首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microthermometric measurements were obtained for 618 fluid inclusions in hydrothermal quartz, fluorite and calcite and magmatic quartz phenocrysts in intracaldera tuffs from the VC-2A core hole in order to study evolutionary processes of the Sulphur Springs hydrothermal system in the Valles caldera. Relatively high Th values in samples from shallow depths indicate erosion of about 200 m of caldera fill since deposition of hydrothermal minerals at shallow depths in the Sulphur Springs hydrothermal system, accompanied by a descent in the water table of the liquid-dominated reservoir. For samples collected below the current water level of the well, the minimum values of homogenization temperature (Th) fit the present thermal profile, whereas minimum Th values of samples from above the water level are several tens of degrees higher than the present thermal profile and fit a paleo-thermal profile following the boiling point curve for pure water, as adjusted to 92 °C at 20 m below the present land surface. This is attributed to development of an evolving vapor zone that formed subsequent to a sudden drop in the water table of the liquid-dominated reservoir. We suggest that these events were caused by the drainage of an intracaldera lake when the southwestern wall of the caldera was breached about 0.5 Ma. This model indicates that vapor zones above major liquid-dominated geothermal reservoirs can be formed due to dramatic changes in geohydrology and not just from simple boiling.  相似文献   

2.
Fluid inclusion studies have been used to derive a model for fluid evolution in the Hohi geothermal area, Japan. Six types of fluid inclusions are found in quartz obtained from the drill core of DW-5 hole. They are: (I) primary liquid-rich with evidence of boiling; (II) primary liquid-rich without evidence of boiling; (III) primary vapor-rich (assumed to have been formed by boiling); (IV) secondary liquid-rich with evidence of boiling; (V) secondary liquid-rich without evidence of boiling; (VI) secondary vapor-rich (assumed to have been formed by boiling). Homogenization temperatures (Th) range between 196 and 347°C and the final melting point of ice (Tm) between −0.2 and −4.3°C. The CO2 content was estimated semiquantitatively to be between 0 and 0.39 wt. % based on the bubble behavior on crushing. NaCl equivalent solid solute salinity of fluid inclusions was determined as being between 0 and 6.8 wt. % after minor correction for CO2 content.Fluid inclusions in quartz provide a record of geothermal activity of early boiling and later cooling. The CO2 contents and homogenization temperatures of fluid inclusions with evidence of boiling generally increase with depth; these changes, and NaCl equivalent solid solute salinity of the fluid can be explained by an adiabatic boiling model for a CO2-bearing low-salinity fluid. Some high-salinity inclusions without CO2 are presumed to have formed by a local boiling process due to a temperature increase or a pressure decrease. The liquid-rich primary and secondary inclusions without evidence of boiling formed during the cooling process. The salinity and CO2 content of these inclusions are lower than those in the boiling fluid at the early stage, probably as a result of admixture with groundwater.  相似文献   

3.
Results of drilling, logging, and testing of three exploration core holes, combined with results of geologic and hydrogeochemical investigations, have been used to present a reservoir model of the Platanares geothermal system, Honduras. Geothermal fluids circulate at depths ≥ 1.5 km in a region of active tectonism devoid of Quaternary volcanism. Large, artesian water entries of 160 to 165°C geothermal fluid in two core holes at 625 to 644 m and 460 to 635 m depth have maximum flow rates of roughly 355 and 560 l/min, respectively, which are equivalent to power outputs of about 3.1 and 5.1 MW(thermal). Dilute, alkali-chloride reservoir fluids (TDS ≤ 1200 mg/kg) are produced from fractured Miocene andesite and Cretaceous to Eocene redbeds that are hydrothermally altered. Fracture permeabillity in producing horizons is locally greater than 1500 and bulk porosity is ≤ 6%. A simple, fracture-dominated, volume-impedance model assuming turbulent flow indicates that the calculated reservoir storage capacity of each flowing hole is approximately 9.7 × 106 l/(kg cm−2), Tritium data indicate a mean residence time of 450 yr for water in the reservoir. Multiplying the natural fluid discharge rate by the mean residence time gives an estimated water volume of the Platanares system of ≥ 0.78 km3. Downward continuation of a 139°C/km “conductive” gradient at a depth of 400 m in a third core hole implies that the depth to a 225°C source reservoir (predicted from chemical geothermometers) is at least 1.5 km. Uranium-thorium disequilibrium ages on calcite veins at the surface and in the core holes indicate that the present Platanares hydrothermal system has been active for the last 0.25 m.y.  相似文献   

4.
Isotopic compositions were determined for hydrothermal quartz, calcite, and siderite from core samples of the Newberry 2 drill hole, Oregon. The δ15O values for these minerals decrease with increasing temperatures. The values indicate that these hydrothermal minerals precipitated in isotopic equilibrium with water currently present in the reservoirs. The δ18O values of quartz and calcite from the andesite and basalt flows (700–932 m) have isotopic values which require that the equilibrated water δ18O values increase slightly (− 11.3 to −9.2‰) with increasing measured temperatures (150–265°C). The lithic tuffs and brecciated lava flows (300–700 m) contain widespread siderite. Calculated oxygen isotopic compositions of waters in equilibrium with siderite generally increase with increasing temperatures (76–100°C). The δ18O values of siderite probably result from precipitation in water produced by mixing various amounts of the deep hydrothermal water (− 10.5 ‰) with meteoric water (− 15.5 ‰) recharged within the caldera. The δ13C values of calcite and siderite decrease with increasing temperatures and show that these minerals precipitated in isotopic equilibrium with CO2 of about −8 ‰.The δ18O values of weakly altered (<5% alteration of plagioclase) whole-rock samples decrease with increasing temperatures above 100°C, indicating that exchange between water and rock is kinetically controlled. The water/rock mass ratios decrease with decreasing temperatures. The δ18O values of rocks from the bottom of Newberry 2 show about 40% isotopic exchange with the reservoir water.The calculated δ18O and δD values of bottom hole water determined from the fluid produced during the 20 hour flow test are −10.2 and −109‰, respectively. The δD value of the hydrothermal water indicates recharge from outside the caldera.  相似文献   

5.
The deep well MV5A, drilled in the western part of the Larderello geothermal field, crossed a 20-cm-thick hydraulic fracture breccia unit at a depth of 1090 m below ground level (b.g.l.). This breccia occurs in a fine-grained Triassic metasandstone and consists of angular to subangular clasts of up to some centimeters in size. Pervasive alteration has affected the breccia clasts and wall rock around the breccia, with the formation of Mg–Fe chlorite. After such alteration, hydrothermal circulation caused the precipitation of two generations of calcite cement. Then, ankerite partially replaced these two calcite generations. Ankerite also precipitated in late veinlets with chlorite. Late hydrothermal activity led to the crystallization of albite, quartz and finally, anhydrite. The calcite contains vapor-rich inclusions and two populations of liquid-rich (L1 and L2) inclusions. L1 inclusions are characterized by homogenization temperatures between 304 and 361°C and salinities from 7.4 to 11.6 wt.% NaCl equivalent; L2 inclusions revealed homogenization temperatures in the range of 189–245°C and salinities from 2.6 to 6.3 wt.% NaCl equivalent. The fluids contained in L2 inclusions were probably trapped coevally with some vapor-rich inclusions under boiling conditions after the L1 inclusions formed. Some of the abundant vapor-rich inclusions in calcite may also represent early, low-temperature inclusions affected by decrepitation and/or stretching and/or leaking during L1 trapping. The liquid-rich (L) inclusions trapped at later stages in ankerite, albite and anhydrite display, respectively, homogenization temperature ranges of 189–198°C, 132–145°C, and 139–171°C, and salinities ranging from 1.6 to 1.7 wt.% NaCl equivalent, 1.4 to 2.1 wt.% NaCl equivalent and 3.7 to 6.2 wt.% NaCl equivalent. The inclusions studied record the evolution, over time, of the fluids flowing in the breccia level: L1 inclusions capture high-temperature fluid (about 300 to 350°C) of high salinity (around 10 wt.% NaCl equivalent) at above-hydrostatic pressures (up to about 150 bar). The L2 inclusions in calcite and liquid-rich inclusions in ankerite and albite represent subsequent hydrothermal fluid evolution toward lower temperatures (about 250 to 130°C), pressures (45 to a few bar) and salinities (6.3 to 1.4 wt.% NaCl equivalent). During this stage, boiling processes and infiltration of meteoric waters probably occurred. Finally, moderately saline fluids (around 5 wt.% NaCl equivalent) at a temperature (about 160°C) close to that of present-day in-hole measurements was trapped in the anhydrite inclusions. The liquids trapped in liquid-rich inclusions circulated at 41,000 years (maximum age of calcite) or later. This age represents an upper limit for the development of vapor-dominated condition, in this part of the geothermal system. The fluids circulating at the breccia level were probably meteoric and/or connate waters. These fluids may have interacted with the anhydrite and carbonate bearing formations present in the Larderello area. The occurrence of the hot and saline fluids, trapped in L1 inclusions at above-hydrostatic pressure, suggests that similar fluids but with higher pressure (≥167 bar) and temperature (≥360°C) may have been responsible for rock fracturing.  相似文献   

6.
Microthermometric analyses of fluid inclusions on a suite of hydrothermally altered gabbros recovered just south of the eastern intersection of the Kane Fracture Zone and the Mid-Atlantic Ridge, record the highest homogenization temperatures yet reported for mid-ocean ridge hydrothermal systems. Fluid salinities in the high temperature inclusions are more than ten times that of seawater. Multiple generations of fluid inclusions entrapped along healed microfractures exhibit three distinct temperature-compositional groups. We interpret these populations as having been trapped during three separate fracturing events.The earliest episode of brittle failure in the gabbros is represented by coplanar, conjugate vapor-dominated and brine-dominated fluid inclusion arrays in primary apatite. Vapor-dominated inclusions exhibit apparent homogenization temperatures of 400°C and contain equivalent salinities of 1–2 wt.% NaCl. These inclusions are interspersed with liquid-dominated, sulfide-bearing inclusions containing salinities of 50 wt.% NaCl equivalent. These high salinity inclusions remain unhomogenized at temperatures greater than 700°C.Compositional and phase relationships of the fluid inclusions may be accounted for by two-phase separation of a fluid under 1000–1200 bars pressure. These pressures require that fluid entrapment occurred under a significant lithostatic component and indicate a minimum entrapmentdepth of 2 km below the axial valley floor. This depth corresponds to a minimum tectonic uplift of 3 km, in order to emplace the samples at the 3100 m recovery depth. The microfracture networks within magmatic apatites represent fluid flow paths for either highly modified, deeply penetrating seawater or a late stage magmatic aqueous fluid. The inclusions may have formed close to the brittle-ductile transition zone adjacent to an active magma chamber.Following collapse of the high temperature front, lower temperature fluids of definite seawater origin circulated through the open fracture networks, pervasively altering portions of the gabbros. This stage is represented by low-to-moderate (1–7 wt.% NaCl equivalent) salinity inclusions in plagioclase, apatite, epidote, and augite, which homogenize at temperatures of approximately 200–300°C and 400°C. Formation of hydrous mineral assemblages, under greenschist to lower amphibolite facies conditions, resulted in sealing of the vein system and may have resulted in modification of seawater salinities by as much as a factor of two. During or following these later stages of hydrothermal activity the gabbros were emplaced high on the axial walls by differential uplift attending formation of the flanking mountains.  相似文献   

7.

With a detailed study on petrology, mineralogy and geochemistry of some important Ordovician carbonate well core samples in Tazhong uplift of Tarim Basin, the distinguishing symbols of hydrothermal karstification are first put forward as the phenomena of rock hot depigmentation, hot cataclasm and the appearance of typical hydrothermal minerals such as fluorite, barite, pyrite, quartz and sphalerite. The main homogenization temperatures of primary fluid inclusions in fluorite are from 260 to 310°C, indicating the temperature of hydrothermal fluid. The fluid affected the dissolved rocks and showed typical geochemistry features with low contents of Na and Mg, and high contents of Fe, Mn and Si. The ratio of 3He/4He is 0.02R a, indicating the fluid from the typical continental crust. The hydrothermal fluid karstification pattern may be described as follows: the hot fluid is from the Permian magma, containing dissolving ingredients of CO2 and H2S, and shifts along fault, ruptures and unconformity, and dissolves the surrounding carbonates while it flows. The mechanism of hydrothermal karstification is that the mixture of two or more fluids, which have different ion intensity and pH values, becomes a new unsaturated fluid to carbonates. The hydrothermal karstification is an important process to form hypo-dissolved pinholes in Ordovician carbonates of Tazhong uplift of Tarim Basin, and the forming of hydrothermal minerals also has favorable influence on carbonate reservoirs.

  相似文献   

8.
The Latera field (Vulsini volcanic complex, Latium, Italy) is one of the geothermal areas of the peri-Tyrrhenian belt along which a regional, high thermal anomaly has been detected. So far nine deep wells have been drilled within the Latera caldera and four of them have been productive. The geothermal reservoir is located within the fractured carbonatic rocks of the Tuscan nappe; the overlying volcanic units, sealed by hydrothermal minerals (mainly calcite and anhydrite), act as an impervious cover.The fluid produced by the wells comes from a deep aquifer (about 1000–1500 m depth) which at present is not connected with the shallow aquifer in the volcanoclastic units. Fluid temperatures range between 200 and 230°C; in-hole temperatures as high as 343°C at 2775 m depth have been measured in dry wells.The study of the newly formed mineral assemblages from both volcanic and sedimentary units as sampled from the geothermal wells can be used to reconstruct the thermal evolution of the geothermal field. The intrusion of a syenitic melt, up to a depth of about 2000 m, dated 0.86 Ma, represents the major thermal event for the units in the area and is assumed to represent the first step in the geothermal evolution of the Latera system.The above mentioned newly formed mineral assemblages can be divided into three groups: (a) “contact-metasomatic”: calcite, anhydrite, diopsidic pyroxene, grossularitic garnet, phlogopite, wollastonite or monticellite; (b) “high-temperature hydrothermal”: calcite, anhydrite, K-feldspar, vesuvianite, melanitic garnet, tourmaline, amphibole, epidote, sulphides; (c) “low-temperature hydrothermal”: calcite, anhydrite, K-feldspar, clay minerals, sulphides. Group (a) minerals are now relics. Part of (b) and all of (c) group are still in equilibrium with the existing conditions in different parts of the geothermal system.Thermodynamic calculations on the observed mineral assemblages permitted estimates of the P, T conditions and gas fugacities.  相似文献   

9.
Silica chimneys were discovered in 1985 at 86°W in the rift valley of the Galapagos Spreading Center at 2600 m depth (“Cauliflower Garden”). The inactive chimneys lack any sulfides and consist almost entirely of amorphous silica (up to 96 wt.% SiO2, opal-A); Fe and Mn oxides are minor constituents. Oxygen isotope data show that formation of the silica chimneys took place at temperatures between 32°C (+29.9‰ δ18O) and 42°C (+27.8‰ δ18O).Th/Udating reveals a maximum age of 1440 ± 300y. Amorphous silica solubility relations indicate that the silica chimneys were formed by conductive cooling of pure hydrothermal fluids or by conductive cooling of a fluid/seawater mixture. Assuming equilibrium with quartz at 500 bars, initial fluid temperatures of more than 175°C (i.e., a concentration of > 182 ppm SiO2) were required to achieve sufficient supersaturation for the deposition of amorphous silica at 40°C and 260 bars. If the silica chimneys originate from the same or a similar fluid as higher-temperature ( < 300°C) sulfide-silica precipitates found nearby (i.e., 2.5 km away), then subsurface deposition of sulfides may have occurred.  相似文献   

10.
Methods used previously to remove compositional modifications from volcanic gas analyses for Mount Etna and Erta'Ale lava lake have bean employed to estimate the gas phase composition at Nyiragongo lava lake, based on samples obtained in 1959. H2O data were not reported in 11 of the 13 original analyses. The restoration methods have been used to estimate the H2O contents of the samples and to correct the analyses for atmospheric contamination, loss of sulfur and for pre- and pest-collection oxidation of H2S, S2, and H2. The estimated gas compositions are relatively CO2-rich, low in total sulfur and reduced. They contain approximately 35–50% CO2 45–55% H2O, 1–2% SO2, 1–2% H2., 2–3% CO, 1.5–2.5% H2S, 0.5% S2 and 0.1% COS over,he collection temperature range 102° to 960° C. The oxygen fugacities of the gases are consistently about half an order of magnitude below quartz-magnetite-fayalite. The low total sulfur content and resulting low atomic S/C of the Nyiragongo gases appear to be related to the relatively low fO2 of the crystallizing lava. At temperatures above 800°C and pressures of 1–1.5 k bar, the Nyiragongo gas compositions resemble those observed in primary fluid inclusions believed to have formed at similar temperatures and pressures in nephelines of intrusive alkaline rocks. Cooling to 300°C, with fO2 buffered by the rock, results in gas compositions very rich in CH4 (50–70%) and resembling secondary fluid inclusions formed at 200–500°C in alkaline rocks. Below 600°C the gases become supersaturated in carbon as graphite. These inferences are corroborated by several reports of hydrocarbons in plutonic alkaline rocks, and by the presence of CH4-rich waters in Lake Kivu — a lake on the flanks of Nyiragongo volcano.  相似文献   

11.
Experimental evidence for the role of accessory phases in magma genesis   总被引:1,自引:0,他引:1  
Recent experimental studies have established petrogenetic models based on melting processes involving major phases. The possible residual character of trace-element-enriched accessory phases is not considered for temperatures well above the solidus in these models. In contrast, geochemists, applying trace element data to independently test the experimentally-based models, have concluded that residual (or fractionating) accessory phases may have an essential role in controlling the trace element (especially REE) distributions in magmas.Some recent experimental work provides data on the stability of potentially significant accessories such as sphene, rutile, apatite, zoisite and mica in basaltic compositions at elevated P and T. Sphene is stable to 1000°C with 60% melting of a hydrous tholeiite at 15 kbar. At higher pressure, rutile is the only Ti-rich accessory phase, and is present to at least 1000°C and high degrees of melting. Published REE data on sphene and rutile suggest that these phases may be important in controlling REE distribution in some magmas. For example, island are high-Mg, low-Ca-Ti tholeiites with low REE abundances and U-shaped patterns (Hickey and Frey, 1979) may reflect the role of sphene. In addition to rutile, similar close-packed Ti-rich accessory phases such as priderite, perovskite, crichtonite and loveringite may occur in mantle-derived magmas. These phases readily accommodate the REE but their possible role needs experimental confirmation.Apatite is recorded in hawaiite (1.16% P2Os) with 2% H2O added at 5–6 kbar and 1050°C within 30°C of the liquidus, but at present no other experimental data are available on its high P, T stability, although thermodynamic calculations indicate that F may increase its stability markedly. Apatite is well known in high-pressure inclusions and as a phenocryst phase in rocks of the alkaline and calc-alkaline series.Ilmenite is known as a near-liquidus phase in some mafic magmas at 5–10 kbar, but its stability decreases to near-solidus at 25–30 kbar. Zoisite occurs in hydrous mafic compositions at mantle pressures, but it is confined to temperatures < 780°C. Finally, mica has a wide temperature range of stability at mantle pressures, especially in potassic magmas, and phlogopitic mica is stable to 1040°C at 20–25 kbar in a hydrous, K-rich “tholeiite” (1.6% K2O).  相似文献   

12.
Stable isotope ratios of S, O and Sr have been measured for active vent materials which were first found and sampled in April 1987 from the Mariana backarc spreading axis at 18°N. Chimneys consisted mostly of barite with a lesser proportion of sulfide minerals such as sphalerite, galena, chalcopyrite and pyrite. Theδ34S values of sphalerite and galena taken from several chimneys and various parts of a chimney showed a narrow range from 2.1 to 3.1‰, suggesting uniform conditions of fluid chemistry during chimney growth. The sulfur isotopic results imply a contribution of hydrogen sulfide reduced from seawater sulfate in the deep hydrothermal reaction zone, considering that fresh glasses of the Mariana Trough basalts haveδ34S= −0.6 ± 0.3‰. Sulfur isotopic compositions of hydrogen sulfide in the high temperature vent fluids (δ34S= 3.6–4.8‰) which are higher than those of the sulfide minerals suggest the secondary addition of hydrogen sulfide partially reduced from entrained seawater SO42− at a basal part of the chimneys. This interpretation is consistent with theδ34S values of barite (21–22‰) that are higher than those of seawater sulfate. The residence time of the entrained SO42− was an order of an hour on a basis of oxygen isotopic disequilibrium of barite. Strontium isotopic variations of barite and vent waters indicated that Sr in barite was mostly derived from the Mariana Trough basalts with a slight contribution from Sr in circulating sea-water, and that 10–20% mixing of seawater with ascending hydrothermal fluids induced precipitation of barite at the sea-floor.  相似文献   

13.
The Sierra La Primavera, a late Pleistocene rhyolitic caldera complex in Jalisco, México, contains fumaroles and large-discharge 65°C hot springs that are associated with faults related to caldera collapse and to later magma insurgence. The nearly-neutral, sodium bicarbonate, hot springs occur at low elevations at the margins of the complex, whereas the water-rich fumaroles are high and central.The Comisión Federal de Electricidad de México (CFE) has recently drilled two deep holes at the center of the Sierra (PR-1 and Pr-2) and one deep hole at the western margin. Temperatures as high as 285°C were encountered at 1160 m in PR-1, which produced fluids with 820 to 865 mg/kg chloride after flashing to one atmosphere. Nearby, PR-2 encountered temperatures to 307°C at 2000 m and yielded fluids with chloride contents fluctuating between 1100 and 1560 mg/kg after flashing. Neither of the high-temperature wells produced steam in commercial quantities. The well at the western margin of the Sierra produced fluids similar to those from the hot springs. The temperature reached a maximum of 100°C near the surface and decreased to 80°C at 2000 m.Various geothermometers (quartz conductive, Na/K, Na-K-Ca, δ18O(SO4-H2O) and D/H (steam-water) all yield temperatures of 170 ± 20°C when applied to the hot spring waters, suggesting that these spring waters flow from a large shallow reservoir at this temperature. Because the hot springs are much less saline than the fluids recovered in PR-1 and PR-2, the mixed fluid in the shallow reservoir can contain no more than 10–20% deep fluid. This requires that most of the heat is transferred by steam. There is probably a thin vapor-dominated zone in the central part of the Sierra, through which steam and gases are transferred to the overlying shallow reservoir. Fluids from this reservoir cool from 170°C to 65°C by conduction during the 5–7 km of lateral flow to the hot springs.  相似文献   

14.
The equilibrium distribution of CO2H2O fluids in synthetic rock samples (principally dunite and quartzite) has been characterized by measurements of the dihedral wetting angle, θ, resulting from 5-day annealing periods at 950–1150°C and 1 GPa. For fluids in equilibrium with polycrystalline quartz, θ varies systematically from 57° for pure H2O to 90° at XCO2 0.9. Similarly, for San Carlos olivine, θ varies from 65° for pure H2O to 90° at XCO2 0.9. The addition of solutes (NaCl, KCl, CaF2, Na2CO3) to H2O causes a major decrease in θ in the quartz/fluid system (to values as low as 40°), but has no effect on fluid wetting in dunite. Reconnaissance experiments on other mono- and polymineralic aggregates indicate universally high wetting angles (θ 60°) in upper mantle assemblages and for CO2 in felsic compositions. For diopside + H2O, θ 80°, with large variation due to crystalline anisotropy. In no case does θ approach 0°, the condition necessary for fluid to be present along all grain boundaries.Because a value of θ greater than 60° precludes the existence of an interconnected fluid phase in a rock, our results have important implications not only for fluid transport but also for the physical properties of the bulk fluid/rock system. Any static fluid present in the upper mantle must exist as isolated pores located primarily at grain corners, and transport can occur only by hydrofracture. In the continental crust, aqueous fluids (especially saline ones) are likely to form an interconnected network along grain edges, thus contributing to high electrical conductivity and allowing the possibility of fluid transport by porous flow or surface energy-driven infiltration.  相似文献   

15.
Detailed geochemistry supported by geologic mapping has been used to investigate Sulphur Springs, an acid-sulfate hot spring system that issues from the western flank of the resurgent dome inside Valles Caldera. The most intense activity occurs at the intersection of faults offsetting caldera-fill deposits and post-caldera rhyolites. Three geothermal wells in the area have encountered pressures <1 MPa and temperatures of 200°C at depths of 600 to 1000 m. Hot spring and fumarole fluids may discharge at boiling temperatures with pH 1.0 and SO4 8000 mg/l. These conditions cause argillic alterations throughout a large area.Non-condensible gases consist of roughly 99% CO2 with minor amounts of H2S, H2, and CH4. Empirical gas geothermometry suggests a deep reservoir temperature of 215 to 280°C. Comparison of 13C and 18O between CaCO3 from well cuttings and CO2 from fumarole steam indicates a fractionation temperature between 200 and 300°C by decarbonation of hydrothermally altered Paleozoic limestone and vein calcite in the reservoir rocks. Tritium concentrations obtained from steam condensed in a mudpot and deep reservoir fluids (Baca #13, 278°C) are 2.1 and 1.0 T.U. respectively, suggesting the steam originates from a reservoir whose water is mostly >50 yrs old. Deuterium contents of fumarole steam, deep reservoir fluid, and local meteoric water are practically identical even though 18O contents range through 4‰, thus, precipitation on the resurgent dome of the caldera could recharge the hydrothermal system by slow percolation. From analysis of D and 18O values between fumarol steam and deep reservoir fluid, steam reaches the surface either (1) by vaporizing relatively shallow groundwater at 200°C or (2) by means of a two-stage boiling process through an intermediate level reservoir at roughly 200°C.Although many characteristics of known vapor-dominated geothermal systems are found at Sulphur Springs, fundamental differences exist in temperature and pressure of our postulated vapor-zone. We propose that the reservoir beneath Sulphur Springs is too small or too poorly confined to sustain a “true” vapor-dominated system and that the Sulphur Springs system may be a “dying” vapor-dominated system that has practically boiled itself dry.  相似文献   

16.
Thermal waters hosted by Menderes metamorphic rocks emerge along fault lineaments in the Simav geothermal area. Thermal springs and drilled wells are located in the Eynal, Çitgöl and Na a locations, which are part of the Simav geothermal field. Studies were carried out to obtain the main chemical and physical characteristics of thermal waters. These waters are used for heating of residences and greenhouses and for balneological purposes. Bottom temperatures of the drilled wells reach 163°C with total dissolved solids around 2225 mg/kg. Surface temperatures of thermal springs vary between 51°C and 90°C. All the thermal waters belong to Na–HCO3–SO4 facies. The cold groundwaters are Ca–Mg–HCO3 type. Dissolution of host rock and ion-exchange reactions in the reservoir of the geothermal system shift the Ca–Mg–HCO3 type cold groundwaters to the Na–HCO3–SO4 type thermal waters. Thermal waters are oversaturated at discharge temperatures for aragonite, calcite, quartz, chalcedony, magnesite and dolomite minerals giving rise to a carbonate-rich scale. Gypsum and anhydrite minerals are undersaturated with all of the thermal waters. Boiling during ascent of the thermal fluids produces steam and liquid waters resulting in an increase of the concentrations of the constituents in discharge waters. Steam fraction, y, of the thermal waters of which temperatures are above 100°C is between 0.075 and 0.119. Reservoir pH is much lower than pH measured in the liquid phase separated at atmospheric conditions, since the latter experienced heavy loss of acid gases, mainly CO2. Assessment of the various empirical chemical geothermometers and geochemical modelling suggest that reservoir temperatures vary between 175°C and 200°C.  相似文献   

17.
With a detailed study on petrology, mineralogy and geochemistry of some important Ordovician carbonate well core samples in Tazhong uplift of Tarim Basin, the distinguishing symbols of hydrothermal karstification are first put forward as the phenomena of rock hot depigmentation, hot cataclasm and the appearance of typical hydrothermal minerals such as fluorite, barite, pyrite, quartz and sphalerite. The main homogenization temperatures of primary fluid inclusions in fluorite are from 260 to 310°C, indicating the temperature of hydrothermal fluid. The fluid affected the dissolved rocks and showed typical geochemistry features with low contents of Na and Mg, and high contents of Fe, Mn and Si. The ratio of 3He/4He is 0.02R a, indicating the fluid from the typical continental crust. The hydrothermal fluid karstification pattern may be described as follows: the hot fluid is from the Permian magma, containing dissolving ingredients of CO2 and H2S, and shifts along fault, ruptures and unconformity, and dissolves the surrounding carbonates while it flows. The mechanism of hydrothermal karstification is that the mixture of two or more fluids, which have different ion intensity and pH values, becomes a new unsaturated fluid to carbonates. The hydrothermal karstification is an important process to form hypo-dissolved pinholes in Ordovician carbonates of Tazhong uplift of Tarim Basin, and the forming of hydrothermal minerals also has favorable influence on carbonate reservoirs.  相似文献   

18.
The Grand Brûlé borehole intersects a thick pile of basaltic lavas, down to 1010 m, and a basic-ultrabasic intrusive complex, from 1010 to 3003.50 m.The lavas are, in general, unaltered except in two fractured zones, where hydrothermal fluids circulated at temperatures not exceeding 350 ° C. The main secondary minerals there are pyroxene, feldspar, epidote, actinolite and chlorite.The entire thickness of the intrusive body intersected contains secondary minerals representing three stages of cooling:
1. 1. A late magmatic episode (600–900°C) characterized by biotite, kaersutite, edenite and pargasite.
2. 2. A hydrothermal episode (T<- 350°C) characterized by epidote, albite, biotite, actinolite and chlorite.
3. 3. A phase of serpentinization (T≤ 350°C).
It is very likely that the two later events occurred simultaneously, with physical and chemical interference.  相似文献   

19.
Thermal springs associated with normal faults in Utah have been analyzed for major cations and anions, and oxygen and hydrogen isotopes. Springs with measured temperatures averaging greater than 40°C are characterized by Na + K- and SO4 + Cl-rich waters containing 103 to 104 mg/l of dissolved solids. Lower temperature springs, averaging less than 40°C, are more enriched in Ca + Mg relative to Na + K. Chemical variations monitored through time in selected thermal springs are probably produced by mixing with non-thermal waters. During the summer months at times of maximum flow, selected hot springs exhibit their highest temperatures and maximum enrichments in most chemical constituents.Cation ratios and silica concentrations remain relatively constant through time for selected Utah thermal springs assuring the applicability of the geothermometer calculations regardless of the time of year. Geothermometer calculations utilizing either the quartz (no steam loss), chalcedony or Mg-corrected Na/K/Ca methods indicate that most thermal springs in Utah associated with normal faults have subsurface temperatures in the range of 25 to less than 120°C. This temperature range suggests fluid circulation is restricted to depths less than about three kilometers assuming an average thermal gradient of about 40°C/km.Thermodynamic calculations suggest that most thermal springs are oversaturated with respect to calcite, quartz, pyrophyllite, (Fe, Mg)-montmorillonite, microcline and hematite, and undersaturated with respect to anhydrite, gypsum, fluorite and anorthite. Chalcedony and cristobalite appear to be the only phases consistently at or near saturation in most waters. Theoretical evaluation of mixing on mineral saturation trends indicates that anhydrite and calcite become increasingly more undersaturated as cold, dilute groundwater mixes with a hot (150°C), NaCl-rich fluid. The evolution of these thermal waters issuing from faults appears to be one involving the dissolution of silicates such as feldspars and micas by CO2-enriched groundwaters that become more reactive with increasing temperature and/or time. Solution compositions plotted on mineral equilibrium diagrams trend from product phases such as kaolinite or montmorillonite toward reactant phases dominated by alkali feldspars.Isotopic compositions indicate that these springs are of local surface origin, either meteoric (low TDS, < 5000 mg/l) or connate ground water (high TDS, > 5000 mg/l). Deviations from the meteoric water line are the result of rock-water isotopic exchange, mixing or evaporation. Fluid source regions and residence times of selected thermal spring systems (Red Hill, Thermo) have been evaluated through the use of a σ D-contour map of central and western Utah. Ages for waters in these areas range from about 13 years to over 500 years. These estimates are comparable to those made for low-temperature hydrothermal systems in Iceland.  相似文献   

20.
Homogenization temperatures of individual fluid inclusions from the geothermal test well sites near Los Alamos, New Mexico, systematically change as a function of depth in the cores. Inclusions in samples from depths between 1.5 and 3.0 km have re-equilibrated to thermal gradients higher than the present gradient of 50–60°C/km. The loci of maximum temperatures attained has a slope of about 70°C/km; the deepest sample has cooled to 200°C from a maximum of 230°C. The wide range of salinities (0.0 wt.% equivalent NaCl to more than 25 wt.% equivalent NaCl) observed in each sample indicates a large amount of pervasive fluid circulation had not occurred at the time of re-equilibration of these inclusions. The results are relevant to calculations for the thermal history of the test site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号