首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tian  Ying  Wang  Qi 《中国海洋湖沼学报》2010,28(6):1281-1289
We analyze statistically different definitions of the South China Sea summer monsoon (SCSSM) onset are to establish a SCSSM onset time series that is more recognizable by a majority of indicators. With the acknowledged index, we determine a key area (105°E–112.5°E, 7.5°N–12.5°N) and define the zonal wind component in this key area as a new SCSSM onset index, using daily mean reanalysis data of the National Center for Environmental Prediction/National Center for Atmospheric Research. The atmospheric circulations before and after the onset of the SCSSM determined using the index defined in this paper are preliminarily studied. Results show that the Somalia cross-equatorial flow is enhanced, the strongest westerly wind in the tropical Indian Ocean shifts northward, the cyclone couple in the Bay of Bengal and the Southern Hemisphere weaken and move eastward, convection over the South China Sea increases, and the subtropical high retreats from the South China Sea after the outbreak of the SCSSM. By analyzing the atmospheric circulation, it is found that in 1984 and 1999, the SCSSM broke out in pentads 29 and 23, respectively, which is consistent with the onset times determined using our index.  相似文献   

2.
During the Global Weather Experiment oceanographic measurements were recorded during winter and summer in the western Pacific region 5°S−5°N, 160°E−175°E. The variations of the upper ocean temperature and salinity fields were produced by the large seasonal and spatial wind fluctuations. The vertical temperature structure of the thermocline at the equator, the meridional slope of the thermocline south of the equator, and the northward penetration of high salinity water were related to the direction and intensity of the zonal wind-stress. (NOAA Pacific Marine Environmental Laboratory) Contribution No. 1307 from the Institute of Ocean., Academia Sinica. Received Sept. 3, 1985  相似文献   

3.
INTRODUCTIONPolarlowsareintensemeso scalecyclonesthatformincoldairstreamsofthepolarairmass.Theyhavehorizontalscalesoftheorderofseveralhundredkilometers;severalhourstoseveraldayslifecycles;andusuallydevelopoverhighlatitudeoceansinwinter,forexample ,theGulfofAlaska(1 3 5-1 60°W ,50 -60°N) ,theBarentsSea (2 0 -50°E ,65-75°N) ,theLabradorSea (50 -60°W ,55-65°N)andtheNorwegianSea (5°W -1 0°E ,60 -70°N) .Onsatelliteimages ,polarlowsareoftencharacterizedbytight,spiralcloudpatterns…  相似文献   

4.
The relationship of the interannual variability of the transport and bifurcation latitude of the North Equatorial Current (NEC) to the El Ni o-Southern Oscillation (ENSO) is investigated. This is done through composite analysis of sea surface height (SSH) observed by satellite altimeter during October 1992-July 2009, and correspondingly derived sea surface geostrophic currents. During El Nio/La Ni a years, the SSH in the tropical North Pacific Ocean falls/rises, with maximum changes in the region 0-15°N, 130°E-160°E. The decrease/increase in SSH induces a cyclonic/anticyclonic anomaly in the western tropical gyre. The cyclonic/anticyclonic anomaly in the gyre results in an increase/decrease of NEC transport, and a northward/southward shift of the NEC bifurcation latitude near the Philippine coast. The variations are mainly in response to anomalous wind forcing in the west-central tropical North Pacific Ocean, related to ENSO events.  相似文献   

5.
Heat center of the western Pacific warm pool   总被引:1,自引:0,他引:1  
A heat center (HC) of the western Pacific warm pool (WPWP) is defined, its variability is examined, and a possible mechanism is discussed. Analysis and calculation of a temperature dataset from 1945-2006 show that the mean position of the HC during this period was near 0.4°S/169.0°E, at 38.0 m depth. From a time series of the HC, remarkable seasonal variability was found, mainly in the meridional and vertical directions. Interannual variabilities were dominant in the zonal and vertical directions. In addition, semiannual variation in the HC depth was discovered. The longitude of the HC varies with ENSO events, and its latitude is weakly related to ENSO on time scales shorter than a decade. The variation of the HC longitude leads the Nio-3 index by about 3-4 months, and its depth lags the index for approximately 3 months. It is concluded that the HC depth results from a combination of its longitudinal and latitudinal variations. Low-pass-filtered time series reveal that the HC has moved eastward since the mid 1980s.  相似文献   

6.
Evaluation of spatial-temporal variability of species composition and diversity in oceanic ecosystems is not easy because it is usually difficult to obtain sufficient data quantifying such variability.In this study,we examined pelagic species diversity indicators,species richness,Shannon-Wiener index of diversity and Hurlbert’s species evenness,for fish assemblages from two areas(north and south) in the North Pacific Ocean(2°±12°N,178°E±165°W) during May±July 2008.The assemblages were based on data collected by an onboard scientific observer during a commercial longline fishing trip.The species richness and Shannon-Wiener diversity index of fish assemblages in the northern area were slightly higher than those in the southern area,although these differences were not significant(t test,P.0.05).Non-parametric multidimensional scaling and analysis of similarities indicated that there were significant differences in fish assemblages between the two areas(P,0.01).  相似文献   

7.
By analyzing the variability of global SST(sea surface temperature) anomalies,we propose a unified Ni o index using the surface thermal centroid anomaly of the region along the Pacific equator embraced by the 0.7°C contour line of the standard deviation of the SST anomalies and try to unify the traditional Ni o regions into a single entity.The unified Ni o region covers almost all of the traditional Ni o regions.The anomaly time series of the averaged SST over this region are closely correlated to historical Ni o indices.The anomaly time series of the zonal and meridional thermal centroid have close correlation with historical TNI(Trans-Ni o index) indices,showing differences among El Ni o(La Ni a) events.The meridional centroid anomaly suggests that areas of maximum temperature anomaly are moving meridionally(although slightly) with synchronous zonal movement.The zonal centroid anomalies of the unified Ni o region are found helpful in the classification of the Eastern Pacific(EP)/Central Pacific(CP) types of El Ni o events.More importantly,the zonal centroid anomaly shows that warm areas might move during a single warming/cooling phase.All the current Ni o indices can be well represented by a simple linear combination of unified Ni o indices,which suggests that the thermal anomaly(SSTA) and thermal centroid location anomaly of the unified Ni o region would yield a more complete image of each El Ni o/ La Ni a event.  相似文献   

8.
Events of decadal thermocline variations in the South Pacific Ocean   总被引:1,自引:0,他引:1  
1 INTRODUCTION It has been suggested that interior thermal anomalies that subduct into the subtropics of the North Pacific may propagate to the equatorial region of the Pacific (Russell, 1994; Deser et al., 1996; Gu and Philander, 1997; Huang and Huang an…  相似文献   

9.
1 Introduction ShandongProvince ,whichislocatedintheeastofChina ,consistspartlyofpeninsulaandpartlyofinlandwithatotalareaofabout 1 5 0 0 0 0km2 .Lyingfrom34°2 0′Nto 38°2 0′Nandfrom 1 1 4°4 0′Eto 1 2 2°4 0′E ,alltheareabelongstothemoderateregionandtothetypicalAsianmonsoonclimate .SoShandong’ssum merprecipitationaccountsforover 6 0 %oftheannualrainfall,andaccordinglyflood droughtdisastersmain lyoccurinsummer.Moreover,becauseitisgeographi callylocatedinthetransitionalareabetweenthe…  相似文献   

10.
The general features of the seasonal surface heat budget in the tropical western Pacific Ocean, 20° S–20°N, western boundary −160°E, were documented by Qu (1995) using a high-resolution general circulation model (GCM, Semtner & Chervin, 1992) and existing observations. Close inspection of the smaller areas, with the whole region further partitioned into six parts, showed different mechanisms balance the seasonal surface heat budget in different parts of the region. The results of study on five subregions are detailed in this article. In the equatorial (3°S–3°N) and North Equatorial Countercurrent (3°N–9°N) region, the surface heat flux does not change significantly throughout the year, so the surface heat content is determined largely by vertical motion near the equator and roughly half due to horizontal and half due to vertical circulation in the region of the North Equatorial Countercurrent (NECC). In the other subrigions (9°N–20°N, 20°S–11°S and 11°S–3°S), however, in addition to ocean dynamics, surface heat flux can also play a major role in the seasonal variation of sea surface temperature (SST). The remotely forced baroclinic waves and their effect on the surface heat storage in the model are also investigated. Comparison with observations indicates that the model wave activities are reasonably realistic. Contribution No. 2396 from the Institute of Oceanology, Chinese Academy of Sciences. This study was supported by the Australian CSIRO Division of Oceanography and the National Natural Science Foundation of China (No. 49176255)  相似文献   

11.
By using a new heat budget equation that is closely related to the sea surface temperature (SST) and a dataset from an ocean general circulation model (MOM2) with 10-a integration (1987-1996), the relative importance of various processes determining SST variations in two regions of the Indian Ocean is compared. These regions are defined by the Indian Ocean Dipole Index and will be referred to hereafter as the eastern (0^*-10^*S, 90^*-110^*E) and western regions (10^*S- 10^*N, 50^*-70^*E), respectively. It is shown that in each region there is a falling of SST in boreal summer and a rising in most months of other seasons, but the phases are quite different. In the eastern region, maximum cooling rate occurs in July, whereas in the western region it occurs in June with much larger magnitude. Maximum heating rate occurs in November in the eastern region, but in March in the western one. The western region exhibits another peak of increasing rate of SST in October, indicating a typical half-year period. Net surface heat flux and entrainment show roughly the same phases as the time-varying term, but the former has much larger contribution in most of a year, whereas the latter is important in the boreal summer. Horizontal advection, however, shows completely different seasonal variations as compared with any other terms in the heat budget equation. In the eastern region, it has a maximum in June/November and a minimum in March/ September, manifesting a half-year period; in the western region, it reaches the maximum in August and the minimum in November. Further investigation of the horizontal advection indicates that the zonal advection has almost the opposite sign to the meridional advection. In the eastern region, the zonal advection is negative with a peak in August, whereas the meridional one is positive with two peaks in June and October. In the western region, the zonal advection is negative from March to November with two peaks in June and November, whereas the meridional one is positive with one peak in July. Different phases can be clearly seen between the two regions for each component of the horizontal advection. A detailed analysis of the data of 1994, a year identified when the Indian Ocean dipole event happened, indicates that the horizontal advection plays a dominant role in the remarkable cooling of the eastern region, in which zonal and meridional advections have the same sign of anomaly. However, in the western region in 1994 no any specialty was shown as compared with other years, for the SST anomaly is not positive in large part of this region. All these imply that the eastern and western regions may be related in a quite complex way and have many differences in dynamics. Further study is needed.  相似文献   

12.
Based on an analysis of drifter data from the World Ocean Circulation Experiment during 1979-1998, the sizes of the eddies in the North subtropical Pacific are determined from the radii of curvature of the drifter paths calculated by using a non-linear curve fitting method. To support the drifter data results, Sea Surface Height from the TOPEX/POSEIDON and ERS2 satellite data are analyzed in connection with the drifter paths. It is found that the eddies in the North Pacific (18^*- 23^*N and 125^*-150^*E) move westward at an average speed of approximately 0.098 ms^-1 and their average radius is 176 km, with radii ranging from 98 km to 298 km. During the nineteen-year period, only 4 out of approximately 200 drifters (2%) actually entered the South China Sea from the area adjacent to the Luzon Strait (18^*-22^*N and 121^*-125^*E) in the winter. It is also found that eddies from the interior of the North Pacific are unlikely to enter the South China Sea through the Luzon Strait.  相似文献   

13.
An algorithm to detect tropical deep convective clouds and deep convective overshootings based on the measurements from the three water vapor channels (183.3GHz±1 GHz, 183.3GHz±3GHz and 183.3GHz±7GHz) of the Advanced Microwave Sounding Unit-B (AMSU-B) is presented. This algorithm is an improved version of the method of Hong et al. (2005). The proposed procedure is based on the statistical analysis of seven years'(2001-2007) measurements from AMSU-B on NOAA-16 From the 1-d histograms of the brightness temperature of the three water vapor channels and the 2-d tustograms of the brightness temperature dif-ference between these channels, new thresholds for brightness temperature differences and the brightness temperature of channel 18 (183.3 GHz±1 GHz) are suggested. The new algorithm is employed to investigate the mean distribution of tropical deep convective clouds and convective overshootings from 30°S to 30°N for the years 2001 to 2007. The major concentration of deep convective clouds and convective overshootings is found over the Intertropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ), tropical Africa, South America, the Indian Ocean and Indonesia with an average fraction of 0.4%. In terms of these clouds we identify the secondary Intertropical Convergence Zone located in the eastern South Pacific and parallel to the main ITCZ in the North Pacific. The convective overshooting is more frequently observed over land than over the ocean.  相似文献   

14.
The thermal condition anomaly of the western Pacific warm pool and its zonal displacement have very important influences on climate change in East Asia and even the whole world. However, the impact of the zonal wind anomaly over the Pacific Ocean on zonal displacement of the warm pool has not yet been analyzed based on long-term record. Therefore, it is important to study the zonal displacement of the warm pool and its response to the zonal wind anomaly over the equatorial Pacific Ocean. Based on the NCDC monthly averaged SST (sea surface temperature) data in 2°×2° grid in the Pacific Ocean from 1950 to 2000, and the NCEP/NCAR global monthly averaged 850 hPa zonal wind data from 1949 to 2000, the relationships between zonal displacements of the western Pacific warm pool and zonal wind anomalies over the tropical Pacific Ocean are analyzed in this paper. The results show that the zonal displacements are closely related to the zonal wind anomalies over the western, central and eastern equatorial Pacific Ocean. Composite analysis indicates that during ENSO events, the warm pool displacement was trigged by the zonal wind anomalies over the western equatorial Pacific Ocean in early stage and the process proceeded under the zonal wind anomalies over the central and eastern equatorial Pacific Ocean unless the wind direction changes. Therefore, in addition to the zonal wind anomaly over the western Pacific, the zonal wind anomalies over the central and eastern Pacific Ocean should be considered also in investigation the dynamical mechanisms of the zonal displacement of the warm pool.  相似文献   

15.
Hydrographic data from eleven 1986–1991 cruises at zonal sections near 8°N from the Philippine coast to 130°E were used to examine thermohaline structures and water mass properties of the western boundary currents there, especially those of the Mindanao Undercurrent (MUC). The finding that the MUC consisted of two water masses with salinity of 34.6 at 26.9 σt and 34.52 at 27.2 σt which were remnants of the lower part of the Southern Pacific Subtropical Water (SPSW) and of the Antarctic Intermediate Water (AAIW) of South Pacific origin, respectively, showed that the MUC was not a local transient but originated elsewhere. As the MUC flowed from 7.5°N to 8°N, part of it carrying the SPSW turns anticyclonically and eastward. The Northern Pacific Intermediate Water (NPIW) often joins the MUC, which suggests that the NPIW carried by the MC partly returns northward as a result of the shear between the MC and the MUC or other processes. The shear instability provides the energy for the irregular fluctuation of the MUC. Contribution No. 3256 from the Institute of Oceanology, Chinese Academy of Sciences. Project 49176255 and 49706066 supported by NSFC, and also by Foundation of Post-doctoral Research.  相似文献   

16.
The eastern fall cohort of the neon flying squid, Ommastrephes bartramii, has been commercially exploited by the Chinese squid jigging fleet in the central North Pacific Ocean since the late 1990s. To understand and identify their optimal habitat, we have developed a habitat suitability index (HSI) model using two potential important environmental variables - sea surface temperature (SST) and sea surface height anomaly (SSHA) - and fishery data from the main fishing ground (165°-180°E) during June and July of 1999-2003. A geometric mean model (GMM), minimum model (MM) and arithmetic weighted model (AWM) with different weights were compared and the best HSI model was selected using Akaike’s information criterion (AIC). The performance of the developed HSI model was evaluated using fishery data for 2004. This study suggests that the highest catch per unit effort (CPUE) and fishing effort are closely related to SST and SSHA. The best SST- and SSHA-based suitability index (SI) regression models were SISST-based = 0.7SIeffort-SST + 0.3 SICPUE-SST, and SISSHA-based = 0.5SIeffort-SSHA + 0.5SICPUE-SSHA, respectively, showing that fishing effort is more important than CPUE in the estimation of SI. The best HSI model was the AWM, defined as HSI=0.3SISST-based+ 0.7SISSHA-based, indicating that SSHA is more important than SST in estimating the HSI of squid. In 2004, monthly HSI values greater than 0.6 coincided with the distribution of productive fishing ground and high CPUE in June and July, suggesting that the models perform well. The proposed model provides an important tool in our efforts to develop forecasting capacity of squid spatial dynamics.  相似文献   

17.
18.
1 Introduction TheindicesfortheAsianmonsoonhavebeenstud iedinmanyworks .Recently ,thechoiceofpropermonsoonindiceshasreceivedexceptionalattentionandraisedcontroversy (WebsterandYang ,1 992 ;Goswa mietal.,1 999;Goswami,2 0 0 0 ;Wang ,2 0 0 0 ) .Us ingzona…  相似文献   

19.
The North Equatorial Countercurrent(NECC) is an important zonal fl ow in the upper circulation of the tropical Pacifi c Ocean, which plays a vital role in the heat budget of the western Pacifi c warm pool. Using satellite-derived data of ocean surface currents and sea surface heights(SSHs) from 1992 to 2011, the seasonal variation of the surface NECC in the western tropical Pacifi c Ocean was investigated. It was found that the intensity(INT) and axis position(Y_(CM)) of the surface NECC exhibit strikingly different seasonal fl uctuations in the upstream(128°–136°E) and downstream(145°–160°E) regions. Of the two regions, the seasonal cycle of the upstream NECC shows the greater interannual variability. Its INT and Y CM are greatly infl uenced by variations of the Mindanao Eddy, Mindanao Dome(MD), and equatorial Rossby waves to its south. Both INT and YC M also show semiannual signals induced by the combined effects of equatorial Rossby waves from the Central Pacifi c and local wind forcing in the western Pacifi c Ocean. In the downstream region, the variability of the NECC is affected by SSH anomalies in the MD and the central equatorial Pacifi c Ocean. Those in the MD region are especially important in modulating the Y CM of the downstream NECC. In addition to the SSH-related geostrophic fl ow, zonal Ekman fl ow driven by meridional wind stress also plays a role, having considerable impact on INT variability of the surface NECC. The contrasting features of the variability of the NECC in the upstream and downstream regions refl ect the high complexity of regional ocean dynamics.  相似文献   

20.
Introduction The Tibetan Plateau, located in west China, was uplifted during the Cenozoic and became the most youthful plateau in the world. Some researches have also shown that it started to develop into the cryosphere in the beginning of the Middle Pleistocene and became one of the three global cryospheres (two other cryospheres being the Artic and the Antarctic) (SHI et al. 1996). Because of the cryosphere development in the Tibetan Plateau, many periglacial and permafrost geomorpholog…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号