首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Garnet pyroxenite from high pressure granulite facies occurs with different mineral assemblages which involve garnet, clinopyroxene, orthopyroxene, plagioclase, amphibole and quartz with spinel developing as symplectite with orthopyroxene and plagioclase in large cracks. Three successive parageneses have been identified. The primary assemblage is characterised by the presence of quartz. The second assemblage involves orthopyroxene–plagioclase–hornblende symplectite, and the third assemblage is characterised by the development of spinel in symplectites with orthopyroxene and plagioclase. Using THERMOCALC (V2.7), a quantitative pseudosection in the system CaO–FeO–MgO–Al2O3–SiO2–H2O has been calculated. The assemblage involving quartz developed at high pressure, while the assemblage involving spinel developed at lower pressure. The peak of metamorphism in Tin Begane was calculated at 860 °C and 13.5 kb with aH2O=0.2. These conditions are followed by a decrease of pressure down to 4.8 kb.  相似文献   

2.
We conducted melting experiments on a low-alkali tholeiite (SiO2 ~52 wt%, MgO ~6.5 wt%, CaO/Na2O~4.4, Al2O3/SiO2 ~0.33) under both H2O-undersaturated and H2O-saturated conditions to investigate the effect of H2O on the Ca–Na partitioning between plagioclase and melt. Experiments were performed in the temperature and pressure ranges of 1,000–1,300°C and 1–5 kbar, respectively, with varying H2O contents of 0–12wt%. Redox condition was 0–2 log unit above NNO (nickel–nickel oxide) buffer. Temperature-bulk H2O diagrams for the low-alkali tholeiite are constructed at 1, 2, and 5 kbar, and compositions of near-liquidus plagioclase and coexisting melt are determined. To exclude the effect of melt composition (CaO/Na2O and Al2O3/SiO2 ratios) on plagioclase composition and to reveal the effect of H2O on An (=100×Ca/(Ca+Na)) content and (=(Ca/Na)pl/(Ca/Na)melt), we focused on the composition of near-liquidus plagioclases which crystallized from melts with nearly constant CaO/Na2O and Al2O3/SiO2 ratios. Our experimental results show that, at each experimental pressure, An content of the near-liquidus plagioclase and the KDCa-Na almost linearly increases as H2O content in melt increases. Each of the An content and the variations in a low-alkali tholeiitic system (CaO/Na2O~4.0–4.5, Al2O3/SiO2 ~0.27–0.33) can be described by one equation using temperature, pressure, and melt H2O content as parameters. An content and of liquidus plagioclase increases with increasing melt H2O and with decreasing pressure, elucidating that nearly H2O-saturated conditions of 2–3 kbar is optimal for the crystallization of the most An-rich plagioclase (>An88). We suggest this pressure condition of 2–3 kbar, corresponding to depth of 7–11 km, plays an important role for the origin of An-rich plagioclase in H2O-rich low-alkali tholeiite. At pressures more than ca. 4 kbar, crystallization of liquidus Ca-rich clinopyroxene decreases the CaO/Na2O ratio of liquid, thus prohibiting the crystallization of high-An plagioclase from hydrous tholeiite.  相似文献   

3.
Diorite plutons at Al Hadah Saudi Arabia, which constitute part of the pan-African magmatic sequence (ca. 600 Ma), exhibit extensive development of epidote. The epidote alteration is concentrated along veins and dyke margins, and is characterised by transformation of plagioclase (Ab 67)+hornblende+biotite+quartz to epidote+hornblende+tremolite−actinolite+plagioclase (Ab 99)±quartz. The reactions involve addition of CaO and total Fe2O3, depletion of MgO, Na2O and K2O, with variable gains or losses of SiO2. Epidotised alteration products are hydrated and oxidised relative to the diorite precursor. The whole rock δ18O of fresh diorite is + 8.2‰ to + 8.8‰, whereas epidote domains have δ18O whole rock of +9.8‰ to +10.48‰ and negative Δ18Oquartz-plagioclase, implying oxygen isotope exchange with fluids at low temperatures. Epidotisation is considered to have accompanied influx of fluids into plutons during cooling and contraction. The fluids were probably deep formation waters with relatively high Ca2+/Na+ ratios, moving up thermal gradient.  相似文献   

4.
The Eastern Ghats Granulite Belt (EGGB) forms part of a continuous Precambrian metamorphic terrain in Gondwana. It is characterised by widespread development of an Archaean khondalite suite of metasedimentary rocks, Archaean to Late-Proterozoic charnockites and Late Proterozoic anorthositic, granitic and syenitic emplacements. A 1900 Ma megacrystic granitoid suite, containing varying proportions of charnockites and granites, forms an important and widely distributed litho-unit in the central khondalite and eastern migmatite zones of the EGGB. It contains metasedimentary enclaves, megacrystic K-feldspar, quartz, plagioclase ovoids, biotite, garnet (porphyroblasts and coronas), apatite, zircon, ilmenite, magnetite, etc. Hypersthene is present in the charnockite phase. Monazite is present in some garnet-free granites. It is characterised by low Na2O/K2O ratios, high alumina saturation index, CaO, MgO, and ÝREE, negative correlation of TiO2, Al2O3, Fe2O3t, MgO, MnO, CaO, P2O5, Ba, Sr, Zr and V with SiO2, positive correlation of K2O, REE, Th and Rb with SiO2, fractionated LREE, relatively flat HREE and negative Eu anomalies.The data suggest S-type nature of the suite. Fractionation of the granitic magma and local variations in pH2O and fCO2 caused the formation of megacrystic charnockites. Formation of the corona garnet is related to the reworking of the suite during late Proterozoic (ca. 1250 Ma) isothermal decompression associated with channelised CO2-rich fluid flux along narrow shear zones.  相似文献   

5.
17O NMR shieldings are calculated for the central O in the molecular model OM6(OH)12 –2, for crystalline alkaline earth oxides, MO, where M=Mg, Ca, and Sr, using both Hartree–Fock and hybrid Hartree–Fock density-functional theory. Agreement of calculated and experimental NMR shifts of CaO and SrO compared to MgO is good, but only if the basis set on the M atoms has sufficient tight d polarization functions. Preliminary results are also presented for nonbridging O in the silicate Si(OH)3O anion, perturbed by alkaline earth cations, giving trends which agree qualitatively with experiment.  相似文献   

6.
Systematic analysis and comparative study of the chemical compositons of rocks and ores from the main types of zeolite deposits in the surroundings of the Songliao Basic have shown that the process of formation of zeolite from volcanic and pyroclastic rocks is generally characterized by the relative purification of SiO2,i.e.,SiO2/Al2O3 ratios tend to increase,alkali eart elements (CaO MgO)and H2O are relatively enriched,and the alkali metals(K2O Na2O)are depleted in their total amount.The alkali metals K and Na follow different rules of migration and enrichment during the formation of mordenite and clinoptilolite.In the process of formation of mordenite more Na^ will be imported and K^ will be lost remarkably.On the contrary,in the process of formation clinoptilolite more K^ will be incorporated and Na^ will become obviously depleted.  相似文献   

7.
The Central African Belt in the Nkambe area, northwestern Cameroon represents a collisional zone between the Saharan metacraton and the Congo craton during the Pan-African orogeny, and exposes a variety of granitoids including foliated and massive biotite monzogranites in syn- and post-kinematic settings. Foliated and massive biotite monzogranites have almost identical high-K calc-alkaline compositions, with 73–67 wt.% SiO2, 17–13 wt.% Al2O3, 2.1–0.9 wt.% CaO, 4.4–2.7 wt.% Na2O and 6.3–4.4 wt.% K2O. High concentrations of Rb (264–96 ppm), Sr (976–117 ppm), Ba (3680–490 ppm) and Zr (494–99 ppm), with low concentrations of Y (mostly< 20 ppm with a range 54–6) and Nb (up to 24 ppm) suggest that the monzogranites intruded in collisional and post-collisional settings. The Sr/Y ratio ranges from 25 to 89. K, Rb and Ba resided in a single major phase such as K-feldspar in the source. Garnet was present in the source and remained as restite at the site of magma generation. This high K2O and Sr/Y granitic magma was generated by partial melting of a granitic protolith under high-pressure and H2O undersaturated conditions where garnet coexists with K-feldspar, albitic plagioclase. CHIME (chemical Th–U-total Pb isochron method) dating of zircon yields ages of 569 ± 12–558 ± 24 Ma for the foliated biotite monzogranite and 533 ± 12–524 ± 28 Ma for the massive biotite monzogranite indicating that the collision forming the Central African Belt continued in to Ediacaran (ca 560 Ma).  相似文献   

8.
《Geodinamica Acta》2013,26(5):343-362
The Mendejin area, NW Iran, is part of the western Alborz-Azarbaijan zone which is one of the most structurally—and magmatically-active zones of Iran. Volcanic rocks with calc-alkaline and, locally, alkaline features cover an extensive part of this zone. The Mendejin volcanic rocks, Eocene-Oligocene in age, include tuffs and volcanoclastic rocks of dacite, andesite, basaltic andesite, and basalt composition. Felsic (andesite, dacite, and rhyodacite) and basic rocks (basalt, basaltic andesite and andesite) commonly occur in successive layers. This alternation along with multiple occurrences of various types of tuffs suggests prolonged and successive magmatic activity during Eocene-Oligocene in NW Iran. Fractional crystallization has been the most important factor controlling geochemical characteristics of the magma. However, absence of linear correlations on variation diagrams of some immobile elements (such as Al2O3, TiO2, P2O5 and Ga) and poorly-developed trends on variation diagrams of Na2O, MgO, MnO, CaO, Fe2O3, Nb, Nd, Y, La, Ce, Th, Hf, Sc, Zn, V, Ni and Co versus SiO2 indicate that, other than crystal (olivine, pyroxene, plagioclase, biotite, hornblende, zircon, monazite and apatite) fractionation, crustal processes (such as assimilation) have also affected the chemistry of the Mendejin magma. It appears that the basic magma has originated from the mantle whereas the felsic magma resulted from modification in the mantle-derived magma by assimilation in an active continental margin.  相似文献   

9.
A banded amphibolite sequence of alternating ultramafic, mafic (amphibolite) and silicic layers, tectonically enclosed within Variscan migmatites, outcrops at Monte Plebi (NE Sardinia) and shows similarities with leptyno-amphibolite complexes. The ultramafic layers consist of amphibole (75–98%), garnet (0–20%), opaque minerals (1–5%) and biotite (0–3%). The mafic rocks are made up of amphibole (65–80%), plagioclase (15–30%), quartz (0–15%), opaque minerals (2–3%) and biotite (0–2%). The silicic layers consist of plagioclase (60–75%), amphibole (15–30%) and quartz (10–15%). Alteration, metasomatic, metamorphic and hydrothermal processes did not significantly modify the original protolith chemistry, as proved by a lack of K2O-enrichment, Rb-enrichment, CaO-depletion, MgO-depletion and by no shift in the rare earth element (REE) patterns. Field, geochemical and isotopic data suggest that ultramafic, mafic and silicic layers represent repeated sequences of cumulates, basic and acidic rocks similar to macrorhythmic units of mafic silicic layered intrusions. The ultramafic layers recall the evolved cumulates of Skaergaard and Pleasant Bay mafic silicic layered intrusions. Mafic layers resemble Thingmuli tholeiites and chilled Pleasant Bay mafic rocks. Silicic layers with Na2O: 4–6 wt%, SiO2: 67–71 wt% were likely oligoclase-rich adcumulates common in many mafic silicic layered intrusions. Some amphibolite showing a strong Ti-, P-depletion and REE-depletion are interpreted as early cumulates nearly devoid of ilmenite and phosphates. All Monte Plebi rocks have extremely low Nb, Ta, Zr, Hf content and high LILE/HFSE ratios, a feature inherited from the original mantle sources. The mafic and ultramafic layers show slight and strong LREE enrichment respectively. Most mafic layer samples plot in the field of continental tholeiites in the TiO2–K2O–P2O5 diagram and are completely different from N-MORB, E-MORB and T-MORB as regards REE patterns and Nd, Sr isotope ratios but show analogies with Siberian, Deccan and proto-Atlantic rift tholeiites. Comparisons with Thingmuli, Skaergaard and Kiglapait rocks and with experimental data suggest that the Monte Plebi intrusion was an open-to-oxygen system with fO2 FMQ. Mafic and ultramafic samples yielded Nd(460)=+0.79 /+3.06 and 87Sr/86Sr=0.702934–0.703426, and four silicic samples Nd(460)=–0.53/–1.13; 87Sr/86Sr=0.703239–0.703653. Significant differences in Nd isotope ratios between mafic and silicic rocks prove that both groups evolved separately in deeper magma chambers, from different mantle sources, with negligible interaction with crustal material, and were later repeatedly injected within a shallower magma chamber. The spectrum of Sr and Nd isotope data is consistent with a slightly enriched mantle metasomatized during an event earlier than 460 Ma. The metasomatising component was represented by alkali-Th-rich fluids of crustal origin rather than by sedimentary materials, able to modify alkali and Sr–Nd isotope systematics. Monte Plebi layered amphibolites might represent the first example of a strongly metamorphosed fragment of an early Paleozoic mafic silicic layered intrusion emplaced in a thinning continental crust and then tectonically dismembered by Variscan orogeny.  相似文献   

10.
Zircon U–Pb ages, major and trace elements, and Sr, Nd and Hf isotope compositions of the Changboshan‐Xieniqishan (CX) intrusion from the Great Xing'an Range (GXAR), northeastern China, were studied to investigate its derivation, evolution and geodynamic significance. Laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) zircon U–Pb dating yields an emplacement age of 161 ± 2 Ma for the CX intrusion. Bulk‐rock analyses show that this intrusion is characterized by high SiO2, Na2O and K2O, but low MgO, CaO and P2O5. They are enriched in large‐ion lithophile elements and light rare earth elements, with marked Eu anomalies (mostly from 0.36 to 0.65), and depleted in heavy rare earth elements and high field strength elements. Most samples have relatively low (87Sr/86Sr)i values (0.70423–0.70457), with εNd(t) fluctuating between −0.4 and 2.3. The εHf(t) for zircons varies from 5.4 to 8.7. Sr–Nd isotope modelling results, in combination with young Nd and Hf model ages (760–986 and 549–728 Ma, respectively) and the presence of relict zircons, indicate that the CX intrusion may originate from the partial melting of juvenile crust, with minor contamination of recycled crustal components, and then underwent extensive fractional crystallization of K‐feldspar, plagioclase, biotite, sphene, apatite, zircon and allanite. Considering the widespread presence of granitoids with coeval volcanic rocks, we contend that the CX intrusion formed in an extensional environment related to the upwelling of asthenospheric mantle induced by the subduction of the Palaeo‐Pacific plate, rather than a lithospheric delamination model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The gold mineralization of the Hutti Mine is hosted by nine parallel, N–S trending, steeply dipping, 2–10 m wide shear zones, that transect Archaean amphibolites. The shear zones were formed after peak metamorphism during retrograde ductile D2 shearing in the lower amphibolite facies. They were reactivated in the lower to mid greenschist facies by brittle–ductile D3 shearing and intense quartz veining. The development of a S2–S3 crenulation cleavage facilitates the discrimination between the two deformation events and contemporaneous alteration and gold mineralization. Ductile D2 shearing is associated with a pervasively developed distal chlorite–sericite alteration assemblage in the outer parts of the shear zones and the proximal biotite–plagioclase alteration in the center of the shear zones. D3 is characterized by development of the inner chlorite-K-feldspar alteration, which forms a centimeter-scale alteration halo surrounding the laminated quartz veins and replaces earlier biotite along S3. The average size of the laminated vein systems is 30–50 m along strike as well as down-dip and 2–6 m in width.Mass balance calculations suggest strong metasomatic changes for the proximal biotite–plagioclase alteration yielding mass and volume increase of ca. 16% and 12%, respectively. The calculated mass and volume changes of the distal chlorite–sericite alteration (ca. 11%, ca. 8%) are lower. The decrease in δ18O values of the whole rock from around 7.5‰ for the host rocks to 6–7‰ for the distal chlorite–sericite and the proximal biotite–plagioclase alteration and around 5‰ for the inner chlorite-K-feldspar alteration suggests hydrothermal alteration during two-stage deformation and fluid flow.The ductile D2 deformation in the lower amphibolite facies has provided grain scale porosities by microfracturing. The pervasive, steady-state fluid flow resulted in a disseminated style of gold–sulfide mineralization and a penetrative alteration of the host rocks. Alternating ductile and brittle D3 deformation during lower to mid greenschist facies conditions followed the fault-valve process. Ductile creep in the shear zones resulted in a low permeability environment leading to fluid pressure build-up. Strongly episodic fluid advection and mass transfer was controlled by repeated seismic fracturing during the formation of laminated quartz(-gold) veins. The limitation of quartz veins to the extent of earlier shear zones indicate the importance of pre-existing anisotropies for fault-valve action and economic gold mineralization.  相似文献   

12.
There are two main granitic rocks cropping out in the study area:1) the syn-orogenic granites are moderately weathered,jointed,exfoliated and characterized by low relief.These rocks are subdivided into tonalite and granodiorite.They are essentially composed of plagioclase,quartz,biotite,hornblende and potash feldspar;and 2) the post-orogenic granites,characterized by high relief terrain and represented by monzogranite,syenogranite and alkali granite.The monzogranites suffered hydrothermal alteration in particular along joints,faults,shear zones and fractures,which recorded the highest values of radioactivity,reflecting the role of post-magmatic alteration processes in the enhancement of radioactivity.The hydrothermal alteration(desilicification and hematitization) resulted in the formation of mineralized(altered) granites.The altered granites are enriched in TiO 2,Al 2 O 3,FeO T,MnO,MgO,Na 2 O,Rb,Sr,Y,Zr,Zn,Ga and Co and depleted in SiO 2,CaO,P 2 O 5,Nb,Pb,Cu,Ni and Cr relative to the fresh monzogranite.The investigated granites contain basic xenoliths as well as pockets of pegmatites.Perthites,quartz,plagioclase and sometimes biotite,represent the essential constituents.Some accessory minerals like zircon are metamicted reflecting their radiogenic nature.The alkali granites are characterized by the presence of aegirine,rebeckite and arfvedsonite.Both syn-and post-orogenic granites show some variations in their bulk chemical compositions.The older granitoids are metaluminous and exhibit characteristics of I-type granites and possess an arc tectonic environment.On the other hand,the younger granites are peraluminous and exhibit the characteristics of post-collisional granites.It is interpreted that radioactivity of the studied rocks is mainly controlled by both magmatic and post-magmatic activities.Frequently,the post-orogenic granites host zoned and unzoned pegmatite pockets.Some of these pockets anomalously attain high radioactivity.The syenogranites and the pegmatites are characterized by high contents of SiO 2 and K 2 O and low CaO and MgO.They have transitional characters from highly fractionated calc-alkaline to alkaline.The alkali granites related to A2-subtype of A-type granites.The post-orogenic granites were originated from magma of dominant crustal source materials and related to post-collisional setting under extensional environment.  相似文献   

13.
Retrograde coronas of Caledonian age, between clinopyroxene and plagioclase in the Jotun Nappe Complex, Norway, illustrate the effects of diffusion kinetics on mineral distributions among layers and on the compositions of hornblende-actinolite. One corona type comprises a symplectite of epidote + quartz adjacent to plagioclase, and a less well-organized intergrowth of amphibole + quartz replacing clinopyroxene. The observed mineral proportions imply an open-system reaction, but the similarity of Al/Si ratios in reactant plagioclase and product symplectite indicates approximate conservation of Al2O3 and SiO2. The largest inferred open-system flux is a loss of CaO, mostly derived from consumption of clinopyroxene. The approximate layer structure, Pl|Ep + Qtz|Hbl + Qtz|Act±Hbl + Qtz|Cpx, is modelled using the theory of steady-state diffusion-controlled growth with local equilibrium. To obtain a solution, it is necessary to use a reactant plagioclase composition which takes into account aluminous (epidote) inclusions. The results indicate that, in terms of Onsager diffusion coefficients L ii , Ca is more mobile than AL (L CaCa/L AlAl3.) (where means greater than or approximately equal to). This behaviour of Ca is comparable with that of Mg in previously studied coronas around olivine. Si is non-diffusing in the present modelling, because of silica saturation. Oxidation of some Fe2+ to Fe3+ occurs within the corona. Mg diffuses towards its source (clinopyroxene) to maintain local equilibrium. Other coronas consist of two layers, hornblende adjacent to plagioclase and zoned amphibole + quartz adjacent to clinopyroxene. In the zoned layer, actinolitic hornblende forms relict patches, separated from quartz blebs by more aluminous hornblende. A preliminary steady-state, local-equilibrium model of grain-boundary diffusion explains the formation of low-Al and high-Al layers as due to Al immobility. Zoning and replacement are qualitatively explained in terms of evolution of actinolite to more stable aluminous compositions. This is modelled by a non-steady-state modification of the theory, retaining local equilibrium in grain boundaries while relatively steep zoning profiles develop in grain interiors through slow intracrystalline diffusion. Replacement of actinolite by hornblende does not require a change in PT conditions if actinolite is a kinetically determined, non-equilibrium product. The common preservation of a sharp contact between hornblende and actionolite layers may be explained by ineffectiveness of intracrystalline diffusion: according to the theory, given sufficient grain-boundary Al flux, a metastable actinolite + quartz layer in contact with hornblende may be diffusionally stable and may continue to grow in a steady state.  相似文献   

14.
《Gondwana Research》2002,5(2):453-465
The Kunduru Betta Ring Complex (KRC), at the southern margin of Dharwar craton, South India, comprises metaluminous sub-solvus syenites and quartz monzonite with a concentric disposition younging towards the center. An outer mafic syenite (of lamprophyric affinity) is followed by porphyritic monzonite, quartz monzodiorite and finally a quartz monzonitic stock at the centre.SiO2, Al2O3 and Na2O increase from the primitive lamprophyric mafic syenite to the quartz monzonite through the intermediate members, while CaO, MgO, Fe2O3T, TiO2, P2O5 and MnO show an opposite trend suggesting fractionation of hornblende, clinopyroxene, biotite, apatite, sphene, and iron oxide minerals. Rb, Th and U increase with a complementary decrease in Sc, V, Cr, Co, Cu, Sr and Ba from the outer mafic syenite to the inner quartz monzonite. Y, Zr and Hf decrease from lamprophyric mafic syenite to quartz monzodiorite and the trend is reversed in the final quartz monzonite phase. However, the suite is characterised by a compositional gap between quartz monzodiorite and quartz monzonite. Total REE gradually decrease from the mafic syenite to quartz monzonite and the REE distribution patterns show LREE-enriched and HREE-depleted parallel distributions with negligible Eu anomalies.The geochemical data suggest that the rock types were formed as products of progressive differentiation by crystal fractionation of calc-alkaline lamprophyric parent magma which was derived by partial melting of metasomatically enriched mantle in the Kabini lineament. Although the quartz monzonites conform to the trend of differentiated Kunduru Betta suite, the compositional gap between them and the quartz monzodiorite precludes their origin by simple differentiation. It is suggested that convective liquid fractionation might have resulted in the discrete body of quartz monzonite.  相似文献   

15.
The Upper Cretaceous Torul pluton, located in the Eastern Pontides, is of sub-alkaline affinity and displays features typical of volcanic arc granitoids. It is a composite pluton consisting of granodiorite, biotite hornblende monzogranite, quartz monzodiorite, quartz monzonite and hornblende biotite monzogranite. The oldest syenogranite (77.9 ± 0.3 Ma) and the youngest quartz diorite form small stocks within the pluton. Samples from the granodiorites, biotite hornblende monzogranites, quartz monzodiorites, quartz monzonites and hornblende biotite monzogranites have SiO2 between 57 and 68 wt% and display high-K calc-alkaline, metaluminous to peraluminous characteristics. Chondrite-normalized REE patterns are fractionated (Lacn/Lucn = 6.0?14.2) with pronounced negative Eu anomalies (Eu/Eu* = 0.59–0.84). Initial ?Nd(i) values vary between ?3.1 and ?4.1, initial 87Sr/86Sr values between 0.7058 and 0.7072, and δ18O values between +4.4 and +7.3‰. The quartz diorites are characterized by relatively high Mg-number of 36–38, low contents of Na2O (2.3–2.5 wt%) and SiO2 (52–55 wt%) and medium-K calc-alkaline, metaluminous composition. Chondrite-normalized REE patterns are relatively flat [(La/Yb)cn =  2.8–3.3; (Tb/Yb)cn =  1.2] and show small negative Eu anomalies (Eu/Eu* = 0.74–0.76). Compared to the other rock types, radiogenic isotope signatures of the quartz diorites show higher 87Sr/86Sr (0.7075–0.7079) and lower ?Nd(i) (–4.5 to –5.3). The syenogranites have high SiO2 (70–74 wt%) and display high-K calc-alkaline, peraluminous characteristics. Their REE patterns are characterized by higher Lacn/Lucn (12.9) and Eu/Eu* (0.76–0.77) values compared to the quartz diorites. Isotopic signatures of these rocks [?Nd(i) =  ?4.0 to ?3.3; 87Sr/86Sr(i) =  0.7034?0.7060; δ18 O =  + 4.9 to + 8.2] are largely similar to the other rock types but differ from that of the quartz diorites. Fractionation of plagioclase, hornblende, pyroxene and Fe–Ti oxides played an important role in the evolution of Torul granitoids. The crystallization temperatures of the melts ranged from 800 to 900°C as determined from zircon and apatite saturation thermometry. All these characteristics, combined with low K2O/Na2O, low Al2O3/(FeOT + MgO + TiO2), and low (Na2O + K2O)/(FeOT + MgO + TiO2) ratios suggest an origin through dehydration melting of mafic lower crustal source rocks.  相似文献   

16.
Biotite‐rich selvedges developed between mafic schollen and semipelitic diatexite in migmatites at Lac Kénogami in the Grenville Province of Quebec. Mineral equilibria modelling indicates that partial melting occurred in the mid‐crust (4.8–5.8 kbar) in the range 820–850°C. The field relations, petrography, mineral chemistry and whole‐rock composition of selvedges along with their adjacent mafic schollen and host migmatites are documented for the first time. The selvedges measured in the field are relatively uniform in width (~1 cm wide) irrespective of the shape or size of their mafic scholle. In thin section, the petrographic boundary between mafic scholle and selvedge is defined by the appearance of biotite and the boundary between selvedge and diatexite by the change in microstructure for biotite, garnet, plagioclase and quartz. Three subtypes of selvedges are identified according to mineral assemblage and microstructure. Subtype I have orthopyroxene but of different microstructure and Mg# to orthopyroxene in the mafic scholle; subtype II contain garnet with many mineral inclusions, especially of ilmenite, in contrast to garnet in the diatexite host which has few inclusions; subtype III lack orthopyroxene or garnet, but has abundant apatite. Profiles showing the change in plagioclase composition from the mafic schollen across the selvedge and into the diatexite show that each subtype of selvedge has a characteristic pattern. Four types of biotite are identified in the selvedges and host diatexite based on their microstructural characteristics. (a) Residual biotite forms small rounded red‐brown grains, mostly as inclusions in peritectic cordierite and garnet in diatexite; (b) selvedge biotite forms tabular subhedral grains with high respect ratio; (c) diatexite biotite forms tabular subhedral grains common in the matrix of the diatexite; and (d) retrograde biotite that partially replaces peritectic cordierite and garnet in the diatexite. The four groups of biotite are also discriminated by their major element (EMPA) and trace elements (LA‐Q‐ICP‐MS) compositions. Residual biotite is high in TiO2 and low in Sc and S, whereas retrograde biotite has high Al2O3, but low Sc and Cr. Selvedge and diatexite biotite are generally very similar, but selvedge biotite has higher Sc and S contents. Whole‐rock compositional profiles across the selvedges constructed from micro‐XRF and LA‐Q‐ICP‐MS analyses show: (a) Al2O3, FeO, MgO and CaO all decrease from mafic scholle across the selvedge and into the diatexite; (b) Na2O is lowest in the mafic scholle, rises through the selvedge and reaches its maximum about 20–30 mm into the diatexite host; (c) K2O is lowest in the mafic scholle and reaches its highest value in the first half of the selvedge, then declines before reaching a higher, but intermediate value, about 20 mm into the diatexite. Of the trace elements, Cs and Rb show distributions very similar to K2O.  相似文献   

17.
High‐pressure granulites are generally characterized by the absence of orthopyroxene. However, orthopyroxene is reported in a few high‐pressure, felsic–metapelitic granulites, such as the Huangtuling felsic high‐pressure granulite in the North Dabie metamorphic core complex in east‐central China, which rarely preserves the high‐pressure granulite facies assemblage of garnet + orthopyroxene + biotite + plagioclase + K‐feldspar + quartz. To investigate the effects of bulk‐rock composition on the stability of orthopyroxene‐bearing, high‐pressure granulite facies assemblages in the NCKFMASHTO (Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3) system, a series of PTX pseudosections based on the melt‐reintegrated composition of the Huangtuling felsic high‐pressure granulite were constructed. Calculations demonstrate that the orthopyroxene‐bearing, high‐pressure granulite facies assemblages are restricted to low XAl [Al2O3/(Na2O + CaO + K2O + FeO + MgO + Al2O3) < 0.35, mole proportion] or high XMg [MgO/(MgO + FeO) > 0.85] felsic–metapelitic rock types. This study also reveals that the XAl values in the residual felsic–metapelitic, high‐pressure granulites could be significantly reduced by a high proportion of melt loss. We suggest that orthopyroxene‐bearing, high‐pressure granulites occur in residual overthickened crustal basement under continental subduction–collision zones and arc–continent collision belts.  相似文献   

18.
Abstract Metapelites in the Altavista area, southwest Virginia Piedmont, USA, underwent allochemical hydrothermal retrograde metamorphism in synmetamorphic shear zones. The metapelites of the Evington Group were metamorphosed in a prograde sequence of chlorite, staurolite, and sillimanite zones. Garnet–biotite geothermometry and phase relations support eastward increasing metamorphic grade, ranging from 570° C in the staurolite zone to 650° C in the sillimanite zone at c. 5.8 kbar. Sillimanite-zone rocks later underwent progressive retrogression around shear zones which acted as fluid conduits. Retrograde assemblages are successively zoned around the shear zones with staurolite-, chloritoid- and kyanite-bearing assemblages. The shear zones commonly contain kyanite or tourmaline veins. Applicable phase equilibria indicate that retrogression occurred during isobaric cooling through c. 200–270° C. Rock compositional changes with retrogression occurred in steps: SiO2 was gained in the early stages of the retrogression but lost in the late stages; Al2O3, K2O, and H2O were increasingly gained through the sequence; CaO was increasingly lost. Addition of H2O and decreasing temperatures resulted in new ferromagnesian minerals (staurolite, chloritoid, chlorite) and changes in H2O, SiO2, Al2O3, K2O, and CaO contents produced muscovite and sodic plagioclase. Subsequent to prograde metamorphism, deeply derived fluids migrated upwards along shear zones, providing fluid and energy for the retrograde reactions. The sheared rocks underwent fluid infiltration with fluid fluxes of 1.8 × 107–4.3 × 107 cm3/cm2 corresponding to minimum estimated fluid-to-rock ratios of 7.5–21 as a function of position within the shear zone. Fluid flow was from high to low temperature early and low to high temperature later in the retrogression.  相似文献   

19.
Based on the experiments on dehydration-melting of solid samples of Al-rich gneiss (H029) and biotite granulitite (H013), the fugacities of O2, H2O and H2 have been calculated. It is recognized that the fugacities of O2, H2O and H2 vary regularly, but the fugacity of H2O shows a tendency of abrupt increasing at about 700°C and 800°C. According to the above fact, the melting mechanism of biotite can be well documented. Under relatively low temperatures (< 750°C), part of the water can be liberated and induce plagioclase to melt, which may mark the beginning of migmatization. At high temperatures (> 800°C), biotite can be dissociated and a larger amount of water can be released, which would result in a bigger degree of melting, hence leading to the formation of granitic magma.  相似文献   

20.
The 1.0-1.2 b.y. old rocks of the southeastern Llano Uplift, Texas include a 7 km thick sequence of amphibolite-grade, stratified, mafic metasedimentary rock (Packsaddle Schist) which is intruded by a varied suite of syntectonic and late-kinematic intrusions. The metasediments contain large blocks of serpentinized peridotite (Coal Creek serpentinite) and coarse hornblendite and metagabbro. Prior to the end of maximum deformation, the sequence was intruded by low to medium-K2O tholeiitic basalts (0.40-0.72% K2O). Late-kinematic low-K2O tholeiitic basalts (0.38-0.40% K2O) were intruded as dikes into the folded rocks. The Coal Creek serpentinite contains both syntectonic and late-kinematic low-K2O tholeiitic metabasalts (0.13–0.36% K2O). The Llano metabasalts and metagabbros are characterized by low Cr (67–378 ppm) and Ni (36–170 ppm), variable Rb (1.5–14.7 ppm), Sr (140–1229 ppm), TiO2 (0.40–2.20%), P (568–2707 ppm), and Zr (18–230 ppm), and Y (16–45 ppm), Co (40–57 ppm), and Sc (36–49 ppm) similar to modern MORB. The metabasalts have La abundances from 7 to 39 times chondritic and exhibit light REE enrichment with ¦La/Sm¦N from 1.13 to 1.45 and ¦La/Yb¦N from 1.12 to 2.99. The metabasalts show a strong correlation of increasing Zr, Ti, and Y and decreasing Eu/Eu* (1.56–1.00), CaO/TiO2, Al2O3/TiO2, and MgO/ MgO+FeO* with increasing REE enrichment (LaN). The Llano metabasalts and metagabbros have initial 87Sr/86Sr=0.7029±0.0001. A likely petrogenetic model for these metabasalts is an island arc in which events from early arc development to final late-kinematic intrusion were dominated by tholeiitic volcanism and intrusion. The chemical systematics of the Llano mafic metaigneous rocks suggest they are products of fractionation of olivine, clinopyroxene, and plagioclase from more primitive basaltic magmas generated beneath the island arc complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号