首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
The purpose of the present study is to investigate the association of solar energetic particle (SEP) events with halo coronal mass ejections (CME) and with their associated solar flares during the period 1997–2014 (solar cycle 23 and 24). We have found that halo CMEs are more effective in producing SEP events. The occurrence probability and peak fluxes of SEPs strongly depend on the halo CMEs speed (V) as follows. The highest associations, 56% for occurrence probability and 90% for average peak fluxes, are found for the halo CMEs with V> 1400 km s−1 but the lowest associations, 20% for occurrence probability and 5% for average peak fluxes, are found for halo CMEs with speed range 600 ≤ V ≤ 1000 km s−1. We have also examined the relationship between SEP events and halo CME associated solar flares and found that 73% of events are associated with western solar flares while only 27% are with eastern solar flares. For longitudinal study, 0–20° belt is found to be more dominant for the SEP events. The association of SEP events with latitudinal solar flares is also examined in the study. 51% of events are associated with those halo CMEs associated solar flares which occur in the southern hemisphere of the Sun while 49% are with those solar flares that occur in the northern hemisphere of the Sun. Also, 10–20° latitudinal belt is found to be likely associated with the SEP events. Further, 45% of SEP events are associated with M-class solar flares while 44% and 11% are with X and C-class respectively. Maximum number of SEP events are found for the fast halo CME associated X- class solar flares (68%) than M and C- class solar flares.  相似文献   

2.
Flux measurements of solar energetic particles (SEPs) in the ERNE instrument onboard SOHO indicate that the abundance of 4He-nuclei compared to protons in the energy range up to 100 MeV nucl–1 was exceptionally high during the particle events on 27 May 1998 and 28 December 1999. The 4He/p ratio stayed between 0.15–0.50 for more than ten hours. There was also a prolonged enhancement in helium-3, 3He/4H 1%. Observations of EIT and LASCO on board SOHO confirm that the originators of both SEP events were western eruptions, flares and coronal mass ejections (CMEs). The onset of the SEP release took place close to the maximum of flares which were probably triggered by the rising CMEs. The observations suggest that the SEP events were started with the flare-(pre)accelerated particles, but impact of the CME-associated shocks might explain the continuation and modification of the helium and proton fluxes well after the flare production. These observations support the idea that the helium enhancements in the CME-associated events reflect the availability of seed particles that originate previously in flares.  相似文献   

3.
We examined solar energetic proton (SEP) events associated with intense H flares. We located these flares on the solar disk and obtained their distribution in heliographic longitude as well as their angular distance distribution with respect to the neutral lines corresponding to the heliospheric current sheet at 2.5R. We found that the SEP-associated H flares tend to occur in active regions at the feet of those helmet streamers which form the heliomagnetic equator and are related to coronal mass ejections (CMEs) and CME shocks. We discuss the possible role of flares, CMEs and CME shocks in generating SEPs.  相似文献   

4.
We perform a principal component analysis (PCA) on a set of six solar variables (i.e. width/size (\(s\)) and velocity (\(u\)) of a coronal mass ejection, logarithm of the solar flare (SF) magnitude (\(\log\mathit{SXRs}\)), SF longitude (\(\mathit{lon}\)), duration (\(\mathit{DT}\)), and rise time (\(\mathit{RT}\))). We classify the solar energetic particle (SEP) event radiation impact (in terms of the National Oceanic and Atmospheric Administration scales) with respect to the characteristics of their parent solar events. We further attempt to infer the possible prediction of SEP events. In our analysis, we use 126 SEP events with complete solar information, from 1997 to 2013. Each SEP event is a vector in six dimensions (corresponding to the six solar variables used in this work). The PCA transforms the input vectors into a set of orthogonal components. By mapping the characteristics of the parent solar events, a new base defined by these components led to the classification of the SEP events. We furthermore applied logistic regression analysis with single, as well as multiple explanatory variables, in order to develop a new index (\(I\)) for the nowcasting (short-term forecasting) of SEP events. We tested several different schemes for \(I\) and validated our findings with the implementation of categorical scores (probability of detection (POD) and false-alarm rate (FAR)). We present and interpret the obtained scores, and discuss the strengths and weaknesses of the different implementations. We show that \(I\) holds prognosis potential for SEP events. The maximum POD achieved is 77.78% and the relative FAR is 40.96%.  相似文献   

5.
Based on the observations of the Sun and the interplanetary medium, a series of solar activities in late October 2003 and their consequences are studied comprehensively. Thirteen X-ray flares with importance greater than M-class, six frontside halo coronal mass ejections (CMEs) with span angle larger than 100 and three associated eruptions of filament materials are identified by examining lots of solar observations from October 26 to 29. All these flares were associated with type III radio bursts, all the frontside halo CMEs were accompanied by type II or type II-like radio bursts. Particularly, among these activities, two major solar events caused two extraordinary enhancements (exceeding 1000 particles/(cm2s–1sterMev–1) of solar energetic particle (SEP) flux intensity near the Earth, two large ejecta with fast shocks preceding, and two great geomagnetic storms with Dst peak value of –363 and –401 nT, respectively. By using a cross correlation technique and a force-free cylindrical flux rope model, the October 29 magnetic cloud associated with the largest CME are analyzed, including its orientation and the sign of its helicity. It is found that the helicity of the cloud is negative, contrary to the regular statistical pattern that negative- and positive-helical interplanetary magnetic clouds would be expected to come from northern and southern solar hemisphere. Moreover, the relationship between the orientation of magnetic cloud and associated filament is discussed. In addition, some discussion concerning multiple-magnetic-cloud structures and SEP events is also given.  相似文献   

6.
We have found that solar flares in NOAA active region (AR) 10696 were often associated with large-scale trans-equatorial activities. These trans-equatorial activities appeared to be very common and manifest themselves through i) the formation and eruption of trans-equatorial loops (TELs), ii) the formation and eruption of trans-equatorial filaments (TEFs), and iii) the trans-equatorial brightening (TEB) in the chromosphere. It is determined that the TEF was formed following episodic plasma ejecta from flares occurring in the AR. The TEF eruption was associated with a trans-equatorial flare. All flares in the AR that were accompanied by trans-equatorial activities were associated with halo coronal mass ejections (CMEs). It was noticed that one or several major flares in the AR were followed by an increase of brightness and nonpotentiality of a TEL. These coupled events had a lifetime of more than 12 hours. In addition their associated halo CMEs always had a positive acceleration, indicating prolonged magnetic reconnections in the outer corona at high altitudes.  相似文献   

7.
We study event-to-event variations in the abundance enhancements of the elements He through Pb for Fe-rich impulsive solar energetic-particle (SEP) events, and their relationship with properties of associated coronal mass ejections (CMEs) and solar flares. Using a least-squares procedure we fit the power-law enhancement of element abundances as a function of their mass-to-charge ratio A/Q to determine both the power and the coronal temperature (which determines Q) in each of 111 impulsive SEP events identified previously. Individual SEP events with the steepest element enhancements, e.g. ~?(A/Q)6, tend to be smaller, lower-fluence events with steeper energy spectra that are associated with B- and C-class X-ray flares, with cooler (~?2.5 MK) coronal plasma, and with narrow (°), slower (?1) CMEs. On the other hand, higher-fluence SEP events have flatter energy spectra, less-dramatic heavy-element enhancements, e.g. ~?(A/Q)3, and come from somewhat hotter coronal plasma (~?3.2 MK) associated with C-, M-, and even X-class X-ray flares and with wider CMEs. Enhancements in 3He/4He are uncorrelated with those in heavy elements. However, events with 3He/4He≥0.1 are even more strongly associated with narrow, slow CMEs, with cooler coronal plasma, and with B- and C-class X-ray flares than are other Fe-rich impulsive SEP events with smaller enhancements of 3He.  相似文献   

8.
We review recent progress on our understanding of radio emission from solar flares and coronal mass ejections (CMEs) with emphasis on those aspects of the subject that help us address questions about energy release and its properties, the configuration of flare?–?CME source regions, coronal shocks, particle acceleration and transport, and the origin of solar energetic particle (SEP) events. Radio emission from electron beams can provide information about the electron acceleration process, the location of injection of electrons in the corona, and the properties of the ambient coronal structures. Mildly relativistic electrons gyrating in the magnetic fields of flaring loops produce radio emission via the gyrosynchrotron mechanism, which provides constraints on the magnetic field and the properties of energetic electrons. CME detection at radio wavelengths tracks the eruption from its early phase and reveals the participation of a multitude of loops of widely differing scale. Both flares and CMEs can ignite shock waves and radio observations offer the most robust tool to study them. The incorporation of radio data into the study of SEP events reveals that a clear-cut distinction between flare-related and CME-related SEP events is difficult to establish.  相似文献   

9.
Flares and coronal mass ejections (CMEs) contribute to the acceleration and propagation of solar energetic particles (SEP) detected in the interplanetary space, but the exact roles of these phenomena are yet to be understood. We examine two types of energetic particle tracers related with 15 CME-less flares that emit bright soft X-ray bursts (GOES X class): radio emission of flare-accelerated electrons and in situ measurements of energetic electrons and protons near 1 AU. The CME-less flares are found to be vigorous accelerators of microwave-emitting electrons, which remain confined in low coronal structures. This is shown by unusually steep low-frequency microwave spectra and by lack of radio emission from the middle and high corona, including dm?–?m wave type IV continua and metre-to-hectometre type III bursts. The confinement of the particles accelerated in CME-less flares agrees with the magnetic field configuration of these events inferred by others. Two events produced isolated metric type II bursts revealing coronal shock waves. None of the seven flares in the western hemisphere was followed by enhanced particle fluxes in the GOES detectors, but one, which was accompanied by a type II burst, caused a weak SEP event detected at SoHO and ACE. Three of the CME-less flares were followed within some hours by SEP-associated flares from the same active region. These SEP-producing events were clearly distinct from the CME-less ones by their association with fast and broad CMEs, dm?–?m wave radio emission, and intense DH type III bursts. We conclude that radio emission at decimetre and longer waves is a reliable indication that flare-accelerated particles have access to the high corona and interplanetary space. The absence of such emission can be used as a signal that no SEP event is to be expected despite the occurrence of a strong soft X-ray burst.  相似文献   

10.
Coronal mass ejections (CMEs) and other solar eruptive phenomena can be physically linked by combining data from a multitude of ground-based and space-based instruments alongside models; however, this can be challenging for automated operational systems. The EU Framework Package 7 HELCATS project provides catalogues of CME observations and properties from the Heliospheric Imagers on board the two NASA/STEREO spacecraft in order to track the evolution of CMEs in the inner heliosphere. From the main HICAT catalogue of over 2,000 CME detections, an automated algorithm has been developed to connect the CMEs observed by STEREO to any corresponding solar flares and active-region (AR) sources on the solar surface. CME kinematic properties, such as speed and angular width, are compared with AR magnetic field properties, such as magnetic flux, area, and neutral line characteristics. The resulting LOWCAT catalogue is also compared to the extensive AR property database created by the EU Horizon 2020 FLARECAST project, which provides more complex magnetic field parameters derived from vector magnetograms. Initial statistical analysis has been undertaken on the new data to provide insight into the link between flare and CME events, and characteristics of eruptive ARs. Warning thresholds determined from analysis of the evolution of these parameters is shown to be a useful output for operational space weather purposes. Parameters of particular interest for further analysis include total unsigned flux, vertical current, and current helicity. The automated method developed to create the LOWCAT catalogue may also be useful for future efforts to develop operational CME forecasting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号