首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Abstract— We present a detailed petrographic and electron microprobe study of metal grains and related opaque minerals in the chondrule interiors and rims of the Bishunpur (LL3.1) ordinary chondrite. There are distinct differences between metal grains that are completely encased in chondrule interiors and those that have some portion of their surface exposed outside of the chondrule boundary, even though the two types of metal grains can be separated by only a few microns. Metal grains in chondrule interiors exhibit minor alteration in the form of oxidized P‐, Cr‐, and Si‐bearing minerals. Metal grains at chondrule boundaries and in chondrule rims are extensively altered into troilite and fayalite. The results of this study suggest that many metal grains in Bishunpur reacted with a type‐I chondrule melt and incorporated significant amounts of P, Cr, and Si. As the system cooled, some metal oxidation occurred in the chondrule interior, producing metal‐associated phosphate, chromite, and silica. Metal that migrated to chondrule boundaries experienced extensive corrosion as a result of exposure to the external atmosphere present during chondrule formation. It appears that chondrule‐derived metal and its corrosion products were incorporated into the fine‐grained rims that surround many type‐I chondrules, contributing to their Fe‐rich compositions. We propose that these fine‐grained rims formed by a combination of corrosion of metal expelled from the chondrule interior and accretion of fine‐grained mineral fragments and microchondrules.  相似文献   

2.
Abstract— The size-frequency distributions of chondrules in 11 CO3 chondrites were determined by petrographic analysis of thin sections. CO chondrites have the smallest chondrules of any major chondrite group. In order of decreasing chondrule size, chondrite groups can be arranged as CV ≥ LL > L > H ≥ CM ≥ EH > CO. Chondrule size varies significantly among different CO chondrites; there is a tendency for chondrules to increase in average size with increasing metamorphic grade of the whole-rock. Different chondrule types in CO chondrites have distinct size-frequency distributions: in order of decreasing chondrule size, BO > PO > PP > POP > RP = C. The large size of BO chondrules is problematic; however, PO chondrules are among the largest because ~20% of them contain very coarse relict olivine grains that constitute 40–90 vol.% of the individual chondrules. PP chondrules may be larger than POP chondrules because some of them contain coarse relict pyroxene grains; a compound object consisting of a POP chondrule attached to a large relict pyroxene grain occurs in Lancé. The mean proportions of chondrule types in CO chondrites are estimated to be 69% POP, 18% PP, 8% PO, 2% BO, 2% RP, 1% C and <0.1% GOP. CO chondrites thus contain a smaller proportion of nonporphyritic chondrules than ordinary or EH chondrites, but a larger proportion than CV chondrites. Relative proportions of chondrule types vary with size interval: PO chondrules decrease fairly regularly in abundance with decreasing chondrule size, and RP chondrules appear to be most abundant in the smallest size intervals.  相似文献   

3.
Abstract— In order to explore the origin of chondrules and the chondrites, the O isotopic compositions of nine olivine grains in seven chondrules from the primitive Semarkona LL3.0 chondrite have been determined by ion microprobe. The data plot in the same general region of the three-isotope plot as whole-chondrule samples from ordinary chondrites previously measured by other techniques. There are no significant differences between the O isotopic properties of olivine in the various chondrule groups in the present study, but there is a slight indication that the data plot at the 16O-rich end of the ordinary chondrite field. This might suggest that the mesostasis contains isotopically heavy O. The olivines in the present study have O isotopic compositions unlike the 16O-rich olivine grains from the Julesburg ordinary chondrite. Even though olivines in group A chondrules have several properties in common with them, the 16O-rich Julesburg olivines previously reported are not simply olivines from group A chondrules.  相似文献   

4.
We report on a suite of microchondrules from three unequilibrated ordinary chondrites (UOCs). Microchondrules, a subset of chondrules that are ubiquitous components of UOCs, commonly occur in fine‐grained chondrule rims, although may also occur within matrix. Microchondrules have a variety of textures: cryptocrystalline, microporphyritic, radial, glassy. In some cases, their textures, and in many cases, their compositions, are similar to their larger host chondrules. Bulk compositions for both chondrule populations frequently overlap. The primary material that composes many of the microchondrules has compositions that are pyroxene‐normative and is similar to low‐Ca‐pyroxene phenocrysts from host chondrules; primary material rarely resembles olivine or plagioclase. Some microchondrules are composed of FeO‐rich material that has compositions similar to the bulk submicron fine‐grained rim material. These microchondrules, however, are not a common compositional type and probably represent secondary FeO‐enrichment. Microchondrules may also be porous, suggestive of degasing to form vesicles. Our work shows that the occurrence of microchondrules in chondrule rims is an important constraint that needs to be considered when evaluating chondrule‐forming mechanisms. We propose that microchondrules represent melted portions of the chondrule surfaces and/or the melt products of coagulated dust in the immediate vicinity of the larger chondrules. We suggest that, through recycling events, the outer surfaces of chondrules were heated enough to allow microchondrules to bud off as protuberances and become entrained in the surrounding dusty environment as chondrules were accreting fine‐grained rims. Microchondrules are thus byproducts of cyclic processing of chondrules in localized environments. Their occurrence in fine‐grained rims represents a snapshot of the chondrule‐forming environment. We evaluate mechanisms for microchondrule formation and hypothesize a potential link between the emergence of type II chondrules in the early solar system and the microchondrule‐bearing fine‐grained rims surrounding type I chondrules.  相似文献   

5.
Abstract— We have measured O‐isotopic ratios in a variety of olivine grains in the CO3 chondrite Allan Hills (ALH) A77307 using secondary ion mass spectrometry in order to study the chondrule formation process and the origin of isolated olivine grains in unequilibrated chondrites. Oxygen‐isotopic ratios of olivines in this chondrite are variable from δ17O = ?15.5 to +4.5% and δ18O = ?11.5 to +3.9%, with Δ17O varying from ?10.4 to +3.5%. Forsteritic olivines, Fa<1, are enriched in 16O relative to the bulk chondrite, whereas more FeO‐rich olivines are more depleted in 16O. Most ratios lie close to the carbonaceous chondrite anhydrous minerals (CCAM) line with negative values of Δ17O, although one grain of composition Fa4 has a mean Δ17O of +1.6%. Marked O‐isotopic heterogeneity within one FeO‐rich chondrule is the result of incorporation of relic, 16O‐rich, Mg‐rich grains into a more 16O‐depleted host. Isolated olivine grains, including isolated forsterites, have similar O‐isotopic ratios to olivine in chondrules of corresponding chemical composition. This is consistent with derivation of isolated olivine from chondrules, as well as the possibility that isolated grains are chondrule precursors. The high 16O in forsteritic olivine is similar to that observed in forsterite in CV and CI chondrites and the ordinary chondrite Julesburg and suggests nebula‐wide processes for the origin of forsterite that appears to be a primitive nebular component.  相似文献   

6.
Abstract— Amoeboid olivine aggregates (AOAs) are irregularly shaped, fine‐grained aggregates of olivine and Ca, Al‐rich minerals and are important primitive components of CR chondrites. The AOAs in CR chondrites contain FeNi metal, and some AOAs contain Mn‐rich forsterite with up to 0.7 MnO and Mn:Fe ratios greater than one. Additionally, AOAs in the CR chondrites do not contain secondary phases (nepheline and fayalitic olivine) that are found in AOAs in some CV chondrites. The AOAs in CR chondrites record a complex petrogenetic history that included nebular gas‐solid condensation, reaction of minerals with the nebular gas, small degrees of melting, and sintering of the assemblage. A condensation origin for the Mn‐rich forsterite is proposed. The Mn‐rich forsterite found in IDPs, unequilibrated ordinary chondrite matrix, and AOAs in CR chondrites may have had a similar origin. A type A calcium, aluminum‐rich inclusion (CAI) with an AOA attached to its Wark‐Lovering rim is also described. This discovery reveals a temporal relationship between AOAs and type A inclusions. Additionally, a thin layer of forsterite is present as part of the Wark‐Lovering rim, revealing the crystallization of olivine at the end stages of Wark‐Lovering rim formation. The Ca, Al‐rich nodules in the AOAs may be petrogenetically related to the Ca, Al‐rich minerals in Wark‐Lovering rims on type A CAIs. AOAs are chondrite components that condensed during the final stage of Wark‐Lovering rim formation but, in general, were temporally, spatially, or kinetically isolated from reacting with the nebula vapor during condensation of the lower temperature minerals that were commonly present as chondrule precursors.  相似文献   

7.
The Allende matrix is dominated by micron‐sized lath‐shaped fayalitic olivine grains with a narrow compositional range (Fa40–50). Fayalitic olivines also occur as rims around forsterite grains in chondrules and isolated forsterite fragments in the matrix or as veins cross‐cutting the grains. Allende is a type 3 CV carbonaceous chondrite having experienced a moderate thermal metamorphism. There is therefore a strong chemical disequilibrium between the large forsterite grains and the fayalite‐rich fine‐grained matrix. Chemical gradients at interfaces are poorly developed and thus not accessible using conventional techniques. Here, we used analytical transmission electron microscopy to study the microstructure of the fayalite‐rich matrix grains and interfaces with forsterite fragments. We confirm that fayalitic grains in the matrix and fayalitic rims around forsterite fragments have the same properties, suggesting a common origin after the accretion of the parent body of Allende. Composition profiles at the rim/forsterite interfaces exhibit a plateau in the rim (typically Fa45), a compositional jump of 10 Fa% at the interface, and a concentration gradient in the forsterite grain. Whatever the studied forsterite grain or whatever the nature of the interface, the Fe‐Mg profiles in forsterite grains have the same length of about 1.5 μm. This strongly suggests that the composition profiles were formed by solid‐state diffusion during the thermal metamorphism episode. Time–temperature couples associated with the diffusion process during thermal metamorphism are deduced from profile modeling. Considering the uncertainties on the diffusion coefficient value, we found that the peak temperature in Allende is ranging from 425 to 505 °C.  相似文献   

8.
Abstract— Cooling rates of chondrules provide important constraints on the formation process of chondrite components at high temperatures. Although many dynamic crystallization experiments have been performed to obtain the cooling rate of chondrules, these only provide a possible range of cooling rates, rather than providing actual measured values from natural chondrules. We have developed a new model to calculate chondrule cooling rates by using the Fe‐Mg chemical zoning profile of olivine, considering diffusional modification of zoning profiles as crystals grow by fractional crystallization from a chondrule melt. The model was successfully verified by reproducing the Fe‐Mg zoning profiles obtained in dynamic crystallization experiments on analogs for type II chondrules in Semarkona. We applied the model to calculating cooling rates for olivine grains of type II porphyritic olivine chondrules in the Semarkona (LL3.00) ordinary chondrite. Calculated cooling rates show a wide range from 0.7 °C/h to 2400 °C/h and are broadly consistent with those obtained by dynamic crystallization experiments (10–1000 °C/h). Variations in cooling rates in individual chondrules can be attributed to the fact that we modeled grains with different core Fa compositions that are more Fe‐rich either because of sectioning effects or because of delayed nucleation. Variations in cooling rates among chondrules suggest that each chondrule formed in different conditions, for example in regions with varying gas density, and assembled in the Semarkona parent body after chondrule formation.  相似文献   

9.
Abstract— Fine‐grained, optically opaque rims coat individual olivine and pyroxene grains in CM matrices and chondrules. Bulk chemical analyses and observations of these rims indicate the presence of phyllosilicates and disseminated opaques. Because phyllosilicates could not have survived the chondrule formation process, chondrule silicate rims must have formed entirely by late‐state aqueous reactions. As such, these textures provide a useful benchmark for isolating alteration features from more complex CM matrix materials. Both chondrule silicate and matrix silicate rims exhibit morphological features commonly associated with advancing stages of replacement reactions in terrestrial serpentinites. Contacts between many matrix silicate rims and the adjacent matrix materials suggest that these rims formed entirely by aqueous reactions in a parent‐body setting. This contrasts with previous assertions that rim textures can only form by the accretion of nebular dust but does not imply an origin for the rims surrounding other types of CM core components, such as chondrules.  相似文献   

10.
Abstract— The outer portions of many type I chondrules (Fa and Fs <5 mol%) in CR chondrites (except Renazzo and Al Rais) consist of silica‐rich igneous rims (SIRs). The host chondrules are often layered and have a porphyritic core surrounded by a coarse‐grained igneous rim rich in low‐Ca pyroxene. The SIRs are sulfide‐free and consist of igneously‐zoned low‐Ca and high‐Ca pyroxenes, glassy mesostasis, Fe, Ni‐metal nodules, and a nearly pure SiO2 phase. The high‐Ca pyroxenes in these rims are enriched in Cr (up to 3.5 wt% Cr2O3) and Mn (up to 4.4 wt% MnO) and depleted in Al and Ti relative to those in the host chondrules, and contain detectable Na (up to 0.2 wt% Na2O). Mesostases show systematic compositional variations: Si, Na, K, and Mn contents increase, whereas Ca, Mg, Al, and Cr contents decrease from chondrule core, through pyroxene‐rich igneous rim (PIR), and to SIR; FeO content remains nearly constant. Glass melt inclusions in olivine phenocrysts in the chondrule cores have high Ca and Al, and low Si, with Na, K, and Mn contents that are below electron microprobe detection limits. Fe, Ni‐metal grains in SIRs are depleted in Ni and Co relative to those in the host chondrules. The presence of sulfide‐free, SIRs around sulfide‐free type I chondrules in CR chondrites may indicate that these chondrules formed at high (>800 K) ambient nebular temperatures and escaped remelting at lower ambient temperatures. We suggest that these rims formed either by gas‐solid condensation of silica‐normative materials onto chondrule surfaces and subsequent incomplete melting, or by direct SiO(gas) condensation into chondrule melts. In either case, the condensation occurred from a fractionated, nebular gas enriched in Si, Na, K, Mn, and Cr relative to Mg. The fractionation of these lithophile elements could be due to isolation (in the chondrules) of the higher temperature condensates from reaction with the nebular gas or to evaporation‐recondensation of these elements during chondrule formation. These mechanisms and the observed increase in pyroxene/olivine ratio toward the peripheries of most type I chondrules in CR, CV, and ordinary chondrites may explain the origin of olivine‐rich and pyroxene‐rich chondrules in general.  相似文献   

11.
Abstract— Plagioclase‐rich chondrules (PRCs) in the reduced CV chondrites Efremovka, Leoville, Vigarano and Grosvenor Mountains (GRO) 94329 consist of magnesian low‐Ca pyroxene, Al‐Ti‐Cr‐rich pigeonite and augite, forsterite, anorthitic plagioclase, FeNi‐metal‐sulfide nodules, and crystalline mesostasis composed of silica, anorthitic plagioclase and Al‐Ti‐Cr‐rich augite. The silica grains in the mesostases of the CV PRCs are typically replaced by hedenbergitic pyroxenes, whereas anorthitic plagioclase is replaced by feldspathoids (nepheline and minor sodalite). Some of the PRCs contain regions that are texturally and mineralogically similar to type I chondrules and consist of forsterite, low‐Ca pyroxene and abundant FeNi‐metal nodules. Several PRCs are surrounded by igneous rims or form independent compound objects. Twelve PRCs contain relic calcium‐aluminum‐rich inclusions (CAIs) composed of anorthite, spinel, high‐Ca pyroxene, ± forsterite, and ± Al‐rich low‐Ca pyroxene. Anorthite of these CAIs is generally more heavily replaced by feldspathoids than anorthitic plagioclase of the host chondrules. This suggests that either the alteration predated formation of the PRCs or that anorthite of the relic CAIs was more susceptible to the alteration than anorthitic plagioclase of the host chondrules. These observations and the presence of igneous rims around PRCs and independent compound PRCs suggest that the CV PRCs may have had a complex, multistage formation history compared to a more simple formation history of the CR PRCs. Relatively high abundances of moderately‐volatile elements such as Cr, Mn and Si in the PRCs suggests that these chondrules could not have been produced by volatilization of ferromagnesian chondrule precursors or by melting of refractory materials only. We infer instead that PRCs in carbonaceous chondrites formed by melting of the reduced chondrule precursors (magnesian olivine and pyroxene, FeNi‐metal) mixed with refractory materials (relic CAIs) composed of anorthite, spinel, high‐Ca pyroxene, and forsterite. The mineralogical, chemical and textural similarities of the PRCs in several carbonaceous chondrite groups (CV, CO, CH, CR) and common presence of relic CAIs in these chondrules suggest that PRCs may have formed in the region(s) intermediate between the regions where CAIs and ferromagnesian chondrules originated.  相似文献   

12.
Abstract– Chondrules from different chondrite groups show characteristic properties, including abundances of different chondrule textural types, chondrule sizes, oxygen isotope compositions, chondrule bulk compositions, and petrographic properties of type I and type II chondrules, including abundances of relict grains. Overall, it can be argued that each chondrite group sampled a unique chondrule reservoir, and that chondrite groups may represent fractions of larger reservoirs that are represented by chondrite classes. These observations provide constraints for models of the early solar system, in which it is necessary to establish multiple separate chondrule reservoirs and maintain them over extended time periods. Models for accretion of chondrite parent bodies must be able to account for localized accretion of chondrules that were formed in spatially or temporally separated reservoirs.  相似文献   

13.
Abstract— Ordinary and carbonaceous chondrites of the lowest petrologic types were surveyed by X‐ray mapping techniques. A variety of metamorphic effects were noted and subjected to detailed analysis using electron microprobe, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and cathodoluminescence (CL) methods. The distribution of Cr in FeO‐rich olivine systematically changes as metamorphism increases between type 3.0 and type 3.2. Igneous zoning patterns are replaced by complex ones and Cr‐rich coatings develop on all grains. Cr distributions in olivine are controlled by the exsolution of a Cr‐rich phase, probably chromite. Cr in olivine may have been partly present as tetrahedrally coordinated Cr3+. Separation of chromite is nearly complete by petrologic type 3.2. The abundance of chondrules showing an inhomogeneous distribution of alkalis in mesostasis also increases with petrologic type. TEM shows this to be the result of crystallization of albite. Residual glass compositions systematically change during metamorphism, becoming increasingly rich in K. Glass in type I chondrules also gains alkalis during metamorphism. Both types of chondrules were open to an exchange of alkalis with opaque matrix and other chondrules. The matrix in the least metamorphosed chondrites is rich in S and Na. The S is lost from the matrix at the earliest stages of metamorphism due to coalescence of minute grains. Progressive heating also results in the loss of sulfides from chondrule rims and increases sulfide abundances in coarse matrix assemblages as well as inside chondrules. Alkalis initially leave the matrix and enter chondrules during early metamorphism. Feldspar subsequently nucleates in the matrix and Na re‐enters from chondrules. These metamorphic trends can be used to refine classification schemes for chondrites. Cr distributions in olivine are a highly effective tool for assigning petrologic types to the most primitive meteorites and can be used to subdivide types 3.0 and 3.1 into types 3.00 through 3.15. On this basis, the most primitive ordinary chondrite known is Semarkona, although even this meteorite has experienced a small amount of metamorphism. Allan Hills (ALH) A77307 is the least metamorphosed CO chondrite and shares many properties with the ungrouped carbonaceous chondrite Acfer 094. Analytical problems are significant for glasses in type II chondrules, as Na is easily lost during microprobe analysis. As a result, existing schemes for chondrule classification that are based on the alkali content of glasses need to be revised.  相似文献   

14.
Abstract— The metal‐rich chondrites Hammadah al Hamra (HH) 237 and Queen Alexandra Range (QUE) 94411, paired with QUE 94627, contain relatively rare (<1 vol%) calcium‐aluminum‐rich inclusions (CAIs) and Al‐diopside‐rich chondrules. Forty CAIs and CAI fragments and seven Al‐diopside‐rich chondrules were identified in HH 237 and QUE 94411/94627. The CAIs, ~50–400 μm in apparent diameter, include (a) 22 (56%) pyroxene‐spinel ± melilite (+forsterite rim), (b) 11 (28%) forsterite‐bearing, pyroxene‐spinel ± melilite ± anorthite (+forsterite rim) (c) 2 (5%) grossite‐rich (+spinel‐melilite‐pyroxene rim), (d) 2 (5%) hibonite‐melilite (+spinel‐pyroxene ± forsterite rim), (e) 1 (2%) hibonite‐bearing, spinel‐perovskite (+melilite‐pyroxene rim), (f) 1 (2%) spinel‐melilite‐pyroxene‐anorthite, and (g) 1 (2%) amoeboid olivine aggregate. Each type of CAI is known to exist in other chondrite groups, but the high abundance of pyroxene‐spinel ± melilite CAIs with igneous textures and surrounded by a forsterite rim are unique features of HH 237 and QUE 94411/94627. Additionally, oxygen isotopes consistently show relatively heavy compositions with Δ17O ranging from ?6%0 to ?10%0 (1σ = 1.3%0) for all analyzed CAI minerals (grossite, hibonite, melilite, pyroxene, spinel). This suggests that the CAIs formed in a reservoir isotopically distinct from the reservoir(s) where “normal”, 16O‐rich (Δ17O < ?20%0) CAIs in most other chondritic meteorites formed. The Al‐diopside‐rich chondrules, which have previously been observed in CH chondrites and the unique carbonaceous chondrite Adelaide, contain Al‐diopside grains enclosing oriented inclusions of forsterite, and interstitial anorthitic mesostasis and Al‐rich, Ca‐poor pyroxene, occasionally enclosing spinel and forsterite. These chondrules are mineralogically similar to the Al‐rich barred‐olivine chondrules in HH 237 and QUE 94411/94627, but have lower Cr concentrations than the latter, indicating that they may have formed during the same chondrule‐forming event, but at slightly different ambient nebular temperatures. Aluminum‐diopside grains from two Al‐diopside‐rich chondrules have O‐isotopic compositions (Δ17O ? ?7 ± 1.1 %0) similar to CAI minerals, suggesting that they formed from an isotopically similar reservoir. The oxygen‐isotopic composition of one Ca, Al‐poor cryptocrystalline chondrule in QUE 94411/94627 was analyzed and found to have Δ17O ? ?3 ± 1.4%0. The characteristics of the CAIs in HH 237 and QUE 94411/94627 are inconsistent with an impact origin of these metal‐rich meteorites. Instead they suggest that the components in CB chondrites are pristine products of large‐scale, high‐temperature processes in the solar nebula and should be considered bona fide chondrites.  相似文献   

15.
16.
Abstract– Unequilibrated ordinary chondrites (UOCs) of all groups (H, L, LL) contain unique chondrite clasts, which are characterized by a close‐fit texture of deformed and indented chondrules. These clasts, termed “cluster chondrites,” occur in 41% of the investigated samples with modal abundances between 5 and 90 vol% and size variations between <1 mm and 10 cm. They show the highest chondrule abundances compared with all chondrite classes (82–92 vol%) and only low amounts of fine‐grained interchondrule matrix and rims (3–9 vol%). The mean degree of chondrule deformation varies between 11% and 17%, compared to 5% in the clastic portions of their host breccias and to values of 3–5% found in UOC literature, respectively. The maximum deformation of individual chondrules is about 50%, a value which seemingly cannot be exceeded due to geometric limitations. Both viscous and brittle chondrule deformation is observed. A model for cluster chondrite formation is proposed where hot and deformable chondrules together with only small amounts of co‐accreting matrix formed a planetesimal or reached the surface of an already existing body within hours to a few days after chondrule formation. They deformed in a hot stage, possibly due to collisional compression by accreting material. Later, the resulting rocks were brecciated by impact processes. Thus, cluster chondrite clasts are interpreted as relicts of primary accretionary rocks of unknown original dimensions. If correct, this places a severe constraint on chondrule‐forming conditions. Cluster chondrites would document local chondrule formation, where chondrule‐forming heating events and the accretion of chondritic bodies were closely linked in time and space.  相似文献   

17.
Abstract— We report the results of our petrological and mineralogical study of Fe‐Ni metal in type 3 ordinary and CO chondrites, and the ungrouped carbonaceous chondrite Acfer 094. Fe‐Ni metal in ordinary and CO chondrites occurs in chondrule interiors, on chondrule surfaces, and as isolated grains in the matrix. Isolated Ni‐rich metal in chondrites of petrologic type lower than type 3.10 is enriched in Co relative to the kamacite in chondrules. However, Ni‐rich metal in type 3.15–3.9 chondrites always contains less Co than does kamacite. Fe‐Ni metal grains in chondrules in Semarkona typically show plessitic intergrowths consisting of submicrometer kamacite and Ni‐rich regions. Metal in other type 3 chondrites is composed of fine‐ to coarse‐grained aggregates of kamacite and Ni‐rich metal, resulting from metamorphism in the parent body. We found that the number density of Ni‐rich grains in metal (number of Ni‐rich grains per unit area of metal) in chondrules systematically decreases with increasing petrologic type. Thus, Fe‐Ni metal is a highly sensitive recorder of metamorphism in ordinary and carbonaceous chondrites, and can be used to distinguish petrologic type and identify the least thermally metamorphosed chondrites. Among the known ordinary and CO chondrites, Semarkona is the most primitive. The range of metamorphic temperatures were similar for type 3 ordinary and CO chondrites, despite them having different parent bodies. Most Fe‐Ni metal in Acfer 094 is martensite, and it preserves primary features. The degree of metamorphism is lower in Acfer 094, a true type 3.00 chondrite, than in Semarkona, which should be reclassified as type 3.01.  相似文献   

18.
Abstract— All groups of chondritic meteorites contain discrete grains of forsteritic olivine with FeO contents below 1 wt% and high concentrations of refractory elements such as Ca, Al, and Ti. Ten such grains (52 to 754 μg) with minor amounts of adhering matrix were separated from the Allende meteorite. After bulk chemical analysis by instrumental neutron activation analysis (INAA), some samples were analyzed with an electron microprobe and some with an ion microprobe. Matrix that accreted to the forsterite grains has a well‐defined unique composition, different from average Allende matrix in having higher Cr and lower Ni and Co contents, which implies limited mixing of Allende matrix. All samples have approximately chondritic relative abundances of refractory elements Ca, Al, Sc, and rare‐earth elements (REE), although some of these elements, such as Al, do not quantitatively reside in forsterite; whereas others (e.g., Ca) are intrinsic to forsterite. The chondritic refractory element ratios in bulk samples, the generally high abundance level of refractory elements, and the presence of Ca‐Al‐Ti‐rich glass inclusions suggest a genetic relationship of refractory condensates with forsteritic olivine. The Ca‐Al‐Ti‐rich glasses may have acted as nuclei for forsterite condensation. Arguments are presented that exclude an origin of refractory forsterite by crystallization from melts with compositions characteristic of Allende chondrules: (a) All forsterite grains have CaO contents between 0.5 and 0.7 wt% with no apparent zoning, requiring voluminous parental melts with 18 to 20 wt% CaO, far above the average CaO content of Allende chondrules. Similar arguments apply to Al contents. (b) The low FeO content of refractory forsterite of 0.2‐0.4 wt% imposes an upper limit of ~1 wt% of FeO on the parental melt, too low for ordinary and carbonaceous chondrule melts, (c) The Mn contents of refractory forsterites are between 30 to 40 ppm. This is at least one order of magnitude below the Mn content of chondrule olivines in all classes of meteorites. The observed Mn contents of refractory forsterite are much too low for equilibrium between olivine and melts of chondrule composition, (d) As shown earlier, refractory forsterites have O‐isotopic compositions different from chondrules (Weinbruch et al., 1993a). Refractory olivines in carbonaceous chondrites are found in matrix and in chondrules. The compositional similarity of both types was taken to indicate that all refractory forsterites formed inside chondrules (e.g., Jones, 1992). As refractory forsterite cannot have formed by crystallization from chondrule melts, we conclude that refractory forsterite from chondrules are relic grains that survived chondrule melting and probably formed in the same way as refractory forsterite enclosed in matrix. We favor an origin of refractory forsterite by condensation from an oxidized nebular gas.  相似文献   

19.
Abstract— It was suggested that multilayered accretionary rims composed of ferrous olivine, andradite, wollastonite, salite‐hedenbergitic pyroxenes, nepheline, and Ni‐rich sulfides around Allende calcium‐aluminum‐rich inclusions (CAIs) are aggregates of gas‐solid condensates which reflect significant fluctuations in physico‐chemical conditions in the slowly cooling solar nebula and grain/gas separation processes. In order to test this model, we studied the mineralogy of accretionary rims around one type A CAI (E104) and one type B CAI (E48) from the reduced CV3 chondrite Efremovka, which is less altered than Allende. In contrast to the Allende accretionary rims, those in Efremovka consist of coarse‐grained (20–40 μm), anhedral forsterite (Fa1–8), Fe, Ni‐metal nodules, amoeboid olivine aggregates (AOAs) and fine‐grained CAIs composed of Al‐diopside, anorthite, and spinel, ± forsterite. Although the fine‐grained CAIs, AOAs and host CAIs are virtually unaltered, a hibonite‐spinel‐perovskite CAI in the E48 accretionary rim experienced extensive alteration, which resulted in the formation of Fe‐rich, Zn‐bearing spinel, and a Ca, Al, Si‐hydrous mineral. Forsterites in the accretionary rims typically show an aggregational nature and consist of small olivine grains with numerous pores and tiny inclusions of Al‐rich minerals. No evidence for the replacement of forsterite by enstatite was found; no chondrule fragments were identified in the accretionary rims. We infer that accretionary rims in Efremovka are more primitive than those in Allende and formed by aggregation of high‐temperature condensates around host CAIs in the CAI‐forming regions. The rimmed CAIs were removed from these regions prior to condensation of enstatite and alkalies. The absence of andradite, wollastonite, and hedenbergite from the Efremovka rims may indicate that these rims sampled different nebular regions than the Allende rims. Alternatively, the Ca, Fe‐rich silicates rimming Allende CAIs may have resulted from late‐stage metasomatic alteration, under oxidizing conditions, of original Efremovka‐like accretionary rims. The observed differences in O‐isotope composition between forsterite and Ca, Fe‐rich minerals in the Allende accretionary rims (Hiyagon, 1998) suggest that the oxidizing fluid had an 16O‐poor oxygen isotopic composition.  相似文献   

20.
Carbonaceous chondrites are classified into several groups. However, some are ungrouped. We studied one such ungrouped chondrite, Y‐82094, previously classified as a CO. In this chondrite, chondrules occupy 78 vol%, and the matrix is distinctly poor in abundance (11 vol%), compared with CO and other C chondrites. The average chondrule size is 0.33 mm, different from that in C chondrites. Although these features are similar to those in ordinary chondrites, Y‐82094 contains 3 vol% Ca‐Al‐rich inclusions and 5% amoeboid olivine aggregates (AOAs). Also, the bulk composition resembles that of CO chondrites, except for the volatile elements, which are highly depleted. The oxygen isotopic composition of Y‐82094 is within the range of CO and CV chondrites. Therefore, Y‐82094 is an ungrouped C chondrite, not similar to any other C chondrite previously reported. Thin FeO‐rich rims on AOA olivine and the mode of occurrence of Ni‐rich metal in the chondrules indicate that Y‐82094 is petrologic type 3.2. The extremely low abundance of type II chondrules and high abundance of Fe‐Ni metal in the chondrules suggest reducing condition during chondrule formation. The depletion of volatile elements indicates that the components formed under high‐temperature conditions, and accreted to the parent body of Y‐82094. Our study suggests a wider range of formation conditions than currently recorded by the major C chondrite groups. Additionally, Y‐82094 may represent a new, previously unsampled, asteroidal body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号