首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Fragments from 20 individual particles, collected in the Earth's stratosphere and believed to be interplanetary dust particles (IDPs), were obtained from NASA's Johnson Space Center collection and subjected to step-heating to see if differences in the release pattern for 4He could be observed which might provide clues to the origin of the particles. Comparisons were made to the release pattern for 18 individual lunar surface grains heated in the same manner. Twelve of the IDP fragments contained an appreciable amount of 4He, 50 percent of which was released by the time the particles were heated to approximately 630 °C. For the 18 individual lunar grains the corresponding average temperature was 660 °C. The 3He/4He ratios found for these fragments agreed well with those found for deep Pacific magnetic fines believed to be of extraterrestrial origin, and were comparable to those which have been observed for the solar wind and lunar surface soil grains. Four of the IDP fragments contained appreciably less 4He, and this was released at a higher temperature. The remaining four fragments had too little 4He to permit a determination. From Flynn's analyses of the problem of the heating of IDPs in their descent in the atmosphere, the present results suggest that the parent IDPs of the 12 particles which contained an appreciable amount of 4He suffered very little heating in their descent and are likely of asteroidal origin, although one cannot rule out the possibility that at least some of them had a cometary origin and entered the earth's atmosphere at a grazing angle. Mineralogical and morphological studies on fragments companion to those used in the present investigation are under way. When these are completed, a more definite picture should emerge.  相似文献   

2.
Abstract– Interplanetary dust particles (IDPs) are the most primitive extraterrestrial material available for laboratory studies and may, being likely of cometary origin, sample or represent the unaltered starting material of the solar system. Here we compare IDPs from a “targeted” collection, acquired when the Earth passed through the dust stream of comet 26P/Grigg‐Skjellerup (GSC), with IDPs from nontargeted collections (i.e., of nonspecific origin). We examine both sets to further our understanding of abundances and character of their isotopically anomalous phases to constrain the nature of their parent bodies. We identified ten presolar silicates, two oxides, one SiC, and three isotopically anomalous C‐rich grains. One of seven non‐GSC IDPs contains a wealth of unaltered nebula material, including two presolar silicates, one oxide, and one SiC, as well as numerous δD and δ15N hotspots, demonstrating its very pristine character and suggesting a cometary origin. One of these presolar silicates is the most 17O‐rich discovered in an IDP and has been identified as a possible GEMS (glass with embedded metal and sulfides). Organic matter in an anhydrous GSC IDP is extremely disordered and, based on Raman spectral analyses, appears to be the most primitive IDP analyzed in this study, albeit only one presolar silicate was identified. No defining difference was seen between the GSC and non‐GSC IDPs studied here. However, the GSC collectors are expected to contain IDPs of nonspecific origin. One measure alone, such as presolar grain abundances, isotopic anomalies, or Raman spectroscopy cannot distinguish targeted cometary from unspecified IDPs, and therefore combined studies are required. Whilst targeted IDP populations as a whole may not show distinguishable parameters from unspecified populations (due to statistics, heterogeneity, sampling bias, mixing from other cometary sources), particular IDPs in a targeted collection may well indicate special properties and a fresh origin from a known source.  相似文献   

3.
Abstract— Helium and neon isotope ratios were determined for 16 interplanetary dust particles (IDPs) collected in the stratosphere. The concentration of helium observed varied greatly from particle to particle, with the highest values approaching those found for lunar surface fines and some gas-rich meteorites. With the exception of one particle, for which the 3He/4He was (1.45 ± 0.05) × 10?3, the remainder of the particles had ratios falling between 1.4 and 3.1 × 10?4, with an average of (2.4 ± 0.3) × 10?4, substantially less than is associated with the solar wind or observed in average lunar fines or in lunar fines having sizes comparable to those of the IDPs studied. The average 20Ne/22Ne found was 12.0 ± 0.5. Only three reasonably reliable 21Ne/22Ne ratios could be determined, and for these the average was 0.035 ± 0.006. The isotopic ratios appear to preclude the presence of any appreciable amount of cosmic ray-produced spallogenic products. The high 4He concentrations observed for some of the particles, approaching those observed for lunar surface grains, suggest they were not heated to high temperatures and degassed as they descended in the earth's atmosphere. From Flynn's study of the dynamics of IDPs entering the earth's atmosphere this could mean they entered the atmosphere at relatively low velocities, and hence may be primarily of asteroidal rather than cometary origin.  相似文献   

4.
Abstract— Meteor science, aeronomy, and meteoritics are different disciplines with natural interfaces. This paper is an effort to integrate the chemistry and mineralogy of collected interplanetary dust particles (IDPs), micrometeorites, and meteorites with meteoric data and with atmospheric metal abundances. Evaporation, ablation, and melting of decelerating materials in the Earth's atmosphere are the sources of the observed metal abundances in the upper atmosphere. Many variables ultimately produce the materials and phenomena we can analyze, such as different accretion and parent‐body histories of incoming extraterrestrial materials, different interactions of meteors with the Earth's middle atmosphere, meteor data reduction, and complex chemical interactions of the metals and ions with the ambient atmosphere. The IDP‐like and unequilibrated ordinary chondrite matrix materials are reasonable sources for observed meteoric and atmospheric metals. The hypothesis of hierarchical dust accretion predicts that low, correlated refractory element abundances in cometary meteors may be real. It implies that the CI or cosmic standard is not useful to appreciate the chemistry of incoming petrologically heterogeneous cometary matter. The quasi steady‐state metal abundances in the lower thermosphere and upper mesosphere are derived predominantly from materials with cometary orbital characteristics and velocities such as comets proper and near‐Earth asteroids. The exact influence of atmospheric chemistry on these abundances still needs further evaluation. Metal abundances in the lower mesosphere and upper stratosphere region are mostly from materials from the asteroidal belt and the Kuiper belt.  相似文献   

5.
Abstract— The elemental compositions of 200 interplanetary dust particles (IDPs) collected in the stratosphere have been determined by energy dispersive X-ray (EDX) analysis. The results reasonably define the normal compositional range of chondritic interplanetary dust particles averaging 10 micrometers in size, and constitute a database for comparison with individual IDPs, meteorites, and spacecraft data from comets and asteroids. The average elemental composition of all IDPs analyzed is most similar to that of CI chondrites, but the data show that there are small yet discernable differences between mean IDP composition and the CI norm. Individual particles were classified into broad morphological groups, and the two major groups show unambiguous compositional differences. The “porous” group is a close match to bulk CI abundances, but the “smooth” group has systematic Ca and Mg depletions, and contains stoichiometric “excess” oxygen consistent with the presence of hydrous phases. Similar depletions of Ca and Mg in CI and CM matrix have been attributed to leaching, and by analogy we suggest that particles in the smooth group have also been processed by aqueous alteration. The occurrence of carbonates, magnetite framboids, and layer silicates provides additional evidence that at least a significant number of the smooth-class IDPs have been substantially processed by aqueous activity. The presence or absence of aqueous modification in members of a particle sub-class is an important clue to the origin. Although it cannot be proven, we hypothesize that extensive aqueous activity only occurs in asteroids and that, accordingly, the smooth class of IDPs has an asteroidal origin. If both comets and asteroids are major sources of interplanetary dust, then by default the porous particles are inferred to be dominated by cometary material.  相似文献   

6.
Abstract— Arguments in favor of the cometary origin of the Tunguska meteorite are adduced along with reasons against the asteroidal hypothesis. A critical analysis is given for the hypotheses by Sekanina (1983) and Chyba et al. (1993). On the basis of the azimuth and inclination of the trajectory of the Tunguska body with plausible values of the geocentric velocity, the semimajor axis of the orbit and its inclination to the ecliptic plane are calculated for this body. It is noted that the theory of the disintegration of large bodies in the atmosphere put forward by Chyba et al. (1993) is crude. Applying more accurate theories (Grigoryan, 1979; Hills and Goda, 1993) as well as taking into account the realistic shape of the body yield for the cometary body lower disruption heights than obtained by Chyba et al. Numerical simulations carried out by Svettsov et al. agree well with the cometary hypothesis and the analytical calculations based on Grigoryan's theory. The asteroidal hypothesis is shown not to be tenable: the complete lack of stony fragments in the region of the catastrophe, cosmochemical data (in particular, the results of an isotope analysis), and some other information contradict this hypothesis. It is shown that stony fragments that would have originated in the explosive disruption of the Tunguska body would not be vaporized by the radiation of the vapor cloud nor as a result of their fall to the Earth's surface.  相似文献   

7.
Abstract– The “Cosmic Dust Catalog,” published by the NASA Johnson Space Center (JSC), describes thousands of interplanetary dust particles subjected to preliminary analysis and with labels indicating their origin. However, only about 80% of the particles are assigned unambiguous labels, the labels of the remaining 20% being uncertain. In addition, the Stardust mission results opened up the possibility that some particles classified as terrestrial contaminants are instead of cosmic (cometary) origin. In this article, we present a methodology for automatic classification of particles on the basis of similarity of their X‐ray energy dispersive spectrometry spectra. The method is applied to the 467 particles constituting Volume 15 of the catalog. A first part of the analysis is to digitize the spectra from their scanned images. The digitized spectra are subjected to agglomerative clustering, which reveals 16 distinct clusters or compositional types of particles. The Sammon’s map is used to visualize the relationship between different clusters; 6 clusters corresponding to cosmic particles and 10 clusters corresponding to terrestrial contaminants are clearly separated on the map indicating overall differences between diverse spectra of cosmic and terrestrial particles. By reconciling labels with the clustering structures, we propose the relabeling of 155 particles including the relabeling of 31 terrestrial contaminants into cosmic particles. The proposed relabeling needs to be confirmed by in‐depth study of these particles. The paucity of particles with firmly determined cometary or asteroidal origin makes it difficult to establish whether the spectra based autoclassification can be utilized to discriminate between cometary and asteroidal particles. The methodology presented here can be used to classify all particles published in the catalog, as well as different samples for which comparable spectra are available.  相似文献   

8.
Cometary material inevitably undergoes chemical changes before and on leaving the nucleus. In seeking to explain comets as the origin of many IDPs (interplanetary dust particles), an understanding of potential surface chemistry is vital. Grains are formed and transformed at the nucleus surface; much of the cometary volatiles may arise from the organic material. In cometary near-surface permafrost, one expects cryogenic chemistry with crystal growth and isotope. This could be the hydrous environment where IDPs form. Seasonal and geographic variations imply a range of environmental conditions and surface evolution. Interplanetary dust impacts and electrostatic forces also have roles in generating cometary dust. The absence of predicted cometary dust ‘envelopes’ is compatible with the wide range of particle structures and compositions. Study of IDPs would distinguish between this model and alternatives that see comets as aggregates of core-mantle grains built in interstellar clouds.  相似文献   

9.
Abstract— The He, Ne, and Ar compositions of 32 individual interplanetary dust particles (IDPs) were measured using low‐blank laser probe gas extraction. These measurements reveal definitive evidence of space exposure. The Ne and Ar isotopic compositions in the IDPs are primarily a mixture between solar wind (SW) and an isotopically heavier component dubbed “fractionated solar” (FS), which could be implantation‐fractionated solar wind or a distinct component of the solar corpuscular radiation previously identified as solar energetic particles (SEP). Space exposure ages based on the Ar content of individual IDPs are estimated for a subset of the grains that appear to have escaped significant volatile losses during atmosphere entry. Although model‐dependent, most of the particles in this subset have ages that are roughly consistent with origin in the asteroid belt. A short (<1000 years) space exposure age is inferred for one particle, which is suggestive of cometary origin. Among the subset of grains that show some evidence for relatively high atmospheric entry heating, two possess elevated 21Ne/22Ne ratios generated by extended exposure to solar and galactic cosmic rays. The inferred cosmic ray exposure ages of these particles exceeds 107 years, which tends to rule out origin in the asteroid belt. A favorable possibility is that these 21Ne‐rich IDPs previously resided on a relatively stable regolith of an Edgeworth‐Kuiper belt or Oort cloud body and were introduced into the inner solar system by cometary activity. These results demonstrate the utility of noble gas measurements in constraining models for the origins of interplanetary dust particles.  相似文献   

10.
Abstract– Oxygen three‐isotope ratios of three anhydrous chondritic interplanetary dust particles (IDPs) were analyzed using an ion microprobe with a 2 μm small beam. The three anhydrous IDPs show Δ17O values ranging from ?5‰ to +1‰, which overlap with those of ferromagnesian silicate particles from comet Wild 2 and anhydrous porous IDPs. For the first time, internal oxygen isotope heterogeneity was resolved in two IDPs at the level of a few per mil in Δ17O values. Anhydrous IDPs are loose aggregates of fine‐grained silicates (≤3 μm in this study), with only a few coarse‐grained silicates (2–20 μm in this study). On the other hand, Wild 2 particles analyzed so far show relatively coarse‐grained (≥ few μm) igneous textures. If anhydrous IDPs represent fine‐grained particles from comets, the similar Δ17O values between anhydrous IDPs and Wild 2 particles may imply that oxygen isotope ratios in cometary crystalline silicates are similar, independent of crystal sizes and their textures. The range of Δ17O values of the three anhydrous IDPs overlaps also with that of chondrules in carbonaceous chondrites, suggesting a genetic link between cometary dust particles (Wild 2 particles and most anhydrous IDPs) and carbonaceous chondrite chondrules.  相似文献   

11.
Abstract— We discuss the relationship between large cosmic dust that represents the main source of extraterrestrial matter presently accreted by the Earth and samples from comet 81P/Wild 2 returned by the Stardust mission in January 2006. Prior examinations of the Stardust samples have shown that Wild 2 cometary dust particles contain a large diversity of components, formed at various heliocentric distances. These analyses suggest large‐scale radial mixing mechanism(s) in the early solar nebula and the existence of a continuum between primitive asteroidal and cometary matter. The recent collection of CONCORDIA Antarctic micrometeorites recovered from ultra‐clean snow close to Dome C provides the most unbiased collection of large cosmic dust available for analyses in the laboratory. Many similarities can be found between Antarctic micrometeorites and Wild 2 samples, in terms of chemical, mineralogical, and isotopic compositions, and in the structure and composition of their carbonaceous matter. Cosmic dust in the form of CONCORDIA Antarctic micrometeorites and primitive IDPs are preferred samples to study the asteroid‐comet continuum.  相似文献   

12.
Abstract— Measurements of He isotopes in cluster interplanetary dust particles (IDPs) from stratospheric dust collector L2009 reveal anomalous 3He/4He ratios comparable to those seen earlier, up to ~40x the solar wind ratio, in particles from the companion collector L2011. These overabundances of 3He in the L2009 samples are masked by much higher 4He contents compared to the L2011 particles, and are visible only in minor gas fractions evolved by stepwise heating at high temperatures. Cosmic‐ray induced spallogenic reactions are efficient producers of 3He. The majority of this paper is devoted to a detailed assessment of the possible role of spallation in generating the 3He excesses in these and other cluster IDPs. A model of collisional erosion and fragmentation during inward transit through the interplanetary dust environment is used to estimate space lifetimes of particles from asteroidal and Edgeworth–Kuiper Belt sources. Results of the modeling indicate that Poynting–Robertson orbital evolution timescales of IDPs small enough to elude destruction on their way to Earth from either location are far shorter than the cosmic‐ray exposure ages required to account for observed 3He overabundances. Grains large enough to have sufficiently long space residence times are fragmented close to their sources. An alternative to long in‐space exposure could be prolonged irradiation of particles buried in parent body regoliths prior to their ejection as IDPs. A qualitative calculation suggests, however, that collisional erosion of asteroidal upper‐regolith materials is likely to occur on timescales shorter than the > 1 Ga burial times needed for accumulation of spallogenic 3He to the levels seen in several cluster particles. In contrast, regoliths on Edgeworth–Kuiper Belt objects may be stable enough to account for the 3He excesses, and delivery of heavily pre‐irradiated IDPs to the inner solar system by short‐period Edgeworth–Kuiper Belt comets remains a possibility. A potential problem is that the expected associated abundances of spallation‐produced 21Ne appear to be absent, although here the present IDP data base is too sparse and for the most part too imprecise to rule out a spallogenic origin. Relatively short periods of pre‐ejection residence in asteroidal regoliths may be responsible for the curiously broad exposure age distributions reported for micrometeorites extracted from Greenland and sea‐floor sediments.  相似文献   

13.
Cometary material inevitably undergoes chemical changes before and on leaving the nucleus. In seeking to explain comets as the origin of many IDPs (interplanetary dust particles), an understanding of potential surface chemistry is vital. Grains are formed and transformed at the nucleus surface; much of the cometary volatiles may arise from the organic material. In cometary near-surface permafrost, one expects cryogenic chemistry with crystal growth and isotope. This could be the hydrous environment where IDPs form. Seasonal and geographic variations imply a range of environmental conditions and surface evolution. Interplanetary dust impacts and electrostatic forces also have roles in generating cometary dust. The absence of predicted cometary dust envelopes is compatible with the wide range of particle structures and compositions. Study of IDPs would distinguish between this model and alternatives that see comets as aggregates of core-mantle grains built in interstellar clouds.  相似文献   

14.
We examine the potential contamination of cometary nuclei through impacts from asteroidal origin meteoroids. The paper uses a simple model and has the goal of determining whether asteroidal contamination is potentially significant. We assume a meteoroid power law mass distribution with index values in the range from s=1.83 to s=2.09. We used maximum and minimum models which we believe will bracket the true meteoroid mass distribution. We identify those comets which are expected to be most significantly contaminated, and find values of up to 3.6 kg of asteroidal meteoroid impact per square meter of the cometary surface per orbital revolution. This is less than the expected mass loss per perihelion passage for most comets. Therefore any remnant effects of the contamination will depend on the penetration depth of the meteoroids in the cometary nucleus, and possibly on the distribution of active and inactive areas on cometary nuclei. We present a simple model which suggests that even small meteoroids will embed relatively deeply into a cometary nucleus.  相似文献   

15.
The scoriaceous cosmic spherules (CSs) that make up to a few percent (for sizes >150 μm size) of total micrometeorite flux are ubiquitous and have remained enigmatic. The present work provides in-depth study of 81 scoriaceous CSs, from observed ~4000 CSs, collected from Antarctica (South Pole water well) and deep-sea sediments (Indian Ocean) that will allow us to analyze the nature of these particles. The fine-grained texture and the chemical composition of scoriaceous particles suggest that they are formed from matrix materials that are enriched in volatiles. The volatile components such as water, sulfide, Na, K, etc. have vanished due to partial evaporation and degassing during Earth's atmospheric entry leaving behind the vesicular features, yet largely preserving the elemental composition. The elemental ratios (Ca/Si, Mg/Si, Al/Si, Fe/Si, and Ni/Si) of interplanetary dust particles (IDPs) are compatible with the scoriaceous CSs, which in turn are indistinguishable from the matrices of CI and CM chondrites signifying similarities in the nature of the sources. Furthermore, the texture of cometary particles bears resemblance to the texture of the scoriaceous particles. The compilation of petrographic texture, chemical, and trace element composition of scoriaceous CSs presents a strong case for matrix components from hydrated and volatile-rich bodies, such as CI and CM chondrites, rather than chondrules. We conclude that the fine-grained scoriaceous CSs, the matrix materials of hydrated chondrites, IDPs, and cometary particles that overlap compositionally were widespread, indicating a dominant component in the early solar nebula.  相似文献   

16.
Abstract– An IDP nicknamed Andric, from a stratospheric dust collector targeted to collect dust from comet 55P/Tempel‐Tuttle, contains five distinct presolar silicate and/or oxide grains in 14 ultramicrotome slices analyzed, for an estimated abundance of approximately 700 ppm in this IDP. Three of the grains are 17O‐enriched and probably formed in low‐mass red giant or asymptotic giant branch (AGB) stars; the other two grains exhibit 18O enrichments and may have a supernova origin. Carbon and N isotopic analyses show that Andric also exhibits significant variations in its N isotopic composition, with numerous discrete 15N‐rich hotspots and more diffuse regions that are also isotopically anomalous. Three 15N‐rich hotspots also have statistically significant 13C enrichments. Auger elemental analysis shows that these isotopically anomalous areas consist largely of carbonaceous matter and that the anomalies may be hosted by a variety of components. In addition, there is evidence for dilution of the isotopically heavy components with an isotopically normal endmember; this may have occurred either as a result of extraterrestrial alteration or during atmospheric entry. Isotopically primitive IDPs such as Andric share many characteristics with primitive meteorites such as the CR chondrites, which also contain isotopically anomalous carbonaceous matter and abundant presolar silicate and oxide grains. Although comets are one likely source for the origin of primitive IDPs, the presence of similar characteristics in meteorites thought to come from the asteroid belt suggests that other origins are also possible. Indeed the distinction between cometary and asteroidal sources is somewhat blurred by recent observations of icy comet‐like planetesimals in the outer asteroid belt.  相似文献   

17.
Diagnostic infrared spectra of individual nanogram-sized interplanetary dust particles (IDPs) collected in the Earth's stratosphere have been obtained. A mount containing three crushed “chondritic” IDPs shows features near 1000 and 500 cm?1, suggestive of crystalline pyroxene, and different from those of crystalline olivine, amorphous olivine, or meteoritic clay minerals. The structural diversity of chondritic IDPs and possible effects of atmospheric heating must be considered when comparing this spectrum with astrophysical spectra of interplanetary and cometary dust. Transmission electron microscope (TEM) and infrared observations are also reported on one member of the rare subset of IDPs which resemble hydrated carbonaceous chondrite matrix material. The infrared spectrum of this particle between 4000 and 400 cm?1 closely matches that of the C2 meteorite Murchison. TEM observations suggest that this class of particles might serve as a thermometer for the process of heating on atmospheric entry.  相似文献   

18.
We used numerical simulations to model the orbital evolution of interplanetary dust particles (IDPs) evolving inward past Earth’s orbit under the influence of radiation pressure, Poynting–Robertson light drag (PR drag), solar wind drag, and gravitational perturbations from the planets. A series of β values (where β is the ratio of the force from radiation pressure to that of central gravity) were used ranging from 0.0025 up to 0.02. Assuming a composition consistent with astronomical silicate and a particle density of 2.5 g cm−3 these β values correspond to dust particle diameters ranging from 200 μm down to 25 μm. As the dust particle orbits decay past 1 AU between 4% (for β = 0.02, or 25 μm) and 40% (for β = 0.0025, or 200 μm) of the population became trapped in 1:1 co-orbital resonance with Earth. In addition to traditional horseshoe type co-orbitals, we found about a quarter of the co-orbital IDPs became trapped as so-called quasi-satellites. Quasi-satellite IDPs always remain relatively near to Earth (within 0.1–0.3 AU, or 10–30 Hill radii, RH) and undergo two close-encounters with Earth each year. While resonant perturbations from Earth halt the decay in semi-major axis of quasi-satellite IDPs their orbital eccentricities continue to decrease under the influence of PR drag and solar wind drag, forcing the IDPs onto more Earth-like orbits. This has dramatic consequences for the relative velocity and distance of closest approach between Earth and the quasi-satellite IDPs. After 104–105 years in the quasi-satellite resonance dust particles are typically less than 10RH from Earth and consistently coming within about 3RH. In the late stages of evolution, as the dust particles are escaping the 1:1 resonance, quasi-satellite IDPs can have deep close-encounters with Earth significantly below RH. Removing the effects of Earth’s gravitational acceleration reveals that encounter velocities (i.e., velocities “at infinity”) between quasi-satellite IDPs and Earth during these close-encounters are just a few hundred meters per second or slower, well below the average values of 2–4 km s−1 for non-resonant Earth-crossing IDPs with similar initial orbits. These low encounter velocities lead to a factor of 10–100 increase in Earth’s gravitationally enhanced impact cross-section (σgrav) for quasi-satellite IDPs compared to similar non-resonant IDPs. The enhancement in σgrav between quasi-satellite IDPs and cometary Earth-crossing IDPs is even more pronounced, favoring accretion of quasi-satellite dust particles by a factor of 100–3000 over the cometary IDPs. This suggests that quasi-satellite dust particles may dominate the flux of large (25–200 μm) IDPs entering Earth’s atmosphere. Furthermore, because quasi-satellite trapping is known to be directly correlated with the host planet’s orbital eccentricity the accretion of quasi-satellite dust likely ebbs and flows on 105 year time scales synchronized with Earth’s orbital evolution.  相似文献   

19.
The simulated Doppler shifts of the solar Mg I Fraunhofer line produced by scattering on the solar light by asteroidal, cometary, and trans-neptunian dust particles are compared with the shifts obtained by Wisconsin H-Alpha Mapper (WHAM) spectrometer. The simulated spectra are based on the results of integrations of the orbital evolution of particles under the gravitational influence of planets, the Poynting-Robertson drag, radiation pressure, and solar wind drag. Our results demonstrate that the differences in the line centroid position in the solar elongation and in the line width averaged over the elongations for different sizes of particles are usually less than those for different sources of dust. The deviation of the derived spectral parameters for various sources of dust used in the model reached maximum at the elongation (measured eastward from the Sun) between 90° and 120°. For the future zodiacal light Doppler shifts measurements, it is important to pay a particular attention to observing at this elongation range. At the elongations of the fields observed by WHAM, the model-predicted Doppler shifts were close to each other for several scattering functions considered. Therefore the main conclusions of our paper do not depend on a scattering function and mass distribution of particles if they are reasonable. A comparison of the dependencies of the Doppler shifts on solar elongation and the mean width of the Mg I line modeled for different sources of dust with those obtained from the WHAM observations shows that the fraction of cometary particles in zodiacal dust is significant and can be dominant. Cometary particles originating inside Jupiter's orbit and particles originating beyond Jupiter's orbit (including trans-neptunian dust particles) can contribute to zodiacal dust about 1/3 each, with a possible deviation from 1/3 up to 0.1-0.2. The fraction of asteroidal dust is estimated to be ∼0.3-0.5. The mean eccentricities of zodiacal particles located at 1-2 AU from the Sun that better fit the WHAM observations are between 0.2 and 0.5, with a more probable value of about 0.3.  相似文献   

20.
The structures of the meteor streams of cometary origin—Draconids, Ursids, Perseids, and Lyrids—and the streams presumably connected with asteroids—Taurids and α-Capricornids—are compared. The comparative analysis was performed by the mass distribution of meteoroids in the stream and the activity profile for the meteors with the maximum recorded stellar magnitude +3 m and brighter. Visual observations of 1987–2008 from the database of the International Meteor Organization (IMO) and earlier sources were considered. It has been shown that the structures of the meteor streams of cometary and, presumably, asteroidal origin differ somewhat by the activity profile and the mass distribution of meteoroids in the cross-section of a stream along the Earth’s orbit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号