首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Near-Earth asteroids (10302) 1989 ML and (4660) Nereus have attracted much attention as candidates for the next generation of deep space explorations. In the study, the maximum Lyapunov exponent (MLE) and MEGNO (Mean Exponential Growth factor of Nearby Orbits) index are calculated after considering the effects of major objects in the Solar system, and the stabilities of these two asteroids are discussed. For each asteroid, 1000 clonal particles consistent with the observational uncertainties are generated from a multivariate normal distribution. Statistical results display probably emerging regions of each asteroid within 0.1 million years, and provide distributions of occurrence times in the phase space of semi-major axis versus eccentricity. We estimate the probability of close encounters and collisions between the asteroid and Earth or other planets. Furthermore, secular resonances, Kozai resonance, and mean motion resonances are analyzed for nominal orbits of the two asteroids. We conclude that 1989 ML is in the region dominated by mean motion resonances with terrestrial planets. The probability of close encounters with them is relatively small, therefore its orbit is relatively stable. Nereus is located in a region that can have close-encounters with the Earth, and it has an extremely unstable orbit.  相似文献   

2.
近地小行星(10302) 1989 ML和(4660) Nereus作为下一代深空探测的候选目标一直备受关注. 在考虑太阳系主要天体的动力学背景下, 通过计算最大Lyapunov指数(MLE)及MEGNO (Mean Exponential Growth factor of Nearby Orbits)指数讨论它们的稳定性. 同时, 对每个小行星, 在其观测误差范围内按多元正态分布各选取1000个克隆粒子, 通过统计分析显示这两个小行星在10万年内可能的运动范围, 给出半长径-偏心率空间中的出现次数分布图, 并统计小行星与地球或其他大行星之间的密近交汇及碰撞的概率. 此外还对这两个小行星的标称轨道进行长期共振、Kozai共振及平运动共振的动力学分析. 综上得出结论, 1989 ML处在平运动共振主导的区域, 发生密近交汇的概率较小, 从而其轨道相对较稳定; 而Nereus处在地球的密近交汇区域, 轨道极不稳定.  相似文献   

3.
Tabaré Gallardo 《Icarus》2006,184(1):29-38
The aim of this work is to present a systematic survey of the strength of the mean motion resonances (MMRs) in the Solar System. We know by applying simple formulas where the resonances with the planets are located but there is no indication of the strength that these resonances have. We propose a numerical method for the calculation of this strength and we present an atlas of the MMRs constructed with this method. We found there exist several resonances unexpectedly strong and we look and find in the small bodies population several bodies captured in these resonances. In particular in the inner Solar System we find one asteroid in the resonance 6:5 with Venus, five asteroids in resonance 1:2 with Venus, three asteroids in resonance 1:2 with Earth and six asteroids in resonance 2:5 with Earth. We find some new possible co-orbitals of Earth, Mars, Saturn, Uranus and Neptune. We also present a discussion about the behavior of the resonant disturbing function and where the stable equilibrium points can be found at low and high inclination resonant orbits.  相似文献   

4.
In this investigation the orbits of 21 Atens (semimajor axes smaller than the Earth) are studied with the aid of numerical integrations over the time interval of one million years. The dynamical model was a 6-body Solar System, where the perturbations of Uranus and Neptune were ignored, and where Mercury's mass was added to the Sun's mass. Thus mean motion resonances, secular resonances and the Kozai resonance were fully taken into account. The evolution of the semimajor axes shows the typical step function like pattern which we know also from comets although some Atens have a very fuzzy development of the orbital elements, and some of them stay in a mean motion resonance for very long time. The evolution from Atens to Apollos (with semimajor axes larger than the Earth) and vice versa is also a phenomenon which we could observe. The main goal was the study of encounters of the Atens with the Earth and Venus. We found out that Venus encounters occur somewhat more often than Earth encounters (approximately one within the distance Earth - Moon every 40000 years with Venus, one every 50000 years with the Earth). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
It is known since the seminal study of Laskar (1989) that the inner planetary system is chaotic with respect to its orbits and even escapes are not impossible, although in time scales of billions of years. The aim of this investigation is to locate the orbits of Venus and Earth in phase space, respectively, to see how close their orbits are to chaotic motion which would lead to unstable orbits for the inner planets on much shorter time scales. Therefore, we did numerical experiments in different dynamical models with different initial conditions—on one hand the couple Venus–Earth was set close to different mean motion resonances (MMR), and on the other hand Venus’ orbital eccentricity (or inclination) was set to values as large as e = 0.36 (i = 40°). The couple Venus–Earth is almost exactly in the 13:8 mean motion resonance. The stronger acting 8:5 MMR inside, and the 5:3 MMR outside the 13:8 resonance are within a small shift in the Earth’s semimajor axis (only 1.5 percent). Especially Mercury is strongly affected by relatively small changes in initial eccentricity and/or inclination of Venus, and even escapes for the innermost planet are possible which may happen quite rapidly.  相似文献   

6.
The search for asteroids that maintain stable motion in the zone between the Earth and Mars has been performed. The near-Earth object 2013 RB6, which has avoided close encounters with the planets for a long period of time, has been found. Integration of the equations of motion of the object shows that its dynamical lifetime in the zone between the Earth and Mars significantly exceeds 100 Myr. 2013 RB6 moves away from orbital resonances with the planets, but is in the secular resonance ν5. Solving the question of its origin requires further observations.  相似文献   

7.
Abstract— The main asteroid belt has lost >99.9% of its solid mass since the time at which the planets were forming, according to models for the protoplanetary nebula. Here we show that the primordial asteroid belt could have been cleared efficiently if much of the original mass accreted to form planetsized bodies, which were capable of perturbing one another into unstable orbits. We provide results from 25 N‐body integrations of up to 200 planets in the asteroid belt, with individual masses in the range 0.017–0.33 Earth masses. In the simulations, these bodies undergo repeated close encounters which scatter one another into unstable resonances with the giant planets, leading to collision with the Sun or ejection from the solar system. In response, the giant planets' orbits migrate radially and become more circular. This reduces the size of the main‐belt resonances and the clearing rate, although clearing continues. If ~3 Earth masses of material was removed from the belt this way, Jupiter and Saturn would initially have had orbital eccentricities almost twice their current values. Such orbits would have made Jupiter and Saturn 10–100x more effective at clearing material from the belt than they are on their current orbits. The time required to remove 90% of the initial mass from the belt depends sensitively on the giant planets' orbits, and weakly on the masses of the asteroidal planets. 18 of the 25 simulations end with no planets left in the belt, and the clearing takes up to several hundred million years. Typically, the last one or two asteroidal planets are removed by interactions with planets in the terrestrial region  相似文献   

8.
The final stage in the formation of terrestrial planets consists of the accumulation of ∼1000-km “planetary embryos” and a swarm of billions of 1-10 km “planetesimals.” During this process, water-rich material is accreted by the terrestrial planets via impacts of water-rich bodies from beyond roughly 2.5 AU. We present results from five high-resolution dynamical simulations. These start from 1000-2000 embryos and planetesimals, roughly 5-10 times more particles than in previous simulations. Each simulation formed 2-4 terrestrial planets with masses between 0.4 and 2.6 Earth masses. The eccentricities of most planets were ∼0.05, lower than in previous simulations, but still higher than for Venus, Earth and Mars. Each planet accreted at least the Earth's current water budget. We demonstrate several new aspects of the accretion process: (1) The feeding zones of terrestrial planets change in time, widening and moving outward. Even in the presence of Jupiter, water-rich material from beyond 2.5 AU is not accreted for several millions of years. (2) Even in the absence of secular resonances, the asteroid belt is cleared of >99% of its original mass by self-scattering of bodies into resonances with Jupiter. (3) If planetary embryos form relatively slowly, then the formation of embryos in the asteroid belt may have been stunted by the presence of Jupiter. (4) Self-interacting planetesimals feel dynamical friction from other small bodies, which has important effects on the eccentricity evolution and outcome of a simulation.  相似文献   

9.
We investigate the possibility of detectable meteor shower activity in the atmosphere of Venus. We compare the Venus-approaching population of known periodic comets, suspected cometary asteroids and meteor streams with that of the Earth. We find that a similar number of Halley-type comets but a substantially lesser population of Jupiter family comets approach Venus. Parent bodies of prominent meteor showers that might occur at Venus have been determined based on minimum orbital distance. These are: Comets 1P/Halley, parent of the η Aquarid and Orionid streams at the Earth; 45P/Honda-Mrkos-Pajdusakova which currently approaches the venusian orbit to 0.0016 AU; three Halley-type comets (12P/Pons-Brooks, 27P/Crommelin and 122P/de Vico), all intercepting the planet's orbit within a 5-day arc in solar longitude; and Asteroid (3200) Phaethon, parent of the December Geminids at the Earth. In addition, several minor streams and a number of cometary asteroid orbits are found to approach the orbit of Venus sufficiently close to raise the possibility of some activity at that planet. Using an analytical approach described in Adolfsson et al. (Icarus 119 (1996) 144) we show that venusian meteors would be as bright or up to 2 magnitudes brighter than their Earth counterparts and reach maximum luminosity at an altitude range of 100-120, 20-30 km higher than at the Earth, in a predominantly clear region of the atmosphere. We discuss the feasibility of observing venusian showers based on current capabilities and conclude that a downward-looking Venus-orbiting meteor detector would be more suitable for these purposes than Earth-based monitoring. The former would detect a shower of an equivalent Zenithal Hourly Rate of at least several tens of meteors.  相似文献   

10.
An essential role in the asteroidal dynamics is played by the mean motion resonances. Two-body planet–asteroid resonances are widely known, due to the Kirkwood gaps. Besides, so-called three-body mean motion resonances exist, in which an asteroid and two planets participate. Identification of asteroids in three-body (namely, Jupiter–Saturn–asteroid) resonances was initially accomplished by Nesvorný and Morbidelli (Nesvorný D., Morbidelli, A. [1998]. Astron. J. 116, 3029–3037), who, by means of visual analysis of the time behaviour of resonant arguments, found 255 asteroids to reside in such resonances. We develop specialized algorithms and software for massive automatic identification of asteroids in the three-body, as well as two-body, resonances of arbitrary order, by means of automatic analysis of the time behaviour of resonant arguments. In the computation of orbits, all essential perturbations are taken into account. We integrate the asteroidal orbits on the time interval of 100,000 yr and identify main-belt asteroids in the three-body Jupiter–Saturn–asteroid resonances up to the 6th order inclusive, and in the two-body Jupiter–asteroid resonances up to the 9th order inclusive, in the set of ~250,000 objects from the “Asteroids – Dynamic Site” (AstDyS) database. The percentages of resonant objects, including extrapolations for higher-order resonances, are determined. In particular, the observed fraction of pure-resonant asteroids (those exhibiting resonant libration on the whole interval of integration) in the three-body resonances up to the 6th order inclusive is ≈0.9% of the whole set; and, using a higher-order extrapolation, the actual total fraction of pure-resonant asteroids in the three-body resonances of all orders is estimated as ≈1.1% of the whole set.  相似文献   

11.
A new semianalytical theory of asteroid motion is presented. The theory is developed on the basis of Kaula's expansion of the disturbing function including terms up to the second order with respect to the masses of disturbing bodies. The theory is constructed in explicit form that gives the possibility to study separately the influence of different perturbations in the dynamics of minor planets. The mean-motion resonances with major planets as well as mixed three-body resonances can also be taken into account. For the non-resonant case the formulas obtained can be used for deriving the second transformation to calculate the proper elements of an asteroid orbit in closed form with respect to inclinations and eccentricities. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
We have estimated close asteroid encounters with the Earth by numerical integrations of a system with the Sun, 9 planets, and 188 near-earth-asteroids during the period 1994–4600. Asteroids approach the Earth from directions within 30? around the Sun in more than 20% of encounters with the closest distance less than 0.01 AU. Since ground-based observations cannot detect these objects, we should develop space-borne and/or lunar observatories in a short time to allow enough warning time before a catastrophic collision.  相似文献   

13.
We have estimated close asteroid encounters with the Earth by numerical integrations of a system with the Sun, 9 planets, and 188 near-earth-asteroids during the period 1994–4600. Asteroids approach the Earth from directions within 30 around the Sun in more than 20% of encounters with the closest distance less than 0.01 AU. Since ground-based observations cannot detect these objects, we should develop space-borne and/or lunar observatories in a short time to allow enough warning time before a catastrophic collision.  相似文献   

14.
We discuss the main mechanisms affecting the dynamical evolution of Near-Earth Asteroids (NEAs) by analyzing the results of three numerical integrations over 1 Myr of the NEA (4179) Toutatis. In the first integration the only perturbing planet is the Earth. So the evolution is dominated by close encounters and looks like a random walk in semimajor axis and a correlated random walk in eccentricity, keeping almost constant the perihelion distance and the Tisserand invariant. In the second integration Jupiter and Saturn are present instead of the Earth, and the 3/1 (mean motion) and v 6 (secular) resonances substantially change the eccentricity but not the semimajor axis. The third, most realistic, integration including all the three planets together shows a complex interplay of effects, with close encounters switching the orbit between different resonant states and no approximate conservation of the Tisserand invariant. This shows that simplified 3-body or 4-body models cannot be used to predict the typical evolution patterns and time scales of NEAs, and in particular that resonances provide some “fast-track” dynamical routes from low-eccentricity to very eccentric, planet-crossing orbits.  相似文献   

15.
The asteroid 3200 Phaethon is suggested as a candidate for direct impact research. The object is considered to be an extinct comet and the parent of the Geminid meteor shower. One could say that this provides a possible argument for a space mission. Based on such a mission, this paper proposes to investigate the nature of the extinct comet and the additional interesting possibility of artificially generated meteor showers.
Dust trail theory can calculate the distribution of a bundle of trails and be used to show in which years artificial meteors would be expected. Results indicate that meteor showers will be seen on Earth about 200 yr after the event, on 2022 April 12.  相似文献   

16.
We review the results of an extensive campaign to determine the physical, geological, and dynamical properties of asteroid (101955) Bennu. This investigation provides information on the orbit, shape, mass, rotation state, radar response, photometric, spectroscopic, thermal, regolith, and environmental properties of Bennu. We combine these data with cosmochemical and dynamical models to develop a hypothetical timeline for Bennu's formation and evolution. We infer that Bennu is an ancient object that has witnessed over 4.5 Gyr of solar system history. Its chemistry and mineralogy were established within the first 10 Myr of the solar system. It likely originated as a discrete asteroid in the inner Main Belt approximately 0.7–2 Gyr ago as a fragment from the catastrophic disruption of a large (approximately 100‐km), carbonaceous asteroid. It was delivered to near‐Earth space via a combination of Yarkovsky‐induced drift and interaction with giant‐planet resonances. During its journey, YORP processes and planetary close encounters modified Bennu's spin state, potentially reshaping and resurfacing the asteroid. We also review work on Bennu's future dynamical evolution and constrain its ultimate fate. It is one of the most Potentially Hazardous Asteroids with an approximately 1‐in‐2700 chance of impacting the Earth in the late 22nd century. It will most likely end its dynamical life by falling into the Sun. The highest probability for a planetary impact is with Venus, followed by the Earth. There is a chance that Bennu will be ejected from the inner solar system after a close encounter with Jupiter. OSIRIS‐REx will return samples from the surface of this intriguing asteroid in September 2023.  相似文献   

17.
The dynamics of near-Earth asteroids near mean motion resonances with the Earth or other planets is considered. The probability domains of the motion of some near-Earth asteroids close to low-order resonances are presented. The investigations have been carried out by means of a numerical integration of differential equations, taking into account the perturbations from the major planets and the Moon. For each investigated object an ensemble of 100 test particles with orbital elements nearby those of the nominal orbit has been constructed and its evolution has been retraced over the time interval (–3000, +3000 years). The initial set of orbits has been generated on the basis of probable variations of the initial orbital elements obtained from the least square analysis of observations.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

18.
The thermal evolution of the Geminid meteor stream and the Phaethon–Geminid stream Complex (PGC) are summarized. Sodium contents of Geminid meteor streams are altered thermally, perhaps during orbital motion in interplanetary space due to the short perihelion distance of the orbit (q ~ 0.14 AU). However, the temperature of meteoroids is less than the sublimation temperature of Na in alkali silicates, suggesting that the parent body 3200 Phaethon itself might have suffered from the thermal processing. On the other hand, a breakup event on PGC parent is suggested by the existence of dynamically associated asteroids (Phaethon, 2005 UD and 1999 YC) sharing pristine features (C, B types). A possible mechanism behind the breakup is the sublimation of ice inside the PGC parent due to its thermal evolution. It is tempting to guess that the PGC parent might be evolved dynamically from the outer part of the main asteroid belt where the residence of ice-rich asteroids (main belt comets) into current PGC-like orbit.  相似文献   

19.
It is often assumed that the terrestrial worlds have experienced identical impact regimes over the course of their formation and evolution, and, as a result, would have started life with identical volatile budgets. In this work, through illustrative dynamical simulations of the impact flux on Venus, the Earth, and Mars, we show that these planets can actually experience greatly different rates of impact from objects injected from different reservoirs. For example, we show scenarios in which Mars experiences far more asteroidal impacts, per cometary impactor, than Venus, with the Earth being intermediate in value between the two. This difference is significant, and is apparent in simulations of both quiescent and highly stirred asteroid belts (such as could be produced by a mutual mean-motion resonance crossing between Jupiter and Saturn, as proposed in the Nice model of the Late Heavy Bombardment). We consider the effects; such differences would have on the initial volatilisation of the terrestrial planets in a variety of scenarios of both endogenous and exogenous hydration, with particular focus on the key question of the initial level of deuteration in each planet's water budget. We conclude that each of the terrestrial worlds will have experienced a significantly different distribution of impactors from various reservoirs, and that the assumption that each planet has the same initial volatile budget is, at the very least, a gross over-simplification.  相似文献   

20.
A simple method for numerical integration of the equations of motion of small bodies of the Solar System is proposed, which is especially efficient in studying the orbits with small perihelion distances. The evolution of orbits of 121 numbered asteroids with perihelion distances q < 1.2 AU is investigated over the time interval of years 2000–2100 with allowance made for the gravitational influence of nine planets and three largest asteroids. The circumstances of close encounters of asteroids with the Earth and other terrestrial planets are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号