic and iron present in the sediments. Geochemical evolution of groundwater in older alluvium follows a different path, where cation-exchange has been identified as a significant process.  相似文献   

5.
Understanding the mechanism of arsenic mobilization from sediments to groundwater is important for water quality management in areas of endemic arsenic poisoning, such as the Hetao Basin in Inner Mongolia, northern China. Aquifer geochemistry was characterized at three field sites (SH, HF, TYS) in Hangjinhouqi County of northwestern Hetao Basin. The results of bulk geochemistry analysis of sediment samples indicated that total As concentrations have a range of 6.8–58.5 mg/kg, with a median of 14.4 mg/kg. The highest As concentrations were found at 15–25 m depth. In the meanwhile, the range of As concentration in the sediments from background borehole is 3–21.8 mg/kg, with a median value of 9 mg/kg. The As sediments concentrations with depth from the SH borehole were correlated with the contents of Fe, Sb, B, V, total C and total S. Generally, the abundance of elements varied with grain size, with higher concentrations in finer fractions of the sediments. Distinct lithology profile and different geochemical characteristics of aquifer sediments indicate the sediments are associated with different sources and diverse sedimentary environments. Up to one third of arsenic in the sediments could be extracted by ammonium oxalate, suggesting that Fe oxyhydroxides may be the major sink of As in the aquifer. Sequential extraction results indicate that arsenic occurs as strongly adsorbed on and/or co-precipitated with amorphous Fe oxyhydroxides in sediments accounting for 35 and 20%, respectively, of the total contents of arsenic. The release of As into groundwater may occur by desorption from the mineral surface driven by reductive dissolution of the Fe oxide minerals. Furthermore, small proportions of As associated with iron sulfides occur in the reductive sediments.  相似文献   

6.
High arsenic (As) concentrations, >900 μg/L, were measured in Ca–Mg–SO4 waters from springs and drainages in the village of Pesariis in the Carnic Alps (NE Italy). Oxidation of the outcropping arsenian marcasite ore deposits of the area is proposed as the mechanism for As release into oxygenated waters during runoff. Nevertheless, the limited extension of the ore deposit and the relatively low As content of the mineralization suggest that sulfide weathering might not be the only process responsible for the highest As concentration in groundwaters. An additional mechanism involves As adsorption onto ferric iron particulate during oxidation, the drawdown in reducing environment at depth during water infiltration, and the release of ferrous iron and sorbed arsenic to the water columns by reductive dissolution of hydrous ferric oxides (HFO). This yields the observed Fe–As correlation. Newly formed HFO precipitates when groundwaters discharge to aerated conditions, leading to the removal of As, which strongly partitions into the iron-rich sediments, adsorbed onto the surface of amorphous Fe2O3·xH2O. The calculated and measured As concentration in sediments exceeds 10% by weight. Furthermore, geochemical and isotopic data indicate that the As-rich reservoir partly mixes with shallower aquifers, commonly tapped for drinking supply, representing a natural hazard for inhabitants.  相似文献   

7.
The present study has examined the relationship of groundwater arsenic (As) levels in alluvial aquifers with topographic elevation, slope, and groundwater level on a large basinal-scale using high-resolution (90 m × 90 m) Shuttle Radar Topography Mission (SRTM) digital elevation model and water-table data in Bangladesh. Results show that high As (>50 μg/l) tubewells are located in low-lying areas, where mean surface elevation is approximately 10 m. Similarly, high As concentrations are found within extremely low slopes (<0.7°) in the country. Groundwater elevation (weekly measured by Bangladesh Water Development Board) was mapped using water-table data from 950 shallow (depth <100 m) piezometers distributed over the entire country. The minimum, maximum and mean groundwater elevation maps for 2003 were generated using Universal Kriging interpolation method. High As tubewells are located mainly in the Ganges–Brahmaputra–Meghna delta, Sylhet Trough, and recent floodplains, where groundwater elevation in shallow aquifers is low with a mean value of 4.5 m above the Public Works Datum (PWD) level. Extremely low groundwater gradients (0.01–0.001 m/km) within the GBM delta complex hinder groundwater flow and cause slow flushing of aquifers. Low elevation and gentle slope favor accumulation of finer sediments, As-carrying iron-oxyhydroxide minerals, and abundant organic matter within floodplains and alluvial deposits. At low horizontal hydraulic gradients and under reducing conditions, As is released in groundwater by microbial activity, causing widespread contamination in the low-lying deltaic and floodplain areas, where As is being recycled with time due to complex biogeochemical processes.  相似文献   

8.
An integrated study has been carried out to elucidate the distribution and occurrence of arsenic in selected groundwater samples in the area of Sherajdikhan, Bangladesh. Arsenic and other parameters (T, pH, EC, Na+, K+, Ca2+, Mg2+, Cl, NO3 , SO4 2−, HCO3 , PO4 3−, Fe, Mn and DOC) have been measured in groundwater samples collected from shallow/deep tube wells at different depths. Hydrogeochemical data suggest that the groundwaters are generally Ca–Mg–HCO3 and Mg–Ca–HCO3 types with bicarbonate (HCO3 ) as the dominant anion, though the other type of water has also been observed. Dissolved arsenic in groundwater ranged from 0.006 to 0.461 mg/l, with 69% groundwater samples exceeded the Bangladesh limit for safe drinking water (0.05 mg/l). Correlation and principal component analysis have been performed to find out possible relationships among the examined parameters in groundwater. Low concentrations of NO3 and SO4 2−, and high concentrations of DOC, HCO3 and PO4 3− indicate the reducing condition of subsurface aquifer where sediments are deposited with abundant organic matter. Distinct relationship of As with Fe and Mn, and strong correlation with DOC suggests that the biodegradation of organic matter along with reductive dissolution of Fe–Mn oxyhydroxides has being considered the dominant process to release As in the aquifers studied herein.  相似文献   

9.
The study area covers an about 100 km2 of the middle Ganga plain in Uttar Pradesh, experiencing intensive groundwater extraction. In order to recognize the arsenic contamination zones of the Varanasi environs, sixty eight groundwater samples have been collected and analyzed for major ions, iron and arsenic. Twenty one sediment samples in the four boreholes were also collected to deduce the source of arsenic in the groundwater. The preliminary survey reports for the first time indicates that part of rural and urban population of Varanasi environs are drinking and using for irrigation arsenic contaminated water mostly from hand tube wells (<70 m). The study area is a part of middle Ganga plain which comprises of Quaternary alluvium consists of an alternating succession of clay, clayey silt and sand deposits. The high arsenic content in groundwater samples of the study area indicates that 14% of the samples are exceeding the 10 μg/l and 5% of the samples are exceeding 50 μg/l. The high arsenic concentration is found in the villages such as Bahadurpur, Madhiya, Bhojpur, Ratanpur, Semra, Jalilpur, Kateswar, Bhakhara and Kodupur (eastern side of Ganga River in Varanasi), situated within the newer alluvium deposited during middle Holocene to Recent. The older alluvial aquifers situated in the western side of the Ganga River are arsenic safe (maximum As concentration of 9 μg/l) though the borehole sediments shows high arsenic (mean 5.2 mg/kg) and iron content (529 mg/kg) in shallow and medium depths. This may be due to lack of reducing conditions (i.e organic content) for releasing arsenic into the groundwater. Rainfall infiltration, organic matter from recently accumulated biomass from flood prone belt in the newer alluvium plays a critical role in releasing arsenic and iron present in sediments. The main mechanism for the release of As into groundwater in the Holocene sandy aquifer sediments of Varanasi environs may be due to the reductive dissolution of Fe oxyhydroxide present as coatings on sand grains as well as altered mica content. The high societal problems of this study will help to mitigate the severity of arsenic contamination by providing alternate drinking water resources to the people in middle Ganga plain and to arrange permanent arsenic safe drinking water source by the authorities.  相似文献   

10.
High arsenic (As) groundwater is widely distributed in northwestern Hetao Plain, an arid region with sluggish groundwater flow. Observed As concentration in groundwater from wells ranges from 76 to 1,093 μg/l. Most water samples have high total dissolved solids, with Cl and HCO3 as the dominant anions and Na as the dominant cation. The major hydrochemical types of most saline groundwaters are Na–Mg–Cl–HCO3 and Na–Mg–Cl. By contrast, fresh groundwaters generally belong to the Na–Mg–HCO3 type. High concentrations of arsenic in shallow aquifers are associated with strongly reducing conditions, as evidenced by high concentrations of dissolved organic carbon, ammonium, as well as dissolved sulfide and Fe, dominance of arsenite, relatively low concentrations of nitrate and sulfate, and occasionally high content of dissolved methane (CH4). High As groundwaters from different places at Hetao Plain experienced different redox processes. Fluoride is also present in high As groundwater, ranging between 0.40 and 3.36 mg/l. Although fluorosis poses an additional health problem in the region, it does not correlate well with As in spatial distribution. Geochemical analysis indicates that evapotranspiration is an important process controlling the enrichment of Na and Cl, as well as trace elements such as As, B, and Br in groundwater. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Arsenic concentrations surpassing potability limit of 10 μg/L in the groundwater supplies of an extensive area in the Duero Cenozoic Basin (central Spain) have been detected and the main sources of arsenic identified. Arsenic in 514 samples of groundwater, having mean values of 40.8 μg/L, is natural in origin. Geochemical analysis of 553 rock samples, assaying arsenic mean values of 23 mg/kg, was performed. Spatial coincidence between the arsenic anomaly in groundwater and the arsenic lithogeochemical distribution recorded in the Middle Miocene clayey organic-rich Zaratan facies illustrates that the rocks of this unit are the main source of arsenic in groundwater. The ferricretes associated to the Late Cretaceous–Middle Miocene siliciclastics also constitute a potential arsenic source. Mineralogical study has identified the presence of arsenic in iron oxides, authigenic pyrite, manganese oxides, inherited titanium–iron oxides, phyllosilicates and organomineral compounds. Arsenic mobilization to groundwater corresponds to arsenic desorption from iron and manganese oxides and from organic matter.  相似文献   

12.
 The yearly nutrient supply from land and atmosphere to the study area in SW Kattegat is 10 900 tons of N and 365 tons of P. This is only few percent of the supply from adjacent marine areas, as the yearly transport through the study area is 218 000 tons of N and 18 250 tons of P. Yearly net deposition makes up 1340 tons of N (on average 2.5 g m–2 yr–1) and 477 ton of P (on average 0.9 g m–2 yr–1). Shallow-water parts of the study area have no net deposition because of frequent (>35% of the year) resuspension. Resuspension frequency in deep water is <1% of the year. Resuspension rates, as averages for the study area, are 10–17 times higher than net deposition rates. Because of resuspension, shallow-water sediments are coarse lag deposits with small amounts of organic matter (1.1%) and nutrients (0.04% N and 0.02% P). Deep-water sediments, in contrast, are fine grained with high levels of organic matter (11.7%) and nutrients (0.43% N and 0.15% P). Laboratory studies showed that resuspension changes the diffusive sediment water fluxes of nutrients, oxygen consumption, and penetration into the sediment. Fluxes of dissolved reactive phosphate from sediment to water after resuspension were negative in organic-rich sediments (13.2% organic matter) with low porosity (56) and close to zero in coarse sediments with a low organic matter content (2.3%) and high porosity (73). Fluxes of inorganic N after resuspension were reduced to 70% and 0–20% in relation to the rates before resuspension, respectively. Received: 10 July 1995 · Accepted: 19 January 1996  相似文献   

13.
Estuarine macrobenthos respond to a variety of environmental gradients such as sediment type and salinity, and organic enrichment. A relatively new influence, organic loading from suspended bivalve culture, has the potential to alter this response. A study on soft-bottom macrobenthic communities was carried out in the Richibucto estuary (46°40′N, 64°50′W), New Brunswick, Canada, with samples collected from 18 stations in late September and early October 2006. The site consisted of a large tidal channel originating upstream in a small river. The channel was punctuated by bag culture of oysters along its length. A total of 88 species were recorded. The mean values of abundance, species richness, and diversity (H′) of macrofauna were 11,199 ind. m−2 (ranged from 4,371 to 19,930 ind. m−2), 23.4 species grab−1 and 3.29 grab−1, respectively. In general species richness and H′ increased from the upper estuary to the estuarine mouth. Multivariate analyses clearly exhibited the spatial distribution in community structure, which coincided with the locations along the estuary (the upper, the lower and the mouth), as well as inside and outside the channel. Species richness and diversity H′ showed strong positive correlations with salinity (21.2–25.2 ppt), and abundance was positively correlated with water depth (1.0–4.5 m). Abundance and species richness were negatively correlated with both of silt–clay fraction (3.3–24.8%) and sorting (σI). Species richness was also negatively correlated with organic content (1.9–12.7%). The BIO-ENV analyses identified silt–clay fraction, σI and salinity as the major environmental variable combination influencing the macrofaunal patterns, and silt–clay fraction as the single best-correlated variable.  相似文献   

14.
Mercury mobility and bioavailability in soil from contaminated area   总被引:2,自引:0,他引:2  
The mobility and bioavailability of mercury in the soil from the area near a plant using elemental mercury for manufacturing thermometers, areometers, glass energy switches and other articles made of technical glass has been evaluated. Mercury has been determined by sequential extraction method and with additional thermo desorption stage to determine elemental mercury. The procedure of sequential extraction involves five subsequent stages performed with the solutions of chloroform, deionized water, 0.5 M HCl, 0.2 M NaOH and aqua regia. The mean concentration of total mercury in soil was 147 ± 107 μg g−1 dry mass (range 62–393), and the fractionation revealed that mercury was mainly bound to sulfides 56 ± 8% (range 45–66), one of the most biounavailable and immobile species of mercury in the environment. The fractions that brought lower contribution to the total mercury content were semi-mobile humic matter 22 ± 9% (range 11–34) and elemental mercury 17 ± 5% (range 8–23). The contributions brought by the highly mobile and toxic organomercury compounds were still lower 2.3 ± 2.7% (range 0.01–6.5). The lowest contributions brought the acid-soluble mercury 1.5 ± 1.3% (range 0.1–3.5) and water-soluble mercury 1.0 ± 0.3% (range 0.6–1.7). The surface layer of soil (0–20 cm) was characterized by higher mercury concentrations than that of the subsurface soil (60–80 cm), but the fractional contributions were comparable. The comparison of mercury fractionation results obtained in this study for highly polluted soils with results of fractionation of uncontaminated or moderately contaminated samples of soil and sediments had not shown significant statistical differences; however, in the last samples elemental mercury is usually present at very low concentrations. On the basis of obtained correlation coefficients it seems that elemental mercury soils from “Areometer” plant are contaminated; the main transformation is its vaporization to atmosphere and oxidation to divalent mercury, probably mainly mediated by organic matter, and next bound to humic matter and sulfides.  相似文献   

15.
Arsenic mobility in fluvial environment of the Ganga Plain,northern India   总被引:1,自引:1,他引:0  
In the northern part of the Indian sub-continent, the Gomati River (a tributary of the Ganga River) was selected to study the dynamics of Arsenic (As) mobilization in fluvial environment of the Ganga Plain. It is a 900-km-long, groundwater-fed, low-gradient, alluvial river characterized by monsoon-controlled peaked discharge. Thirty-six water samples were collected from the river and its tributaries at low discharge during winter and summer seasons and were analysed by ICP-MS. Dissolved As and Fe concentrations were found in the range of 1.29–9.62 and 47.84–431.92 μg/L, respectively. Arsenic concentration in the Gomati River water has been detected higher than in its tributaries water and characteristically increases in downstream, attributed to the downstream increasing of Fe2O3 content, sedimentary organic carbon and silt-clay content in the river sediments. Significant correlation of determination (r 2 = 0.68) was also observed between As and Fe concentrations in the river water. Arsenic concentrations in the river water are likely to follow the seasonal temperature variation and reach the level of World Health Organization’s permissible limit (10 μg/L) for drinking water in summer season. The Gomati River longitudinally develops reducing conditions after the monsoon season that mobilize As into the river water. First, dissolved As enters into pore-water of the river bed sediments by the reductive dissolution of Fe-oxides/hydroxides due to microbial degradation of sedimentary organic matter. Thereafter, it moves upward as well as down slope into the river water column. Anthropogenically induced biogeochemical processes and tropical climatic condition have been considered the responsible factors that favour the release of As in the fluvial environment of the Ganga Plain. The present study can be considered as an environmental alarm for future as groundwater resources of the Ganga–Brahmaputra Delta are seriously affecting the human–environment relationship at present.  相似文献   

16.
The Yangbajain geothermal field located in central Tibet is characterized by the highest measured reservoir temperature among all hydrothermal systems in China. The high-temperature geothermal fluid extracted from Yangbajain has been used for electricity generation for over 30 years. The geothermal wastewater generated by the Yangbajain power plants, with arsenic (As) concentrations up to 3.18 mg/L, drains directly into the Zangbo River, the major surface water at Yangbajain, which has elevated arsenic concentrations in the segments downstream of wastewater discharges. However, along the flow direction of the river, the arsenic concentration decreases sharply. Further inspection reveals that the concentrations of weakly bound arsenic, strongly adsorbed arsenic and total arsenic in riverbed sediment were affected by the drainage of geothermal wastewater, indicating that the sediment serves as a sink for geothermal arsenic. A logarithmic relationship between the integrated attenuation coefficients (IAC) for three river segments and the corresponding adsorption distribution coefficients of riverbed sediment samples also suggests that besides the dilution of geothermal arsenic in the Zangbo River, natural attenuation of arsenic may be caused by sorption to riverbed sediment, thereby reducing its health threat to local residents using the Zangbo River as a drinking water source.  相似文献   

17.
 In the present paper, an environmental analysis of Manikpur area, Korba coalfield, Bilaspur, M.P., India is undertaken. The area lies in the Geological Survey of India Toposheet no. 64J/11 Latitude 82°42′54″–82°45′10″ North; Longitude 22°18′46″–22°19′46″ East. The paper deals with pollution and its control measures through the natural plants found in the vicinity of the coalmines, namely Mangifera indica, Eucalyptus spp., Cassia siamea, Delbergia sissoo, etc. The plants control the Suspended Particulate Matter (SPM), Nitrous Oxides (NOx), Sulphur Oxides (SOx) of the mines and mining site. Therefore, plantation in the mining site should be encouraged. Received: 12 May 1998 · Accepted: 6 October 1998  相似文献   

18.
The eastern Alaska Beaufort Sea coast is characterized by numerous shallow (2–5 m) estuarine lagoons, fed by streams and small rivers that drain northward from the Brooks Range through the arctic coastal plain, and bounded seaward by barrier islands and shoals. Millions of birds from six continents nest and forage during the summer period in this region using the river deltas, lagoons, and shoreline along with several species of anadromous and marine fish. We examined biogeochemical processes linking the benthic community to the overall food web structure of these poorly studied but pristine estuaries, which are largely covered by 1.8 m of ice for 10 months annually. In summer, these lagoons are relatively warm with brackish salinities (5–10°C, S = 10–25) compared to more open coastal waters (0–5°C, S > 27). The stable isotopic composition of organic materials in sediments (i.e., benthic particulate organic matter) and water column suspended particulate organic matter from both streams and lagoons are largely indistinguishable and reflect strong terrestrial contributions, based upon δ13C and δ15N values (−25.6‰ to −27.4‰ and 1.4‰ to 3.3‰, respectively). By comparison, shifts toward more heavy isotope-enriched organic materials reflecting marine influence are observed on the adjacent coastal shelf (−24.8‰ to −25.4‰ and 3.4‰ to 5.3‰, respectively). The isotopic composition of lagoon fauna is consistent with a food web dominated by omnivorous detritovores strongly dependent on microbial processing of terrestrial sources of carbon. Biomagnification of 15N in benthic organisms indicate that the benthic food web in lagoons support up to four trophic levels, with carnivorous gastropod predators and benthic fishes (δ15N values up to 14.4‰) at the apex.  相似文献   

19.
The interacting effect of pH, phosphate and time on the release of arsenic (As) from As-rich river bed sediments was studied. Arsenic release edges and kinetic release experiments (pH range 3–10), in the absence and presence of phosphate, coupled with sequential extraction procedures, SEM/EDX analyses and geochemical calculations, were carried out to evaluate As remobilisation and to elucidate the mechanisms involved. The results showed that As release underwent pronounced kinetic effects, which were strongly influenced by pH and phosphate. Remobilisation of As after 24 h was low (between ~1 and 5%) and varied slightly with pH, whereas alkaline conditions generally promoted As remobilisation after 168 h, with up to 12–21% of total As released. The results showed that depending on the pH and sediment considered, the release of As increased dramatically after ~48–72 h, suggesting that different processes are involved at different reaction periods. The addition of phosphate (1 mM) increased both the amount of As released (between 2 and 8 times) and the rate of As release from the sediments within the entire pH range (3–10) and period (168 h) studied. Moreover, in some cases, it also affected the shape of the As release edges and kinetic profiles. The similarities in the release profiles and the positive correlations between As and some sediment components, especially Fe and Al hydroxides, and organic matter—which appears to play a key role at high pH—suggest that As release from the studied sediments may be associated with solid phase dissolution processes under both acid and alkaline pH, whereas desorption plays a key role in the short term and at natural pH conditions, especially in the presence of phosphate, which acts as an As-displacing ligand. Evaluation of As mobility based on short-time leaching experiments may seriously underestimate the mobilisation of As from sediments.  相似文献   

20.
The Sfax Basin in eastern Tunisia is bounded to the east by the Mediterranean Sea. Thermal waters of the Sfax area have measured temperatures of 23–36°C, and electrical conductivities of 3,200 and 14,980 μS/cm. Most of the thermal waters are characterized as Na–Cl type although there are a few Na–SO4–Cl waters. They issue from Miocene units which are made up sands and sandstones interbedded with clay. The Quaternary sediments cap the system. The heat source is high geothermal gradient which are determined downhole temperature measurements caused by graben tectonics of the area. The results of mineral equilibrium modeling indicate that the thermal waters of the Sfax Basin are undersaturated with respect to gypsum, anhydrite and fluorite, oversaturated with respect to kaolinite, dolomite, calcite, microcline, quartz, chalcedony, and muscovite. Assessments from various chemical geothermometers, Na–K–Mg ternary and mineral equilibrium diagrams suggest that the reservoir temperature of the Sfax area can reach up to 120°C. According to δ18O and δ2H values, all thermal and cold groundwater is of meteoric origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号