首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Chemical Geology》2007,236(1-2):42-64
Carboniferous volcanic rocks in the Alataw area, Northern Tianshan Range (Xinjiang), consist of early Carboniferous (ca. 320 Ma) adakites and Nb-enriched arc basalts and basaltic andesites (NEBs), and late Carboniferous (ca. 306–310 Ma) mainly high-K calc-alkaline andesites, dacites and rhyolites. The adakites are calc-alkaline, and characterized by high Na2O/K2O (1.52–3.32) ratios, negligible to positive Eu anomalies, strong depletion of heavy rare earth elements (e.g., Yb = 0.74–1.47 ppm) and Y (6.7–14.9 ppm), positive Sr and Ba but negative Nb and Ti anomalies, and relatively constant εNd(T) values (+ 3.4–+ 6.6) and (87Sr/86Sr)i ratios (0.7035–0.7042). Some andesitic and dacitic adakite samples exhibit high MgO contents similar to magnesian andesites. The NEBs are sodium-rich (Na2O/K2O = 2.03–8.06), and differ from the vast majority of arc basalts in their higher Nb, Zr, TiO2 and P2O5 contents and Nb/Th, Nb/La and Nb/U ratios, and minor negative to positive anomalies in Ba, Nb, Sr, Zr and Ti. They have the highest εNd(T) values (+ 6.4–+ 11.6) but varying (87Sr/86Sr)i ratios (0.7007–0.7063). The high-K calc-alkaline suite is similar to typical ‘normal’ arc volcanic rocks in terms of moderately fractionated rare earth abundance and distinctly negative Eu, Nb, Sr and Ti anomalies. They have εNd(T) values (+ 1.2–+ 6.4) and (87Sr/86Sr)i ratios (0.7018–0.7059). Geochemically, they are similar to coeval I-type granitoids in the Alataw area. Given the presence of early Carboniferous ophiolites in the Northern Tianshan Range, and the isotopically inappropriate compositions of Proterozoic metamorphic basement in the Alataw area, we argue that the Alataw adakites were most probably related to the melting of young subducted crust of the Northern Tianshan Ocean. The NEBs likely originated from mantle wedge peridotites metasomatized by adakites and minor slab-derived fluids. The later high-K calc alkaline suite was generated by AFC processes that acted on melts derived from a mantle wedge metasomatized by hydrous fluids. The larger range of isotopic compositions exhibited by both the NEB and high-K suite, relative to the adakites, suggests that the mantle wedge was heterogeneous prior to slab- or fluid-mediated metasomatism.Continental crustal growth of the Central Asian orogenic belt was dominated by contributions of the juvenile materials from the depleted mantle prior to 270 Ma and possibly afterwards. The results of this study suggest that other Carboniferous Nb-enriched basalts in the Tianshan Range were generated by subduction processes rather than by intraplate tectonics as previously proposed.  相似文献   

2.
俯冲带复杂的壳幔相互作用   总被引:15,自引:0,他引:15  
俯冲带除俯冲板片脱水形成的富大离子亲石元素流体、交代地幔楔形成的岛弧钙碱性玄武岩安山岩-英安岩-流纹岩及相应侵入岩组合外,还存在由俯冲扳片熔融形成的埃达克质熔体交代地慢楔形成的埃达克岩-富铌玄武岩-富镁安山岩组合,从而构成了俯冲带的流体交代与熔体交代两大类壳慢相互作用体系及相应的岩石组合。熔体交代作用的显著特点是Mg、高场强元素Nb、Ti、P等含量增加,Nd/Sr值增高,而Si、K、Na及La/Yb降低。洋壳板片或洋脊俯冲、玄武质岩浆底侵使地壳增厚,或板片断离、撕裂等作用均可产生埃达克质熔体并随之产生熔体交代作用。流体和熔体与地幔橄揽岩的相互作用构成了俯冲带复杂的地球化学体系。  相似文献   

3.
Magnesian andesites (MA) occur with 'normal' tholeiitic to calc-alkaline basalt-andesite suites in four greenstone belts of the 2.7 Ga Wawa subprovince, Canada. Collectively, the magnesian andesites span ranges of SiO2=56-64 wt%, Mg-number=0.64-0.50, with Cr and Ni contents of 531-106 and 230-21 ppm, respectively. Relative to 'normal' andesites, the magnesian andesites form distinct trends on variation diagrams, with relatively high Th and LREE contents, uniform Yb over a range of MgO, more fractionated HREE, and lower Nb/Thpm and Nb/Lapm ratios. Niobium-enriched basalts and andesites (NEBA; Nb=7-16 ppm), and an Al-enriched rhyolite (adakite) suite are associated in space and time with the magnesian andesites. Nb-enriched basalts and andesites are characterized by high TiO2, P2O5, Th, and Zr contents, variably high Zr/Hf (36-44) ratios, and more fractionated HREE (Gd/Ybcn=1.3-4.1) compared to the 'normal' tholeiitic to calc-alkaline basalt-andesite suites. The adakite suite has the high Al (Al2O3=16-18 wt%), high La/Ybcn (21-43), and low Yb (0.4-1.2 ppm) of Archean tonalite-trondhjemite-granodiorite (TTG) suites and Cenozoic adakites, indicative of liquids derived mainly from slab melting. The basalt-andesite suites are not characterized by normal tholeiitic or calc-alkaline fractionation trends of major or trace elements. Rather, compositional trends can be accounted for by some combination of fractional crystallization and variable degrees of metasomatism of the source of basalt and/or andesites by adakitic liquids. The occurrence of magnesian andesites, Nb-enriched basalts/andesites, and adakites has been described from certain Phanerozoic arcs featuring shallow subduction of young and/or hot oceanic lithosphere. Adakites likely represent slab melts, magnesian andesites the product of hybridization of adakite liquids with mantle peridotite, and Nb-enriched basalts/andesites melts of the residue from hybridization. Geological similarities between the late-Archean Wawa greenstone belts and certain Cenozoic transpressional orogens with the MA-NEBA-adakite association suggest that subduction of young, hot oceanic lithosphere may have played an important role in the production of this arc-related association in the late Archean.  相似文献   

4.
New chronological, geochemical, and isotopic data are reported for Triassic (219–236 Ma) adakite-magnesian andesite-Nb-enriched basaltic rock associations from the Tuotuohe area, central Qiangtang terrane. The adakites and magnesian andesites are characterized by high Sr/Y (25–45), La/Yb (14–42) and Na2O/K2O (12–49) ratios, high Al2O3 (15.34–18.28 wt%) and moderate to high Sr concentrations (220–498 ppm) and εND (t) (+0.86 to +1.21) values. Low enrichments of Th, Rb relative to Nb, and subequal normalized Nb and La contents, and enrichments of light rare earth elements combine to distinguish a group of Nb-enriched basaltic rocks (NEBs). They have positive εND (t) (+2.57 to +5.16) values. Positive correlations between Th, La and Nb and an absence of negative Nb anomalies on mantle normalized plots indicate the NEBs are products of a mantle source metasomatized by a slab melt rather than by hydrous fluids. A continuous compositional variation between adakites and magnesian andesites confirms slab melt interaction with mantle peridotite. The spatial association of the NEBs with adakites and magnesian andesites define an “adakitic metasomatic volcanic series” recognized in many demonstrably subduction-related environments (e.g., Mindanao arc, Philippines; Kamchatka arc, Russia; and southern Baja California arc, Mexico). The age of the Touhuohe suite, and its correlation with Triassic NEB to the north indicates that volcanism derived from subduction-modified mantle was abundant prior to 220 Ma in the central Qiangtang terrane.  相似文献   

5.
The early Paleozoic Terskey Suture zone,located in the southern part of the Northern Tien Shan domain in Kyrgyzstan,comprises tectonic slivers of dismembered ophiolites and associated primitive volcanics and deepmarine sediments.In the Lake Songkul area,early-middle Cambrian pillow basalts are crosscut by the Songkultau intrusion of coarse-grained gneissose quartz diorites and tonalites with geochemical characteristics typical for high-SiO2 adakites(SiO2>56 wt.%,Al2O3>15 wt.%,Na2 O>3.5 wt.%and high Sr/Y and La/Yb ratios).The Songkultau granitoids have positive initialεNd(+3.8 to+6.4)andεHf(+12.3 to+13.5)values indicating derivation from sources with MORB-like isotopic signature.Volcanic formations,surrounding the Songkultau intrusion,have geochemical affinities varying from ocean floor to island arc series.This rock assemblage is interpreted as a relic of an early-middle Cambrian primitive arc where the adakite-like granitoids were derived from partial melting of young and hot subducted oceanic crust.An age of 505 Ma,obtained for the Songkultau intrusion,shows that hot subduction under the Northern Tien Shan continued until middle Cambrian.The primitive arc complexes were obducted onto the Northern Tien Shan domain,where the Andean type continental magmatic arc developed in Cambrian and Ordovician.Formation of the Andean type arc was accompanied by uplift,erosion and deposition of coarse clastic sediments.A depositional age of ca.470 Ma,obtained for the gravellites in the Lake Songkul area,is in agreement with the timing of deposition for lower Ordovician conglomerates elsewhere in the Northern Tien Shan,and corresponds to the main phase of the Andean type magmatism.The Songkultau adakites in association with surrounding ocean floor and island arc formations constitute a relic of a primitive Cambrian arc and represent a juvenile domain of substantial size identified so far within the predominantly crustal-derived terranes of Tien Shan.On a regional scale this primitive arc can be compared with juvenile Cambrian arcs of Kazakhstan,Gorny Altai and Mongolia.  相似文献   

6.
南菲律宾地区类埃达克岩和富铌玄武质熔岩的成因   总被引:7,自引:3,他引:7  
埃达克岩(adakite)最初 是指由消减板片玄武岩物质熔融形成的富硅、富钠、高Sr/Y和La/Yb比值的弧火山熔岩。它通常产在会聚带,这个部位的年轻的、因而仍然是热的大洋板片正在发生俯冲消减。富铌的岛弦玄武央进则是吕等到高碱的镁铁质熔岩,它们相对于正常的岛弦玄武岩含有较多的高场强元素(HFSE)。这些玄武岩通常与埃达克央共生, 这一组合是直被用于论证他们的高HFSE含量是因为他们的地幔源区受到板片来源的熔体的交代。先前的区域研究结果表明,南菲律宾是埃达克岩和富铌岛孤玄武岩的一个典型产地。然而最近的详细研究显示,尽管该地区的一些岛弧火山岩是类埃达克岩的,但是它们很可能是来自地幔楔的母岩浆的分异作用的产物,而这里的地幔楔主要是受沉积来源的成分交代的,此外,菲律宾南部最典型的富铌熔岩中HFSE的富集,也很有可能是起因于似乎是西太平洋边缘特有的富集地幔组分的熔融。这些结果提出了如下问题:南菲律宾是否存在真正的板片来源的熔体?这里的富铌岛弧 熔岩是否起因于地幔楔被这种熔体交代?  相似文献   

7.
《Gondwana Research》2013,23(3-4):1009-1029
The Carboniferous tectonic setting of the Junggar terrane, northern Xinjiang, NW China, has long been a matter of debate. Voluminous Carboniferous volcanic rocks are widely distributed in the Karamaili area, the southern part of the eastern Junggar terrane. Early Carboniferous rocks comprise basalts and basaltic andesites, with enrichment of LREE and LILE and depletion of HFSE, and uniformly high εNd(t) (+ 3.7 to + 4.0). Late Carboniferous rocks consist of basalts, basaltic andesites, rhyolites and minor dacites, and can be subdivided into basic and felsic groups. The basic rocks are depleted in HFSE, and show variable high εNd(t) (+ 4.8 to + 6.9). They have higher Cr and Ni and lower Na2O, U and Th contents than early Carboniferous basic rocks. The felsic rocks show A-type affinity, with typical enrichment of alkalis, LREE and HFSE and strong depletion in Ba, Sr, Eu and Ti. They have high values of εNd(t) and zircon εHf(t) (+ 11.6 to + 17.9). New LA-ICPMS zircon U–Pb analyses constrain their emplacement to late Carboniferous time (306.5–314.3 Ma).The Carboniferous basic rocks show negative Zr-Hf anomalies and low Th/Ce (< 0.07) and Th/La (0.06–0.16), excluding significant crustal contamination during magma evolution. They have low La/Ba (0.03–0.12), Ce/Y (< 3) and (Tb/Yb)N (< 2) and variable Ba/Th (28–318) and Ba/La (3.1–34), suggesting that they were derived from a main spinel with minor garnet lherzolite mantle source metasomatized by slab-derived fluids. The late Carboniferous felsic rocks were produced when upwelling asthenosphere triggered partial melting of juvenile lower crust. The early Carboniferous volcanism occurred in an island-arc setting related to the southward subduction of the Paleo-Junggar Ocean plate, whereas the late Carboniferous rocks erupted in a post-collisional extensional setting. Thus, a rapid tectonic transition from arc to post-collisional extension may have occurred between early and late Carboniferous, and probably resulted from slab break-off or lithospheric delamination.  相似文献   

8.
New whole-rock major and trace elements data, zircon laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb ages, and zircon Hf isotope compositions were analysed for Early Cretaceous volcanic rocks, also called Meiriqieco Formation (MF) in the Duobuzha area of the Southern Qiangtang–Baoshan Block (SQBB), northern Tibet. Our aim is to clarify their petrogenesis and tectonic setting, and constrain the evolution process on the northern margin of Bangong–Nujiang suture zone (BNSZ) during Early Cretaceous time. The MF volcanic rocks are mainly composed of andesites with subordinate basalts and rhyolites with high-K calc-alkaline affinity. Zircon LA-ICP-MS U–Pb dating for two andesite and one rhyolite samples give uniform ages within error of ca.113, 114, and 118 Ma, respectively, indicating they were erupted on the Early Cretaceous. The MF andesites have variable zircon εHf(t) values (+0.5 to +10.5), which is different from those of MF rhyolites (+7.9 to +10.7). All the MF rocks are enriched in large ion lithophile elements, and depleted in high field strength elements, yielding the affinity of arc rocks. The MF basalts were most likely derived from the mantle wedge that was metasomatized by fluids released from subducting slab with the involvement of subducted sediments. The MF rhyolites were generated by partial melting of the juvenile mafic lower crust. The MF andesites are interpreted to have formed by mixing of the magmas that parental of the MF basalts and the MF rhyolites. In addition, a couple of distinctly magmatic sources are identified in the SQBB, and this may be related to mantle components injected into the continental crust. Combined with published geological data in the BNSZ and SQBB, we consider that the MF volcanic rocks are formed in a continental arc setting, suggesting that BNO were subducting during the Early Cretaceous time in the Duobuzha area.  相似文献   

9.
The Miocene Kitami rhyolite, consisting of orthopyroxene and plagioclase-phyric lavas and dikes, occurs on the back-arc side of the Kuril arc with coeval basalts and Fe-rich andesites. Temperatures estimated from orthopyroxene–ilmenite pairs exceed 900°C. Although the whole rock compositions of the Kitami rhyolite correspond to S-type granites (i.e., high K, Al, large ion lithophile elements, and low Ca and Sr), Sr–Nd isotope compositions are remarkably primitive, and similar to those of the coeval basalts and andesites. They are distinct from those of lower crustal metamorphic rocks exposed in the area. Comparison of chondrite-normalized rare earth element (REE) patterns between the rhyolite and the basalts and andesites show that the rhyolite is more light REE enriched, but has similar heavy REE contents than the basalts. All rhyolites show negative Eu anomalies. The geochemical data suggest that did not formed by simple dehydration melting of basaltic rocks or fractional crystallization of basaltic magmas. The features of slab-derived fluids expected from recent high pressure experimental studies indicates that mantle wedge is partly metasomatized with “rhyolitic” materials from subducted slabs; it is more likely that very low degree partial melting of the metasomatized mantle wedge formed the rhyolite magma.  相似文献   

10.
The ∼2.6 Ga Hutti greenstone belt is one of several Neoarchean greenstone terranes of the eastern Dharwar Craton. There are prevalent mafic volcanic flows with subordinate felsic volcanic units and siliciclastic sedimentary rocks. All lithologies show variable intensities of submarine hydrothermal alteration, polyphase deformation and greenschist to amphibolite grade metamorphism, yet pillow, cumulus, and other primary volcanic features are locally preserved. Well exposed interlayered metabasalts, Mg-andesites (MA), and felsic flows outcrop along an 11 km sector in the SE of the terrane. Based on combined petrographic and geochemical characteristics, two tholeiitic basalt populations have been identified within the metabasalts: (1) those with enriched LREE at 20-50 times chondrite, and (2) an depleted LREE population at 12-20 times chondrite. The former has fractionated LREE, where (La/Sm)N = 1.2-1.7, but flat HREE, and negative anomalies at Nb, P, and Ti relative to neighbouring REE. The latter has lower absolute abundances of compatible and incompatible elements, mildly fractionated LREE, smaller anomalies at Nb, P, and Ti, with (Gd/Yb)N = 1.1-1.6. Several samples have the “N-MORB” signature of LREE depletion coupled with positive Nb anomalies. On the Th/Yb vs. Nb/Yb discrimination diagram depleted basalts plot near the MORB field whereas enriched basalts overlap the backarc and arc fields, consistent with a paired arc-back-arc. Mg-andesites feature SiO2 57-61 wt.%, multielement pattens similar to enriched basalts, coupled with Cr, Co, Ni contents greater than “normal” andesites. Felsic volcanic rocks are characterized by low Y, high (La/Yb)N, and Zr/Sm, but low Nb/Ta, with zero to positive Eu anomalies, thus conforming to most of the compositional criteria of Archean and Phanerozoic adakites. Similar associations of enriched and depleted arc basalts, with adakites, are known from Neoarchean greenstone terranes of the Superior Province. During intraoceanic subduction, slab dehydration-wedge melting generated arc basalts whereas slab melting-wedge hybridization, generated adakites and Mg-andesites.  相似文献   

11.
Three main groups of lavas are exposed on islands of the Lau Ridge: the Lau Volcanic Group (LVG), 14.0–5.4 Ma, are predominantly andesite; Korobasaga Volcanic Group (KVG), 4.4–2.4 Ma, are predominantly basalt and Mago Volcanic Group (MVG), 2.0–0.3 Ma, are basalt-hawaiite. LVG and KVG lavas are mostly medium-K tholeiitic rocks with high LILE/HFSE ratios characteristic of islands ares, while MVG lavas are ne-normative alkalic rocks with high LILE and HFSE, characteristic of ocean island basalts. LVG lavas have high ?Nd (+8.0–+8.4) and low 87Sr/86Sr (0.70273–0.70349) similar to N-MORB, whereas KVG lavas have slightly more radiogenic values (?Nd=+7.5?+8.4; 87Sr/86Sr=0.70323-0.70397). MVG lavas form an isotopically distinct group having lower ?Nd (+4.6–+4.9) and (87Sr/86Sr ranging from 0.70347–0.70375). LVG lavas were erupted in a primary oceanic island arc (Vitiaz arc) during the Miocene. Basaltic lavas were derived by approximately 19% partial melting of mantle wedge peridotite with only minor subduction component. Andesites and dacites were produced by low-pressure plagioclase-pyroxene-titanomagnetite dominated crystal fractionation. KVG lavas were erupted during the period immediately prior to or during the initial stages of rifting in the Lau Basin, and, like LVG lavas, show significant chemical differences at the northern and southern ends of the Lau Ridge. Lavas at the northern end (type (ii)) appear to be derived from a more depleted source than LVG but with a greater amount of subduction component. Those at the southern end (type (i)) probably came from a slightly more enriched source with less subduction component. MVG basalts and hawaiites were derived from an enriched mantle with little or no subduction input. The hawaiites (type (i)) could not have been derived from the basalts (type (ii)), and the two magma types must have come from different sources, indicating mantle heterogeneity. The lack of subduction influence indicates the MVG lavas are tectonically unrelated to the present-day Tonga arc, and the lack of depletion indicators suggests they have tapped a different (new?) part of the mantle wedge. This may reflect introduction of sub-Pacific mantle through the present Tonga-Lau subduction system.  相似文献   

12.
High-Mg basalt-andesite suites are extremely rare in the modern Earth but genetically important for indicating essential crust-mantle interactions, ascertaining critical geodynamic settings, and understanding the formation of porphyry copper deposits. Secondary ion mass spectrometry (SIMS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U-Pb dating and geochemistry document an early Palaeozoic high-Mg basalt-andesite suite from the Duobaoshan porphyry Cu deposit, eastern Central Asian Orogenic Belt (CAOB). Dating results reveal that the Duobaoshan high-Mg basalt and andesite erupted ca. 506 Ma and ca. 485 Ma, respectively. These high-Mg samples are typical subduction-related volcanic rocks with SiO2 contents of 47.73 to 55.16 wt%, high MgO (6.08 to 10.82 wt%), and high Mg# (58 to 67) and feature enrichments in large ion lithophile elements (LILEs) and depletions in high field strength elements (HFSEs). The samples have juvenile whole-rock initial 87Sr/86Sr ratios of 0.70272 to 0.70451, ɛNd(t) of 4.8 to 8.7 (average 7.23), and zircon ɛHf(t) of 7.3 to 15.9. Additionally, they have high Sr (average 619.36 ppm) and low Y (average 11.92 ppm) and Yb (average 1.21 ppm) contents that show affinity with adakitic high-Mg basalts and andesites worldwide. These high-Mg, depleted mantle-like isotopic and adakitic geochemical features imply a depleted mantle source variably assimilated by slab-derived melts under a sustained subduction tectonic setting. We also propose that the Duobaoshan high-Mg basalt-andesite suite, as the parental source magma, fertilized the overlying Duobaoshan porphyry Cu deposit by providing water, copper, and sulphur and high oxygen fugacity. A comprehensive comparison of the post-ore volcanic rocks shows that they might have originated from the slab-derived fluid metasomatized depleted mantle wedge, which had different properties from the mantle that produced the pre- and syn-ore volcanic intrusive rocks. The post-ore volcanic rocks underwent little crustal evolution en route to the surface during a reworked subduction event, which indicates a relatively immature island arc environment.  相似文献   

13.
We present new zircon U–Pb and Hf isotopic as well as whole-rock geochemical data for volcanic rocks from the eastern margin of the Xing’an Massif, Northeast China, in order to further our understanding of the suture location between the Xing’an and Songnen–Zhangguangcai Range massifs. Zircon secondary ion mass spectrometry U–Pb dating indicates that the volcanic rocks formed during the Early–Middle Ordovician (473–463 Ma). Compared with the coeval Moguqi basalts (rare earth element [REE] = 171–183 ppm; εHf(t) = +0.3 to +2.7; TDM1 = 1074–977 Ma), the Duobaoshan andesites exhibit lower overall REE abundances (109–131 ppm) with relatively high heavy REE contents, stronger high-field-strength element depletion, higher εHf(t) values (+13.0 to +14.8), and much younger TDM1 ages (559–484 Ma). This suggests that the primary magma for the andesites was generated by the partial melting of a relatively depleted mantle wedge that was metasomatized by subduction-related fluids. The primary magma for the basalts in the Moguqi area was probably derived from the partial melting of a relatively enriched lithospheric mantle that was also modified by fluids sourced from a subducted slab. These interpretations suggest that the andesites in Duobaoshan formed in a newly accreted island arc setting, whereas the coeval basalts in Moguqi formed along an active continental margin. We therefore attribute the Early–Middle Ordovician volcanism along the eastern margin of the Xing’an Massif to the northwestward subduction of the Nenjiang–Heihe oceanic plate beneath the Xing’an Massif. Furthermore, considering coeval igneous activity in the southern parts of the Xing’an Massif, we suggest that a magmatic arc existed along the margin of the Xing’an Massif in the early Palaeozoic (490–420 Ma). We conclude that the location of the suture between the Xing’an and Songnen–Zhangguangcai Range massifs runs from Airgin Sum, via south of Xilinhot, to Ulanhot, Moguqi, Nenjiang, and finally Heihe.  相似文献   

14.
The late Archean (~3.0–2.5 Ga) was a key period of continental growth globally, which is widely considered to reflect the onset of vigorous plate tectonic activity, although related continental growth modes remain contentious. Here we investigate a suite of late Neoarchean metavolcanic rocks from the southwest Qixia area of the Jiaobei terrane in the North China Craton. The rocks in this suite include amphibolites, clinopyroxene amphibolites, and hornblende plagioclase gneisses. We present zircon U-Pb isotopic data which indicate that the protoliths of these rocks formed during ~2549–2511 Ma.The (clinopyroxene) amphibolites correspond to meta-basaltic rocks, with some containing high modal content of titanite. These rocks show moderate to high FeOT (8.96–13.62 wt.%) and TiO2 (0.59–1.59 wt.%), flat to less fractionated REE patterns, and mildly negative Th, Nb, and Ta anomalies, resembling those of Fe-tholeiites. In addition, they display positive zircon ?Hf(t) values (+2.6 to +8.7), and are devoid of crustal contamination or fractional crystallization. Combined with the low Nb/Yb (mostly < 1.60) and (Hf/Sm)N (mostly < 0.95), low to moderate Th/Yb (0.08–0.54), and low V/Sc (5.53–9.19) ratios, these basaltic rocks are interpreted to have been derived from a relatively reduced and depleted mantle source that was mildly metasomatized by hydrous fluids. The hornblende plagioclase gneisses are meta-andesitic rocks, and occur interlayered with the basaltic rocks. They are transitional between tholeiitic and calc-alkaline rock series, and show fractionated REE patterns with evidently negative Th, Nb, and Ta anomalies. The depleted zircon ?Hf(t) values (+2.4 to +8.4) and quantitative chemical modeling suggest that the andesitic rocks were most likely generated by injection and mixing of juvenile felsic magmas with the tholeiitic basaltic magmas.In general, the chemical features and genesis of late Neoarchean meta-basaltic rocks in our study area resemble those of Mariana back-arc basin basalts. Combined with regional geological data, it is proposed that the Jiaobei terrane witnessed late Neoarchean crustal growth under a paired continental arc-back arc setting. On a regional context, we propose two distinct geodynamic mode of late Neoarchean continental growth across North China Craton (particularly the Eastern Block), i.e., (1) arc-continent accretion along northwestern part of the Eastern Block; and (2) paired continental arc-back arc system surrounding the ~3.8–2.7 Ga continental nuclei to the southeast.  相似文献   

15.
The early Paleozoic tectonic evolution of the Xing'an-Mongolian Orogenic Belt is dominated by two oceanic basins on the northwestern and southeastern sides of the Xing'an Block,i.e.,the Xinlin-Xiguitu Ocean and the Nenjiang Ocean.However,the early development of the Nenjiang Ocean remains unclear.Here,we present zircon U-Pb geochronology and whole-rock elemental and Sr-Nd isotopic data on the gabbros in the Xinglong area together with andesitic tuffs and basalts in the Duobaoshan area.LA-ICP-MS zircon U-Pb dating of gabbros and andesitic tuffs yielded crystallization ages of 443-436 Ma and 452-451 Ma,respectively.The Early Silurian Xinglong gabbros show calc-alkaline and E-MORB affinities but they are enriched in LILEs,and depleted in HFSEs,with relatively low U/Th ratios of 0.18-0.36 andεNd(t)values of-1.6 to+0.5.These geochemical features suggest that the gabbros might originate from a mantle wedge modified by pelagic sediment-derived melts,consistent with a back-arc basin setting.By contrast,the andesitic tuffs are characterized by high MgO(>5 wt.%),Cr(138-200 ppm),and Ni(65-110 ppm)contents,and can be termed as high-Mg andesites.Their low Sr/Y ratios of 15.98-17.15 and U/Th values of 0.24-0.25 and moderate(La/Sm)_n values of 3.07-3.26 are similar to those from the Setouchi Volcanic Belt(SW Japan),and are thought to be derived from partial melting of subducted sediments,and subsequent melt-mantle interaction.The Duobaoshan basalts have high Nb(8.44-10.30 ppm)and TiO2 contents(1.17-1.60 wt.%),typical of Nb-enriched basalts.They are slightly younger than regional adakitic rocks and have positiveεNd(t)values of+5.2 to+5.7 and are interpreted to be generated by partial melting of a depleted mantle source metasomatized by earlier adakitic melts.Synthesized with coeval arc-related igneous rocks from the southeastern Xing'an Block,we propose that the Duobaoshan high-Mg andesitic tuffs and Nbenriched basalts are parts of the Late Ordovician and Silurian Sonid Zuoqi-Duobaoshan arc belt,and they were formed by the northwestern subduction of the Nenjiang Ocean.Such a subduction beneath the integrated Xing'an-Erguna Block also gave rise to the East Ujimqin-Xinglong igneous belt in a continental back-arc basin setting.Our new data support an early Paleozoic arc-back-arc model in the northern Great Xing'an Range.  相似文献   

16.
《地学前缘(英文版)》2020,11(6):2221-2242
We present the first evidence of Archean oceanic crust submitted to Proterozoic high-pressure (HP) metamorphism in the South American Platform. Sm–Nd and Lu–Hf isotopic data combined with U–Pb geochronological data from the Campo Grande area, Rio Grande do Norte domain, in the Northern Borborema Province, reflect a complex Archean (2.9 ​Ga and 2.6 ​Ga) and Paleoproterozoic (2.0 ​Ga) evolution, culminating in the Neoproterozoic Brasiliano/Pan-African orogeny (ca. 600 Ma). The preserved mafic rocks contain massive poikiloblastic garnet and granoblastic amphibole with variable proportions of plagioclase ​+ ​diopside in symplectitic texture, typical of high-pressure rocks. These clinopyroxene-garnet amphibolites and the more common garnet amphibolites from the Campo Grande area are exposed as rare lenses within an Archean migmatite complex. The amphibolite lenses represent 2.65 ​Ga juvenile tholeiitic magmatism derived from depleted mantle sources (positive εHf(t) values of +3.81 to +30.66) later enriched by mantle metasomatism (negative εNd(t) values of –7.97). Chondrite and Primitive Mantle-normalized REE of analyzed samples and discriminant diagrams define two different oceanic affinities, with E-MORB and OIB signature. Negative Eu anomalies (Eu/Eu1 ​= ​0.75–0.95) indicate depletion of plagioclase in the source. Inherited zircon cores of 3.0–2.9 ​Ga in analyzed samples indicate that the Neoarchean tholeiitic magmatism was emplaced into 2923 ​± ​14 ​Ma old Mesoarchean crust (εNd(t) ​= ​–2.58 and Nd TDM ​= ​3.2 ​Ga) of the Rio Grande do Norte domain. The age of retro-eclogite facies metamorphism is not yet completely understood. We suggest that two high-grade metamorphic events are recognized in the mafic rocks: the first at 2.0 ​Ga, recorded in some samples, and the second, at ca. 600 Ma, stronger and more pervasive and recorded in several of the mafic rock samples. The Neoproterozoic zircon grains are found in symplectite texture as inclusions in the garnet grains and represent the age of HP conditions in the area. These zircon grains show a younger cluster of concordant analyses between 623 ​± ​3 ​Ma and 592 ​± ​5 ​Ma with εHf(t) values of +0.74 to –65.88. Thus, the Campo Grande rock assemblage is composed of Archean units that were amalgamated to West Gondwana during Neoproterozoic Brasiliano orogeny continent-continent collision and crustal reworking.  相似文献   

17.
Subduction erosion, which occurs at all convergent plate boundaries associated with magmatic arcs formed on crystalline forearc basement, is an important process for chemical recycling, responsible globally for the transport of ~1.7 Armstrong Units (1 AU = 1 km3/yr) of continental crust back into the mantle. Along the central Andean convergent plate margin, where there is very little terrigenous sediment being supplied to the trench as a result of the arid conditions, the occurrence of mantle-derived olivine basalts with distinctive crustal isotopic characteristics (87Sr/86Sr ≥ 0.7050; εNd ≤ −2; εHf ≤ +2) correlates spatially and/or temporally with regions and/or episodes of high rates of subduction erosion, and a strong case can be made for the formation of these basalts to be due to incorporation into the subarc mantle wedge of tectonically eroded and subducted forearc continental crust. In other convergent plate boundary magmatic arcs, such as the South Sandwich and Aleutian Islands intra-oceanic arcs and the Central American and Trans-Mexican continental margin volcanic arcs, similar correlations have been demonstrated between regions and/or episodes of relatively rapid subduction erosion and the genesis of mafic arc magmas containing enhanced proportions of tectonically eroded and subducted crustal components that are chemically distinct from pelagic and/or terrigenous trench sediments. It has also been suggested that larger amounts of melts derived from tectonically eroded and subducted continental crust, rising as diapirs of buoyant low density subduction mélanges, react with mantle peridotite to form pyroxenite metasomatites that than melt to form andesites. The process of subduction erosion and mantle source region contamination with crustal components, which is supported by both isotopic and U-Pb zircon age data implying a fast and efficient connectivity between subduction inputs and magmatic outputs, is a powerful alternative to intra-crustal assimilation in the generation of andesites, and it negates the need for large amounts of mafic cumulates to form within and then be delaminated from the lower crust, as required by the basalt-input model of continental crustal growth. However, overall, some significant amount of subducted crust and sediment is neither underplated below the forearc wedge nor incorporated into convergent plate boundary arc magmas, but instead transported deeper into the mantle where it plays a role in the formation of isotopically enriched mantle reservoirs. To ignore or underestimate the significance of the recycling of tectonically eroded and subducted continental crust in the genesis of convergent plate boundary arc magmas, including andesites, and for the evolution of both the continental crust and mantle, is to be on the wrong side of history in the understanding of these topics.  相似文献   

18.
The Uchi subprovince of the Archean Superior Province is a series of greenstone belts extending 600 km east–west along the southern margin of the North Caribou Terrane protocontinent. The 2.7 Ga Confederation tectonostratigraphic assemblage of the Birch–Uchi greenstone belt, northwest Ontario, is dominated by volcanic suites of mafic, intermediate and felsic composition. Tholeiitic basalts range compositionally from Mg# 59–26 evolving continuously to greater REE contents (La=2–19 ppm; Th/Lapm˜1), with small negative Nb anomalies. Primitive tholeiites are similar to modern intraoceanic arc basalts, whereas evolved members extend to greater concentrations of Ti, Zr, V, Sc, and Y, and lower Ti/Zr, but higher Ti/Sc and Ti/V ratios characteristic of back arc basalts. Calc-alkaline basalts to dacites are characterised by more fractionated REE (La/Ybn=1–8), high Th/Nbpm ratios and deeper negative Nb anomalies; they plot with modern oceanic arc basalts and some may qualify as high magnesium andesites. The two suites are interpreted as a paired arc–back arc sequence. A third group of Nb-enriched basalts (NEB; Nb=9–18 ppm) extend to extremely high TiO2, Ta, P2O5, Sc and V contents, with strongly fractionated REE and ratios of Nb/Ta and Zr/Hf greater than primitive mantle values whereas Zr/Sm ratios are lower. The most abundant rhyolitic suite has extremely enriched but flat trace element patterns and is interpreted as strongly fractionated tholeiitic basalt liquids. A second group are compositionally similar to Cenozoic adakites and Archean high-Al, high-La/Ybn tonalites; they possess Yb ≤ 0.4 ppm, Y ≤ 6 ppm and Sc ≤ 8 ppm, with La/Ybn of 19–30 and Zr/Sm of 50–59. They are interpreted as melts of ocean lithosphere basaltic crust in a hot shallow subduction zone. Adakites are associated with NEB in Cenozoic arcs where there is shallow subduction of young and/or hot ocean lithosphere, often with oblique subduction. Slab melt adakites erupt, or metasomatise sub-arc mantle peridotite to generate an HFSE-enriched source that subsequently melts during induced mantle convection. The Archean adakite–NEB association erupted during development of the tholeiitic to calc-alkaline arc and its associated back arc. Their coexistence in the Confederation assemblage of the Birch–Uchi greenstone belt implies convergent margin processes similar to those in Cenozoic arcs. Received: 2 June 1999 / Accepted: 29 December 1999  相似文献   

19.
岛弧火山岩主要为俯冲带的俯冲板片脱水形成的富大离子亲石元素流体交代地幔楔,并使其发生部分熔融,产生岛弧岩浆作用而形成的,岩石组合通常为玄武岩—安山岩—英安岩—流纹岩及相应侵入岩组合。它以Al2O3、K2O高,低Ti O2,且K2ONa2O为特征,相对富集LILE,亏损HFSE,特别是Ti、Nb、Ta等。本文主要从岛弧岩浆作用的起因着手,分析流体和熔体对地幔楔的交代作用,以及岛弧岩浆作用过程,进而分析岛弧火山岩的地球化学特征。  相似文献   

20.
New Hf isotopic compositions for island arc basalts from the Luzon arc (Philippines) define a remarkable sub-horizontal trend in Hf–Nd isotopic space with a small range of Hf (+5 to +17) associated with a large variation in Nd (–7 to +8). The data plot above and barely overlap the terrestrial array defined by oceanic basalts and continental crust. Mixing hyperbolas passing through the data intersect fields for depleted mantle and pelagic sediments suggesting that these two components formed the source of the Luzon arc lavas. An exception is the Batan Island where the low Nd ratios are associated with low Hf values. A mixing hyperbola fitting the Batan samples suggests that their mantle source was modified by subducted material prior to contamination by terrigenous clays. More generally, the geochemical relationships in Luzon lavas show that the mixing endmembers are source components rather than melts. The relationship between Nd and Hf isotopic compositions in the Luzon volcanics show that the type of sediment subducted under an island arc is a determining factor in the control of the two isotopic systems in island arc environments.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号