首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
太阳耀斑研究进展和展望   总被引:3,自引:0,他引:3  
丁明德 《天文学进展》2001,19(2):141-145
简要回顾了近年来对太阳耀斑研究在某些方面所取得的进展,这些领域空间和地面观测,耀斑光谱研究,耀斑的动力学模型和MHD数值模拟等,并对耀斑研究的前景作一简短的展望。  相似文献   

2.
Hα谱线轮廓的不对称性是色球耀斑光谱观测中的重要特征,也是耀斑动力学过程的重要观测事实之一.以紫金山天文台太阳光谱仪的观测资料为依据,给出Hα谱线不对称性的典型轮廓.在考虑氢原子非热激发、电离的作用下,经验性地计算了不同大气模型下谱线的不对称性特征,并在此基础上,对观测谱线进行半经验的研究.结果表明, 色球区的向下运动能够产生Hα谱线的红、蓝不对称性,并可以再生具体耀斑的谱线不对称性特征.此外,不仅非热粒子的能流、谱指数大小以及速度场所处的高度对谱线轮廓有影响,耀斑大气的背景模型对谱线的轮廓也有一定的影响.  相似文献   

3.
综述了近年来太阳色球耀斑爆发时Hα谱线不对称性的研究进展,着重讨论了光谱特征和与其对应的不对称性产生机制,以及利用大气半经验模型再生观测谱线轮廓不对称性等方面,并提出尚待解决的主要问题和进一步的研究方向。  相似文献   

4.
黎辉  尤建圻 《天文学报》2002,43(1):41-47
讨论了HeI 10830 A的Doppler和Stark加宽机制以及各种加宽参数的计算,并得到以下一些结论辐射阻尼对HeI 10830 A的加宽作用与Doppler效应相比可以忽略;在公认的耀斑电子密度(Ne=3.2×1013 cm-3)的情况下,所有阻尼项均不可能产生可以觉察的加宽;直到Ne=1015 cm-3,各种阻尼对线心半宽的增加都不起作用,其值最多在10-aA的量级,因此,线心都可以看作是Doppler加宽;当Ne>1014 cm-3时,Stark加宽,特别是电子碰撞的Stark加宽将在HeI 10830 A的加宽中起主要作用;如要Stark加宽谱线的线翼比纯Doppler加宽大1-2倍,则阻尼加宽半宽与△λD可以相比拟;如果用Stark加宽来解释1989年边缘耀斑的观测轮廓,则电子密度将达1017cm-3;与氦原子的碰撞阻尼(γ3)造成的加宽对I12和I3两分量明显不同,它们对I12的影响比对I3的影响大近一个量级.我们的观测显示I12和I3线翼的延伸基本一样,因而我们的观测轮廓不可能是γ3造成的.  相似文献   

5.
太阳无黑子耀斑是太阳耀斑的特殊表现,无黑子耀斑的研究是太阳耀斑研究的重要组成部分。在本文中总结了太阳无黑子耀斑观测研究的以下几个方面的进展概况:自然产率,位置分布特征,观测与形态特征,触发机制能量来源,可能的解释模型。  相似文献   

6.
讨论了 HeI 10830A的 Doppler和 Stark加宽机制以及各种加宽参数的计算,并 得到以下一些结论:辐射阻尼对 HeI 10830 A的加宽作用与 Doppler效应相比可以忽略; 在公认的耀斑电子密度(Ne=3.2 ×1013cm-3)的情况下,所有阻尼项均不可能产生可以 觉察的加宽;直到 Ne=1015cm-3,各种阻尼对线心半宽的增加都不起作用,其值最多 在10-3的量级,因此;线心都可以看作是Doppler加宽;当 Ne>1014 cm-3时,Stark 加宽,特别是电子碰撞的 Stark加宽将在 HeI 10830 A的加宽中起主要作用;如要 Stark 加宽谱线的线翼比纯Doppler加宽大1-2倍,则阻尼加宽半宽与。可以相比拟;如果 用 Stark加宽来解释 1989年边缘耀斑的观测轮廓,则电子密度将达10~(17)cm-3,与氦 原子的碰撞阻尼(γ3)造成的加宽对I12和I3两分量明显不同,它们对I12的影响比对I3 的影响大近一个量级,我们的观测显示I12和I3线翼的延伸基本一样,因而我们的观测 轮廓不可能是γ3造成的  相似文献   

7.
甘为群  林春梅 《天文学报》1997,38(3):273-277
本文对一个耀斑主相动力学模型进行了谱诊断,包括同时计算CaXIX,Hα和CaIIK谱线轮廓演化系列.与地面光学观测及最新的Yohkoh/BCS观测结果比较显示,计算轮廓及其特性在实测的范围以内,从而说明该耀斑主相动力学模型在一般性反映耀斑主相演化方面的合理性,同时也意味着有相当一部分耀斑,其在主相演化过程中没有额外的加热源作用.  相似文献   

8.
本文根据太阳字宙线在行星际空间传播方程的量纲分析解,利用太阳质子观测资料求出的等效扩散系数,讨论传播对太阳宇宙线成分中氢氦比的影响,其中包括随太阳风速、空间坐标的变化.从Perron等收集的HEOS和PIONEER卫星观测的资料中消除了随离太阳距离和能量变化后,可以看到太阳宇宙线的氢氦比是随耀斑磁经度而增大的.经过传播改正得到的太阳上发射的氢氦比初始值与太阳风成分比是接近的.  相似文献   

9.
耀斑谱线轮廓的不对称性是耀斑动力学过程的一个重要观测事实。本文在一定的耀斑半经验大气模型基础上,计算了不同速度模式和色球凝聚下的Ha和CaⅡK谱线轮廓,从半经验角度探讨了大气各个层次的速度对Hα和CaⅡK谱线轮廓的影响。结果表明:耀斑早期短时间的Hα蓝不对称性可由位于过渡区的色球凝聚引起;随后的红不对称性是上部色球物质向下运动的结果;而后来出现的CaⅡK不对称性特征则可由色球中、下部具有10—20km/s的向下速度来解释。  相似文献   

10.
周曦  方成 《天体物理学报》1996,16(4):401-407
本分析了南京大学太阳塔1991年10月24日用多波段光谱仪观测到的高时间分辨率(5s)的一个2N/X2.1级白光耀斑光谱,对耀斑谱线轮廓,连续发射强度,X射线和射电爆发资料进行了综合对比,分析表明,该耀斑属I类白光耀斑,具有如下特征:(1)在白光耀斑的脉冲相期间,各波段光谱线心强度,连续辐射,谱线半宽以及线翼红不对称性与硬X射线高能波段的爆分同时达到极大;(2)Hα谱线在连续发射极大时半宽达10  相似文献   

11.
This paper describes the solar wind plasma ejected by the proton flares of August/September, 1966, in McMath Region 8461. The discussion will serve a dual purpose. First it will help complete the record on the events of August/September 1966. Secondly we will discuss the helium enrichment of the interplanetary plasma associated with the flares. This is the fifth case reported in which major flares produce helium enriched interplanetary plasma. Relative helium abundances of greater than 15% are typical. These findings are interpreted in terms of a solar atmosphere that contains helium enriched regions.  相似文献   

12.
It has previously been suggested that the very high relative abundances of helium occasionally observed in the solar wind mark the plasma accelerated by major solar flares. To confirm this hypothesis, we have studied the 43 spectra with He/H 15% that were observed among 10300 spectra collected by Vela 3 between July 1965–July 1967. The 43 spectra were distributed among 16 distinct periods of helium enhancement, 12 of which (containing 75% of the spectra) were associated with solar flares. Six new flare-enhancement events are discussed in this paper. It is concluded that the association of helium enhancements with major flares is real, non-random and very strong.With this study, there are 12 cases of reliable associations between helium enhancements (He/H 15%) and flares reported in the literature. The general characteristics of these events are discussed. It is found that the flares are typically large and bright (2B or 3B), often they produce cosmic ray protons, and they are widely distributed in solar longitude. The average transit velocity of the pistons (i.e., flare accelerated driver gas) is in excellent agreement with earlier observations of flare shock velocities. The degree to which the pistons have been slowed in transit is in good agreement with theory. The average percentage of helium in the enhanced regions is 15%, but this number should not be considered more than an extremely rough estimate because of very arbitrary decisions that had to be made as to when we would consider an enhancement had ended. The number of positively charged particles in the enhanced region is estimated to be of the order of 4 × 1039.A qualitative discussion of some of the possibilities for the source of helium enhanced plasma is presented. It is suggested that the helium enriched plasma may be the piston producing the shock causing the Type II radio emission. The size of the Type II emission region and the number of particles in the helium enhancement permit an estimate to be made of the density of the corona at the origin of the piston. From this it is estimated further that the piston must come from below about 0.5 R , in agreement with the 0.2–0.3 R often given for the initial height of the Type II emission source. Recent theoretical discussions have indicated that the corona as a whole can be expected to show helium enrichments at these levels.It is pointed out that observations of solar wind helium enhancement can be expected to be a useful tool in studying the distribution and relative abundance of helium in different layers of the solar corona, as well as mechanisms for the acceleration of plasma by solar flares.  相似文献   

13.
Clayton  E.G.  Guzik  T.G.  Wefel  J.P. 《Solar physics》2000,195(1):175-194
During the 1990–1991 solar maximum, the CRRES satellite measured helium from 38 to 110 MeV n–1, with isotopic resolution, during both solar quiet periods and a number of large solar flares, the largest of which were seen during March and June 1991. Helium differential energy spectra and isotopic ratios are analyzed and indicate that (1) the series of large solar energetic particle (SEP) events of 2–22 June display characteristics consistent with CME-driven interplanetary shock acceleration; (2) the SEP events of 23–28 March exhibit signatures of both CME-driven shock acceleration and impulsive SEP acceleration; (3) below about 60 MeV n–1, the helium flux measured by CRRES is dominated by solar helium even during periods of least solar activity; (4) the solar helium below 60 MeV n–1 is enriched in 3He, with a mean 3He/4He ratio of about 0.18 throughout most of the CRRES mission `quiet' periods; and (5) an association of this solar component with small CMEs occurring during the periods selected as solar `quiet' times.  相似文献   

14.
Solar gamma-ray lines, produced from nuclear reactions of accelerated particles interacting with the solar atmospheric medium, are the most direct diagnosis for the acceleration and transportation of energetic electrons and ions in solar flares. Much information about composition, spectrum, and angular distribution of the accelerated ions, as well as the elemental abundances of the ambient solar atmosphere can be derived from solar gamma-ray line spectra. A new gamma-ray calculation program has been developed by using an efficient nuclear code − TALYS. The theory of gamma-ray production in solar flares is treated in detail. The characteristics of gamma-ray spectrum are also presented.  相似文献   

15.
太阳耀斑伽玛射线能谱是加速粒子与太阳大气介质原子碰撞的结果,它是研究太阳耀斑中加速粒子和高能电子最为直接的手段.通过分析伽玛射线能谱,可以获得耀斑过程中加速粒子的成分、能谱、角分布及太阳大气元素丰度等重要信息.TALYS程序是一套模拟核反应的软件,对核反应过程中的所有信息均能完整地描述.利用TALYS计算得到了完整的太阳耀斑伽玛射线的核反应截面数据,开发了一套新的耀斑伽玛射线谱计算程序.详细介绍了耀斑伽玛射线计算的理论模型,并简单探讨了耀斑伽玛射线的特性,为未来的耀斑伽玛射线能谱分析奠定了理论基础.  相似文献   

16.
The magnetic polarity distributions in sunspot groups which produced solar proton flares have been analyzed. It is shown that the fluid motion in sunspot groups and below may be responsible for the origin of inverted or unusual polarity distributions, since rotating motion in these spot groups is often observed. Since such motion seems to produce twisting of magnetic field lines above sunspot groups, the origin of solar flares seems to be closely dependent on instability associated with this twisting of sunspot field lines in the chromosphere and the lower corona.  相似文献   

17.
H-alpha flares accompanied by the X-radiation f ?? 10?6 wm?2 in power are examined; 2331 flares were registered during the first half of the 23rd solar cycle (1997?C2000). The specific power of the X-radiation of the flares monotonically doubles from the minimum to the maximum of the sunspot. An increase in the number of flares in each solar rotation is nonmonotonic and disproportional to the relative number of sunspots. Several longitudinal intervals with increased flare activity can be distinguished in the entire time interval of five to ten rotations. The longitudinal distributions of flares and boundaries of the sector structures of a large-scale magnetic field differ considerably. This confirms the existence of two types of zero lines; the first type is determined by active regions, and the second one is determined by large-scale structures with weak magnetic fields. The flares concentrate near Hale??s zero lines of the first type.  相似文献   

18.
Six solar flares were detected by the AVS-F apparatus onboard the CORONAS-F satellite in January 2005. We discuss the temporal profiles and energy spectra of the solar flares of January 20, 17, and 15, 2005 (class X7.1, X3.8, and X2.6, respectively) on the AVS-F data. The active region NOAA 10720 was the source of these flares. The spectra of the flares of January 17 and 20, 2005 contain nuclear lines, a positron line, and a line due to neutron capture line, while only the positron and neutron capture lines can be identified in the spectrum of the flare of January 15, 2005. The spectral features corresponding to these lines were observed during the whole duration of the flares. Analysis of the temporal profile of the flare of January 20, 2005 with a 1-ms temporal resolution in the energy range 0.1–20 MeV reveals the presence of a thin structure (at the 99% confidence level) with typical timescales of 7 to 35 ms.  相似文献   

19.
We have examined delay times between solar disturbances (X-ray flares and DSFs) and storm sudden commencements(SSC) as well as between SSC and major geomagnetic storms. To carry out cross-correlation analysis of these point series data, we have introduced a new correlation measure which is defined by the ratio of the median value of the absolute residual differences between two sets of time series data to the one determined from hypothetical target series. We have confirmed from the correlation analyses that (1) the most probable traveling time of a solar disturbance from the Sun to the Earth is estimated to be about 2 days for a disturbance associated with major (X and M class) solar flares, and about 3 days for a disturbance associated with DSFs, (2) long-duration flares are better correlated with SSCs than short-duration flares, (3) travelling times of solar disturbances strongly depend on the heliolongitude where they originate, and (4) solar disturbances associated with flares and DSFs at the western limb can hardly reach the Earth. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
E. N. Parker 《Solar physics》1996,163(2):327-333
For solar cycles 20 and 21, the longitudinal distribution of the D, G, and H-type solar flares which are related to the final phases of active region evolution, have been analysed for the northern and the southern hemispheres separately. One active zone has been found for D, G, and H-type flares, and one more active zone has been found for the H-type flares of the northern hemisphere for cycle 20. Two active zones have been found for the D and H-type flares of the northern hemisphere for cycle 21. Southern-hemisphere flares are concentrated in two active zones for cycle 20. The active zone in the northern hemisphere, which rotates with a synodic period of about 26.73 days, produced 30% of the examined D-type flares during cycle 20 and persisted in the same position during the two solar cycles, 20 and 21. The active zone in the southern hemisphere rotated with a synodic period of about 27.99 days. Only the active zone producing D-type flares persisted in the same position during the two solar cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号