首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although limited in coverage, perched sand dunes situated on high coastal bluffs are considered the most prized of Great Lakes dunes. Grand Sable Dunes on Lake Superior and Sleeping Bear Dunes on Lake Michigan are featured attractions of national lakeshores under National Park Service management. The source of sand for perched dunes is the high bluff along their lakeward edge. As onshore wind crosses the bluff, flow is accelerated upslope, resulting in greatly elevated levels of wind stress over the slope brow. On barren, sandy bluffs, wind erosion is concentrated in the brow zone, and for the Grand Sable Bluff, it averaged 1 m3/yr per linear meter along the highest sections for the period 1973–1983. This mechanism accounts for about 6,500 m3 of sand nourishment to the dunefield annually and clearly has been the predominant mechanism for the long-term development of the dunefield. However, wind erosion and dune nourishment are possible only where the bluff is denuded of plant cover by mass movements and related processes induced by wave erosion. In the Great Lakes, wave erosion and bluff retreat vary with lake levels; the nourishment of perched dunes is favored by high levels. Lake levels have been relatively high for the past 50 years, and shore erosion has become a major environmental issue leading property owners and politicians to support lake-level regulation. Trimming high water levels could reduce geomorphic activity on high bluffs and affect dune nourishment rates. Locally, nourishment also may be influenced by sediment accumulation associated with harbor protection facilities and by planting programs aimed at stabilizing dunes.  相似文献   

2.
Proglacial lakes, formed during retreat of the Laurentide ice sheet, evolved quickly as outlets became ice-free and the earth deformed through glacial isostatic adjustment. With high-resolution digital elevation models (DEMs) and GIS methods, it is possible to reconstruct the evolution of surface hydrology. When a DEM deforms through time as predicted by our model of viscoelastic earth relaxation, the entire surface hydrologic system with its lakes, outlets, shorelines and rivers also evolves without requiring assumptions of outlet position. The method is applied to proglacial Lake Oshkosh in Wisconsin (13,600 to 12,900 cal yr BP). Comparison of predicted to observed shoreline tilt indicates the ice sheet was about 400 m thick over the Great Lakes region. During ice sheet recession, each of the five outlets are predicted to uplift more than 100 m and then subside approximately 30 m. At its maximum extent, Lake Oshkosh covered 6600 km2 with a volume of 111 km3. Using the Hydrologic Engineering Center-River Analysis System model, flow velocities during glacial outburst floods up to 9 m/s and peak discharge of 140,000 m3/s are predicted, which could drain 33.5 km3 of lake water in 10 days and transport boulders up to 3 m in diameter.  相似文献   

3.
Glacio-isostatic adjustment(GIA)and tectonic activity are important factors in the formation of marine terraces.Late Holocene wave-cut benches in the eastern part of the West Sea of Korea,also called the Yellow Sea,can be divided into two steps:531 cm above sea level(ASL)for the upper bench(T2)and 464-481 cm ASL for the lower bench(T1).Sediments on the benches a re classified into four units,and are interpreted to be beach deposits acco rding to gravel shape,textu re,and seaward inclination.The ove rlying sediment indicates that T2 was formed at approximately 530 cm ASL before 2900 yr BP,and T1 at approximately 460-480 cm ASL before 1520 yr BP.Late Holocene(4000-2000 yr BP)relative sea level(RSL)curves based on GIA models are inconsistent with the wave-cut bench elevations.Comparing T1 and T2 benches to the RSL curves of the West Sea,the upper and the lower benches were uplifted by approximately 5-8 m and 4-7 m,respectively.Although the area is several hundred kilometers away from plate boundaries,the high frequency of earthquakes in the West Sea may have induced the uplift of wave-cut benches during the last 2000 years.These indicate that the west coast of the Korean Peninsula(KP)should no longer be considered an area of subsidence,but be assigned to a regime of uplift during the late Holocene.  相似文献   

4.
Sediments deposited in two small ice-contact lakes with low rates of sediment input have been studied in subaerial exposures. Sediment characteristics are a function of the water source (glacial meltwater versus non-meltwater), proximity to the glacier margin and lake shore, amount of supraglacial debris, and lake duration. Calving Lake expanded (and later partially drained) as a calving ice margin retreated. Nearshore deltas contain 1 × 105 m3 stratified sand and gravel deposited at rates up to 1 m/yr during a 9-yr interval. Deltaic sediment contains types A and B ripple-drift cross-lamination, draped lamination, and scour surfaces caused by variations in water-flow velocity and the amount of sediment settling from suspension. Most water inflow came from non-subglacial meltwater sources and was sediment-poor, so overflow and interflow sedimentation processes dominated the offshore environment. Offshore sediment generally contains massive silt or silt interbedded with fine-grained sand deposited at rates of 1.3-1.5 cm/yr. Iceberg gravity craters observed on the lake plain were formed when icebergs impacted the lake floor during calving events. In Bruce Hills Lake, proximity to glacier ice and the presence of supraglacial sediment formed coarsening-upward successions when debris fell directly from an ice ledge onto silty lacustrine sediment.  相似文献   

5.
A substantially modified history of the last two cycles of Lake Bonneville is proposed. The Bonneville lake cycle began prior to 26,000 yr B.P.; the lake reached the Bonneville shoreline about 16,000 yr B.P. Poor dating control limits our knowledge of the timing of subsequent events. Lake level was maintained at the Bonneville shoreline until about 15,000 yr B.P., or somewhat later, when catastrophic downcutting of the outlet caused a rapid drop of 100 m. The Provo shoreline was formed as rates of isostatic uplift due to this unloading slowed. By 13,000 yr B.P., the lake had fallen below the Provo level and reached one close to that of Great Salt Lake by 11,000 yr B.P. Deposits of the Little Valley lake cycle are identified by their position below a marked unconformity and by amino acid ratios of their fossil gastropods. The maximum level of the Little Valley lake was well below the Bonneville shoreline. Based on degree of soil development and other evidence, the Little Valley lake cycle may be equivalent in age to marine oxygenisotope stage 6. The proposed lake history has climatic implications for the region. First, because the fluctuations of Lake Bonneville and Lake Lahontan during the last cycle of each were apparently out of phase, there may have been significant local differences in the timing and character of late Pleistocene climate changes in the Great Basin. Second, although the Bonneville and Little Valley lake cycles were broadly synchronous with maximum episodes of glaciation, environmental conditions necessary to generate large lakes did not exist during early Wisconsin time.  相似文献   

6.
Radiocarbon dated lacustrine sequences in Perú show that the chronology of glaciation during the late glacial in the tropical Andes was significantly out-of-phase with the record of climate change in the North Atlantic region. Fluvial incision of glacial-lake deposits in the Cordillera Blanca, central Perú, has exposed a glacial outwash gravel; radiocarbon dates from peat stratigraphically bounding the gravel imply that a glacier advance culminated between 11,280 and 10,990 14C yr B.P.; rapid ice recession followed. Similarly, in southern Perú, ice readvanced between 11,500 and 10,900 14C yr B.P. as shown by a basal radiocarbon date of 10,870 14C yr B.P. from a lake within 1 km of the Quelccaya Ice Cap. By 10,900 14C yr B.P. the ice front had retreated to nearly within its modern limits. Thus, glaciers in central and southern Perú advanced and retreated in near lockstep with one another. The Younger Dryas in the Peruvian Andes was apparently marked by retreating ice fronts in spite of the cool conditions that are inferred from the ∂18O record of Sajama ice. This retreat was apparently driven by reduced precipitation, which is consistent with interpretations of other paleoclimatic indicators from the region and which may have been a nonlinear response to steadily decreasing summer insolation.  相似文献   

7.
In the present paper the effects of rapid, high‐amplitude base‐level changes during the last glacial‐interglacial transition were studied for the Ain River in eastern France. During the Würm glacial maximum (MIS 2) rapid aggradation by deep‐water Gilbert‐type deltas and shallow‐water fan deltas occurred at the margins of a 20 to 50 m deep proglacial lake. A temporal high‐amplitude lake‐level fall of 60 m resulted in gravel deposition by forced‐regressive deltas, followed by rapid lake‐level rise and fine‐grained glaciolacustrine deposition. During the final deglaciation, a rapid base‐level fall of 40 m resulted in a complex fluvial response. Knickpoint formation and headward incision of the highstand deltas and concomitant deposition of gravel sheets by forced‐regressive deltas and braided systems occurred in several depocentres on the former glacial lake floor. Preservation of highstand and falling‐stage deposits and terrace formation in the incised valley depended on vertical incision and lateral channel migration. Terraces are well developed in the former lake‐floor depressions, whereas vertical incision was dominant in the higher lake‐floor areas. The Ain terrace staircase was likely formed by autogenic processes during a single allogenic base‐level fall. This case study possibly offers an analogue for the preservation of interglacial highstand coastal deltas during sea‐level fall at warm‐to‐cold climate transitions, although the rates of base‐level fall are different.  相似文献   

8.
Evidence from shoreline and deep-lake sediments show Laguna Cari-Laufquén, located at 41°S in central Argentina, rose and fell repeatedly during the late Quaternary. Our results show that a deep (> 38 m above modern lake level) lake persisted from no later than 28 ka to 19 ka, with the deepest lake phase from 27 to 22 ka. No evidence of highstands is found after 19 ka until the lake rose briefly in the last millennia to 12 m above the modern lake, before regressing to present levels. Laguna Cari-Laufquén broadly matches other regional records in showing last glacial maximum (LGM) highstands, but contrasts with sub-tropical lake records in South America where the hydrologic maximum occurred during deglaciation (17–10 ka). Our lake record from Cari-Laufquén mimics that of high-latitude records from the Northern Hemisphere. This points to a common cause for lake expansions, likely involving some combination of temperature depression and intensification of storminess in the westerlies belt of both hemispheres during the LGM.  相似文献   

9.
Ice scouring of lake and sea-floor substrates by the keels of drifting ice masses is a common geological process in modern northern lakes and continental shelves, and was widespread during the Pleistocene. Nonetheless, the importance of scouring as a geological process is not yet matched by many sedimentological studies of scour structures exposed in outcrop. This article presents an integrated study combining outcrop sedimentology and subsurface ground-penetrating radar (GPR) data from a relict late Pleistocene ice-scoured glacial lake floor now preserved below beach sediments in Ontario, Canada. Scours occur along a regressive sequence boundary where deep-water muddy facies are abruptly overlain by shallow-water sands resulting from an abrupt drop in water levels. This has allowed the keels of drifting ice masses to scour into muds. Three-dimensional data gained from the GPR survey show that scours are as much as 2.5 m deep and 7 m wide; they have berms of displaced sediment and are oriented parallel to the former shoreline. Scoured shoreface sediments that fill scours show abundant liquefaction structures, indicating substrate dewatering during repeated scouring events similar to that recently reported in the modern Beaufort Sea in Canada's far north. Marked changes in water depths are typical of glacially influenced lakes and seas, creating opportunities for drifting ice to scour into offshore muddy cohesive facies and be preserved. The data presented here may aid identification in ancient successions elsewhere.  相似文献   

10.
The famous Cape Hatteras Lighthouse is threatened with destruction by an eroding coastline. Recent attempts to control the erosion have reduced but not stopped it The natural erosion trend for 41 km of coast from Rodanthe to Cape Hatteras was determined, based on 94 years of survey records from 1852 to 1946 At the lighthouse, the natural erosion rate is 7 5 m/yr In 2005, if no further human interference with coastal processes occurs, 190 m of coast will have eroded since 1980, leaving the shoreline nearly 90 m west of the lighthouse Considering the expensive effort being undertaken to protect the lighthouse from destruction, an inventory of property along the Atlantic coast should be made, before other similar projects are initiated We can afford to protect only the most valuable property.  相似文献   

11.
Information from 240 km of high-resolution seismic reflection profiles has been analyzed to show the bathymetric and subsurface configuration of southern Lake George in the southeastern corner of the Adirondack Mountains, New York. Three units have been identified and sampled in 13 piston cores as long as 7 m and 4 grab samples; they are glacial drift, glaciolacustrine nonorganic clay, and Holocene lake mud rich in organic material. Three deep bedrock basins controlled glacial, glaciolacustrine, and postglacial deposition within the lake. Glaciolacustrine clay is more than 30 m thick in these basins but is generally absent in water depths less than 20 m. An unconformity separates glaciolacustrine clay from overlying Holocene mud in water depths less than 30 m, but the contact is conformable and transitional in deeper water. The unconformity may have originated from subaqueous or subaerial erosion during a low stage of lake level which probably occurred between 10,000 and 700 yr B.P. Holocene lake mud is thin to absent in the shallower waters separating the three basins, but reaches 15-m thickness near the entrance to The Narrows. A new radiocarbon date of 6950 ± 60 yr B.P. was obtained from a wood fragment which was found in the Holocene lake mud. We found no clear evidence of postglacial tectonic disturbances of the lake sediments although recent releveling profiles suggest that the Adirondack Mountains are undergoing contemporary uplift.  相似文献   

12.
U-Series Chronology of Lacustrine Deposits in Death Valley, California   总被引:1,自引:0,他引:1  
Uranium-series dating on a 186-m core (DV93-1) drilled from Badwater Basin in Death Valley, California, and on calcareous tufas from nearby strandlines shows that Lake Manly, the lake that periodically flooded Death Valley during the late Pleistocene, experienced large fluctuations in depth and chemistry over the last 200,000 yr. Death Valley has been occupied by a long-standing deep lake, perennial shallow saline lakes, and a desiccated salt pan similar to the modern valley floor. The average sedimentation rate of about 1 mm/yr for core DV93-1 was punctuated by episodes of more-rapid accumulation of halite. Arid conditions similar to the modern conditions prevailed during the entire Holocene and between 120,000 and 60,000 yr B.P. From 35,000 yr B.P. to the beginning of the Holocene, a perennial saline lake existed, over 70 m at its deepest. A much deeper and longer lasting perennial Lake Manly existed from about 185,000 to 128,000 yr B.P., with water depths reaching about 175 m, if not 330 m. This lake had two significant “dry” excursions of 102–103yr duration about 166,000 and 146,000 yr B.P., and it began to shrink to the point of halite precipitation between 128,000 and 120,000 yr B.P. The two perennial lake periods correspond to marine oxygen isotopic stages (OIS) 2 and 6. Based on the shoreline tufa ages, we do not rule out the possible existence 200,000 yr ago of yet a third perennial lake comparable in size to the OIS 6 lake. The234U/238U data suggest that U in tufa owes its origin mainly to Ca-rich springs fed by groundwater that emanated along lake shorelines in southern Death Valley, and that an increase of this spring-water input relative to the river-water input apparently occurred during OIS 6.  相似文献   

13.
Climate change in the Great Lakes Basin of North America over the next several decades is projected to lead to significant changes to coastal environments. Groundwater-driven coastal bluff recession should increase in areas where groundwater forcing is important and lead to increased loss of coastal uplands. The latter is an issue in NW Pennsylvania because of coastal development pressures, and because the state ranks within the top five US states in grape production, most of which occurs within 5 km of the Lake Erie coastline. In 2007, viticulture contributed almost $2.4 billion to the state economy. An analysis of a 20-km stretch of coast shows that bluff retreat is pervasive and variable under current climatic conditions. Over a 9-year time frame, bluff change rates ranged from ?4.2 to +0.98 m/year. In general, higher retreat rates (?0.2 to ?0.65 m/year) occurred along the sandy central beach–ridge sector which lacks significant surface drainage. Lower retreat rates (?0.10 to ?0.25 m/year) occurred along coastal sectors where surface drainage networks are well developed. Conservative estimates of groundwater discharge at the bluff correlate strongly (r = 0.74, p < 0.001) with bluff retreat rate. Groundwater is inferred to be the principal driving mechanism for both bluff retreat and spatial variability in retreat rates on this coast. Other common factors that may spatially influence bluff retreat elsewhere (bluff height, land use, beach width) do not correlate strongly with retreat rate.  相似文献   

14.
Three emergent marine terraces are prominent between Playa El Marron and Arroyo El Salinito and comprise the most extensive Pleistocene planation surfaces in central Baja California, Mexico. The deposits of the lowest terrace, the Tomatal, are 120,000 ± 20,000 yr old (Sangamonian?) while the absolute ages of the two higher and older terraces, the Andrés and Aeropuerto, are unknown. The Tomatal terrace is particularly well developed and comprises degraded sea cliffs, paleodunes, and lagoonal sequences. Shingle paleobeach ridges also occur locally and reflect shore progradation and tombolo formation. The Tomatal shoreline is nearly horizontal at 7 ± 1 m above present mean sea level, whereas the older Aeropuerto terrace has been tilted so that it decreases in elevation toward the southeast. Nonetheless, coastal tilting is not nearly as great as at many other localities in California and Baja California. This is despite the fact that the entire Baja California peninsula has been assumed to be tectonically unstable during the Pleistocene, primarily because of the forces generated by plate motion.  相似文献   

15.
This article reports on an Early Saalian proglacial lake formed between the Scandinavian Ice Sheet and the front of the Sudeten Mountains, Poland. Sediments investigated at Mys?ów point to a transition from glacifluvial to glaciolacustrine environments. The bulk of the sediments was deposited in deep‐water Gilbert‐type deltas (A–E complexes). A delta plain (topset) gradually passes into a subaerial plateau and then a clastic shoreline and the subaquatic slope of a prograding delta (foreset). The glaciolacustrine lithofacies represent a number of lake‐basin environments, from marginal subaqueous slopes to distal parts of a subaqueous fan. Glaciolacustrine and glaciodeltaic deposits locally reach ?50–70 m in thickness. Analyses of A–E complexes indicate that the lake existed for more than 130 years and that its origin and evolution were closely connected with the ice front. This case study records lake sedimentation at an ice‐sheet margin with cohesionless gravity flows, turbidity currents, debris‐avalanching and, to a much lesser degree, parapelagic suspension fall‐out and ice‐raft dumping. In the initial stage, the lake extended more than 10 km to the south, and the deposition was relatively slow. In the second stage, recession of the ice sheet caused rapid growth of a delta. The third and ultimate stage coincided with the final glacial recession, with rapid deposition occurring only on the lake bottom. The model of the glaciolacustrine environment presented here may also be applicable to many other proglacial lakes in mountain areas.  相似文献   

16.
Two massively constructed stone forts exist on the edge of vertical coastal cliffs on the Aran Islands, Ireland. One of these, Dun Aonghusa, contains evidence of occupation that predates the main construction phases of the walls and broadly spans a time interval of 3300–2800 yr B.P. The other fort, Dun Duchathair, has been termed a promontory fort because its remaining wall crosses the neck of a small promontory marginal to the cliffs. Estimates of past rates of marine erosion in this part of Ireland may be made both by analogy with studies in other areas and comparison with present day rates of marine erosion. A working model for erosion rates of approximately 0.4 m of coastal recession per annum is suggested. By applying this rate to the cliffs of the Aran Islands, it can be shown that, assuming a construction date of approximately 2500 yr B.P. for these forts, they were originally built at a considerable distance from the coastline. Thus Dun Duchathair was not a promontory fort. The earliest recorded habitation at Dun Aonghusa, dated to the middle of the Bronze Age, was, therefore, at some distance inland and not on an exposed 70 m high cliff on the edge of the Atlantic Ocean. © 2004 Wiley Periodicals, Inc.  相似文献   

17.
Shoreline geomorphology, shoreline stratigraphy, and radiocarbon dates of organic material incorporated in constructional beach ridges record large lakes during the late Pleistocene and late Holocene in the Pyramid Lake subbasin of Lake Lahontan, Nevada, USA. During the late Holocene, a transgression began at or after 3595 ± 35 14C yr B.P. and continued, perhaps in pulses, through 2635 ± 40 14C yr B.P., resulting in a lake as high as 1199 m. During the latest Pleistocene and overlapping with the earliest part of the Younger Dryas interval, a lake stood at approximately 1212 m at 10,820 ± 35 14C yr B.P. and a geomorphically and stratigraphically distinct suite of constructional shorelines associated with this lake can be traced to 1230 m. These two lake highstands correspond to periods of elevated regional wetness in the western Basin and Range that are not clearly represented in existing northern Sierra Nevada climate proxy records.  相似文献   

18.
Late- and postglacial history of the Great Belt, Denmark   总被引:3,自引:0,他引:3  
On the basis of shallow seismic records, vibrocoring, macrofossil analyses and AMS radiocarbon-dating, five stratigraphical units have been distinguished from the deepest parts of the central Great Belt (Storebælt) in southern Scandinavia. Widespread glacial deposits are followed by two lateglacial units confined to deeply incised channels and separated by an erosional boundary. Lateglacial Unit I dates from the time interval from the last deglaciation to the Allerød; lateglacial Unit II is of Younger Dryas age. Early Holocene deposits show a development from river deposits and lake-shore deposits to large lake deposits, corresponding to a rising shore level. Lake deposits are found up to 20 m below the sea floor, and the lake extended over some 200–300 km2. The early Holocene freshwater deposits are dated to the time interval c. 10900 to c. 8800 cal. yr BP and the oldest shells of marine molluscs from the Great Belt are dated to c. 8100 cal. yr BP.  相似文献   

19.
Long-term retreat rates of Puget Sound's unconsolidated sediment shorelines have been difficult to quantify, and little systematic research has been completed to constrain retreat in this area. We put forward a new application of cosmogenic 10Be exposure dating to assess long-term shoreline retreat on Whidbey Island, WA by dating lag boulders exposed on the shore platform as the shoreline erodes. Production of 10Be in shoreline boulders is modulated by both tidal submergence and topographic shielding from the retreating bluff. By modeling the combined effect of these variables on 10Be production, the timing of exposure can be determined and used to calculate long-term (103–104 yr) bluff retreat rates. In rare cases, retreat rates are underestimated due to inherited 10Be. Within the study area, average retreat rates ranged between 0 and 8 cm yr? 1. Our results demonstrate the utility of cosmogenic nuclides for determining long-term shoreline retreat rates in areas with thick sediment cover, where large numbers of samples can be collected, and where the pre-depositional history of the boulders is uncomplicated.  相似文献   

20.
A late Quaternary deep-water stratigraphic framework has been established for the deep-water areas (>450m) of the northern Rockall Trough and Faeroe-Shetland Channel. Four stratigraphic units (1–4) are identified; these are primarily biostratigraphic units based on dinoflagellate cyst evidence. Unit 1 represents the late Weichselian glacial (pre-13 000 yr BP); unit 2 the Late Glacial Interstadial (11 000-13 000 yr BP); unit 3 is of Younger Dryas age (10 000-11 000 yr BP); and unit 4 represents the Holocene interglacial (post-10 000 yr BP). This stratigraphy is supported by the discovery of the mixed Vedde Ash (10 600 yr BP) and North Atlantic Ash zone 1, and the Saksunarvatn Ash (9000–9100 yr BP), concentrated in units 3 and 4 respectively. The sedimentology indicates that the oceanographic regime underwent a major change between the glacial and interglacial stages. This is marked by the onset of strong bottom current activity, allied to the restoration of overflow of the Norwegian Sea Deep Water into the North Atlantic, towards the end of the Younger Dryas Stadial. Despite intense bioturbation and bottom-current reworking the basic stratigraphic framework is maintained. Recognition of two volcanic ash markers enables correlation with established onshore and offshore sequences of marine and non-marine environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号