首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using multiwavelength observations from the Solar Dynamics Observatory (SDO) and the Solar Terrestrial Relations Observatory (STEREO), we investigate the mechanism of two successive eruptions (F1 and F2) of a filament in active region NOAA 11444 on 27 March 2012. The filament was inverse J-shaped and lay along a quasi-circular polarity inversion line (PIL). The first part of the filament erupted at \(\sim2{:}30\) UT on 27 March 2012 (F1), the second part at around 4:20 UT on the same day (F2). A precursor or preflare brightening was observed below the filament main axis about 30 min before F1. The brightening was followed by a jet-like ejection below the filament, which triggered its eruption. Before the eruption of F2, the filament seemed to be trapped within the overlying arcade loops for almost 1.5 h before it successfully erupted. Interestingly, we observe simultaneously contraction (\(\sim12~\mbox{km}\,\mbox{s}^{-1}\)) and expansion (\(\sim20~\mbox{km}\,\mbox{s}^{-1}\)) of arcade loops in the active region before F2. Magnetograms obtained with the Helioseismic and Magnetic Imager (HMI) show converging motion of the opposite polarities, which result in flux cancellation near the PIL. We suggest that flux cancellation at the PIL resulted in a jet-like ejection below the filament main axis, which triggered F1, similar to the tether-cutting process. F2 was triggered by removal of the overlying arcade loops via reconnection. Both filament eruptions produced high-speed (\(\sim1000~\mbox{km}\,\mbox{s}^{-1}\)) coronal mass ejections.  相似文献   

2.
A great 3B flare, whose X-ray class was X13, occurred over a delta-sunspot at 00: 01 UT on April 25, 1984. Before the flare, a strong magnetic shear was found to be formed along the neutral line in the delta-sunspot with shear motions of umbrae. The shear motions of the umbrae were caused by the successive emergence of a magnetic flux rope.Before the flare, several groups of sheared H threads and filaments were found to merge into an elongated filament along the neutral line through the delta-sunspot. In the merging process the helical twists were formed in the filament by the reconnection as in the Pneuman's (1983) model.At the post-maximum phase of the flare, the helically twisted filament spouted out with an untwisting rotation. Examining the morphological and dynamical features of the filament eruption, we concluded that it has some typical features of the flare spray and that it seems to be accelerated by the sweeping-magnetictwist mechanism proposed by Shibata and Uchida (1986).Contributions from the Kwasan and Hida Observatories, University of Kyoto, No. 276.  相似文献   

3.
Radosław Rek 《Solar physics》2010,267(2):361-375
Solar flares take place in regions of strong magnetic fields and are generally accepted to be the result of a resistive instability leading to magnetic reconnection. When new flux emerges into a pre-existing active region it can act as a flare and coronal mass ejection trigger. In this study we observed active region 10955 after the emergence of small-scale additional flux at the magnetic inversion line. We found that flaring began when additional positive flux levels exceeded 1.38×1020 Mx (maxwell), approximately 7 h after the initial flux emergence. We focussed on the pre-flare activity of one B-class flare that occurred on the following day. The earliest indication of activity was a rise in the non-thermal velocity one hour before the flare. 40 min before flaring began, brightenings and pre-flare flows were observed along two loop systems in the corona, involving the new flux and the pre-existing active region loops. We discuss the possibility that reconnection between the new flux and pre-existing loops before the flare drives the flows by either generating slow mode magnetoacoustic waves or a pressure gradient between the newly reconnected loops. The subsequent B-class flare originated from fast reconnection of the same loop systems as the pre-flare flows.  相似文献   

4.
We investigate the morphology and temporal variability of a quiet-Sun network region in different solar layers. The emission in several extreme ultraviolet (EUV) spectral lines through both raster and slot time-series, recorded by the EUV Imaging Spectrometer (EIS) on board the Hinode spacecraft is studied along with \(\mbox{H}\upalpha\) observations and high-resolution spectropolarimetric observations of the photospheric magnetic field. The photospheric magnetic field is extrapolated up to the corona, showing a multitude of large- and small-scale structures. We show for the first time that the smallest magnetic structures at both the network and internetwork contribute significantly to the emission in EUV lines, with temperatures ranging from \(8\times 10^{4}~\mbox{K}\) to \(6\times 10^{5}~\mbox{K}\). Two components of transition region emission are present, one associated with small-scale loops that do not reach coronal temperatures, and another component that acts as an interface between coronal and chromospheric plasma. Both components are associated with persistent chromospheric structures. The temporal variability of the EUV intensity at the network region is also associated with chromospheric motions, pointing to a connection between transition region and chromospheric features. Intensity enhancements in the EUV transition region lines are preferentially produced by \(\mbox{H}\upalpha\) upflows. Examination of two individual chromospheric jets shows that their evolution is associated with intensity variations in transition region and coronal temperatures.  相似文献   

5.
A filament disappearance event was observed on 22 May 2008 during our recent campaign JOP 178. The filament, situated in the Southern Hemisphere, showed sinistral chirality consistent with the hemispheric rule. The event was well observed by several observatories, in particular by THEMIS. One day, before the disappearance, Hα observations showed up- and down-flows in adjacent locations along the filament, which suggest plasma motions along twisted flux rope. THEMIS and GONG observations show shearing photospheric motions leading to magnetic flux canceling around barbs. STEREO A, B spacecraft with separation angle 52.4°, showed quite different views of this untwisting flux rope in He ii 304 Å images. Here, we reconstruct the three-dimensional geometry of the filament during its eruption phase using STEREO EUV He ii 304 Å images and find that the filament was highly inclined to the solar normal. The He ii 304 Å movies show individual threads, which oscillate and rise to an altitude of about 120 Mm with apparent velocities of about 100 km?s?1 during the rapid evolution phase. Finally, as the flux rope expands into the corona, the filament disappears by becoming optically thin to undetectable levels. No CME was detected by STEREO, only a faint CME was recorded by LASCO at the beginning of the disappearance phase at 02:00 UT, which could be due to partial filament eruption. Further, STEREO Fe xii 195 Å images showed bright loops beneath the filament prior to the disappearance phase, suggesting magnetic reconnection below the flux rope.  相似文献   

6.
We present here an interesting two-step filament eruption during 14?–?15 March 2015. The filament was located in NOAA AR 12297 and associated with a halo Coronal Mass Ejection (CME). We use observations from the Atmospheric Imaging Assembly (AIA) and Heliospheric Magnetic Imager (HMI) instruments onboard the Solar Dynamics Observatory (SDO), and from the Solar and Heliospheric Observatory (SOHO) Large Angle and Spectrometric Coronagraph (LASCO). We also use \(\mbox{H}\upalpha\) data from the Global Oscillation Network Group (GONG) telescope and the Kanzelhoehe Solar Observatory. The filament shows a first step eruption on 14 March 2015 and it stops its rise at a projected altitude \({\approx}\,125~\mbox{Mm}\) on the solar disk. It remains at this height for \({\approx}\,12~\mbox{hrs}\). Finally it erupts on 15 March 2015 and produces a halo CME. We also find jet activity in the active region during both days, which could help the filament de-stabilization and eruption. The decay index is calculated to understand this two-step eruption. The eruption could be due to the presence of successive instability–stability–instability zones as the filament is rising.  相似文献   

7.
We analyze the well-observed flare and coronal mass ejection (CME) from 1 October 2011 (SOL2011-10-01T09:18) covering the complete chain of effects – from Sun to Earth – to better understand the dynamic evolution of the CME and its embedded magnetic field. We study in detail the solar surface and atmosphere associated with the flare and CME using the Solar Dynamics Observatory (SDO) and ground-based instruments. We also track the CME signature off-limb with combined extreme ultraviolet (EUV) and white-light data from the Solar Terrestrial Relations Observatory (STEREO). By applying the graduated cylindrical shell (GCS) reconstruction method and total mass to stereoscopic STEREO-SOHO (Solar and Heliospheric Observatory) coronagraph data, we track the temporal and spatial evolution of the CME in the interplanetary space and derive its geometry and 3D mass. We combine the GCS and Lundquist model results to derive the axial flux and helicity of the magnetic cloud (MC) from in situ measurements from Wind. This is compared to nonlinear force-free (NLFF) model results, as well as to the reconnected magnetic flux derived from the flare ribbons (flare reconnection flux) and the magnetic flux encompassed by the associated dimming (dimming flux). We find that magnetic reconnection processes were already ongoing before the start of the impulsive flare phase, adding magnetic flux to the flux rope before its final eruption. The dimming flux increases by more than 25% after the end of the flare, indicating that magnetic flux is still added to the flux rope after eruption. Hence, the derived flare reconnection flux is most probably a lower limit for estimating the magnetic flux within the flux rope. We find that the magnetic helicity and axial magnetic flux are lower in the interplanetary space by ~?50% and 75%, respectively, possibly indicating an erosion process. A CME mass increase of 10% is observed over a range of \({\sim}\,4\,\mbox{--}\,20~\mathrm{R}_{\odot }\). The temporal evolution of the CME-associated core-dimming regions supports the scenario that fast outflows might supply additional mass to the rear part of the CME.  相似文献   

8.
This is the first of four companion papers, which comprehensively analyze a complex eruptive event of 18 November 2003 in active region (AR) 10501 and the causes of the largest Solar Cycle 23 geomagnetic storm on 20 November 2003. Analysis of a complete data set, not considered before, reveals a chain of eruptions to which hard X-ray and microwave bursts responded. A filament in AR 10501 was not a passive part of a larger flux rope, as usually considered. The filament erupted and gave origin to a coronal mass ejection (CME). The chain of events was as follows: i) a presumable eruption at 07:29 UT accompanied by a not reported M1.2 class flare probably associated with the onset of a first southeastern CME (CME1), which most likely is not responsible for the superstorm; ii) a confined eruption (without a CME) at 07:41 UT (M3.2 flare) that destabilized the large filament; iii) the filament acceleration around 07:56 UT; iv) the bifurcation of the eruptive filament that transformed into a large “cloud”; v) an M3.9 flare in AR 10501 associated to this transformation. The transformation of the filament could be due to the interaction of the eruptive filament with the magnetic field in the neighborhood of a null point, located at a height of about 100 Mm above the complex formed by ARs 10501, 10503, and their environment. The CORONAS-F/SPIRIT telescope observed the cloud in 304 Å as a large Y-shaped darkening, which moved from the bifurcation region across the solar disk to the limb. The masses and kinematics of the cloud and the filament were similar. Remnants of the filament were not clearly observed in the second southwestern CME (CME2), previously regarded as a source of the 20 November geomagnetic storm. These facts do not support a simple scenario, in which the interplanetary magnetic cloud is considered as a flux rope formed from a structure initially associated with the pre-eruption filament in AR 10501. Observations suggest a possible additional eruption above the bifurcation region close to solar disk center between 08:07 and 08:17 UT, which could be the source of the 20 November superstorm.  相似文献   

9.
Using a new type of oscillation map, made from the radio spectra by the wavelet technique, we study the 18 April 2014 M7.3 flare (SOL2014-04-18T13:03:00L245C017). We find a quasi-periodic character of this flare with periods in the range 65?–?115 seconds. At the very beginning of this flare, in connection with the drifting pulsation structure (plasmoid ejection), we find that the 65?–?115 s oscillation phase slowly drifts towards lower frequencies, which indicates an upward propagating wave initiated at the start of the magnetic reconnection. Many periods (1?–?200 seconds) are found in the drifting pulsation structure, which documents multi-scale and multi-periodic processes. On this drifting structure, fiber bursts with a characteristic period of about one second are superimposed, whose frequency drift is similar to that of the drifting 65?–?115 s oscillation phase. We also checked periods found in this flare by the EUV Imaging Spectrometer (EIS)/Hinode and Interface Region Imaging Spectrograph (IRIS) observations. We recognize the type III bursts (electron beams) as proposed, but their time coincidence with the EIS and IRIS peaks is not very good. The reason probably is that the radio spectrum is a whole-disk record consisting of all bursts from any location, while the EIS and IRIS peaks are emitted only from locations of slits in the EIS and IRIS observations.  相似文献   

10.
Innes  D.E.  Inhester  B.  Srivastava  N.  Brekke  P.  Harrison  R.A.  Matthews  S.A.  Noëns  J.C.  Schmieder  B.  Thompson  B.J. 《Solar physics》1999,186(1-2):337-361
The structure and dynamics of the initial phases of a coronal mass ejection (CME) seen in soft X-ray, extreme ultraviolet and optical emission are described. The event occurred on the SW limb of the Sun in active region AR 8026 on 9 April 1997. Just prior to the CME there was a class C1.5 flare. Images taken with the Extreme Ultraviolet Imaging Telescope (EIT) reveal the emergence of a candle-flame shaped extreme ultraviolet (EUV) cavity at the time of the flare. Yohkoh images, taken about 15 min later, show that this cavity is filled with hot X-ray emitting gas. It is most likely that this is the site of the flare. Almost simultaneous to the flare, an H surge or small filament eruption occurs about 50 arc sec northwards along the limb from the EUV cavity. At both the site of the core of the hot, EUV cavity and the filament ejection are X-ray jets. These jets seem to be connected by hot loops near their bases. Both jets disappear within a few minutes of one another.Clear evidence of the CME first appeared in the Large Angle Spectrometric Coronagraph (LASCO) and EIT images 40 min after the flare and onset of the filament ejection. It seems to come from a region between the two X-ray jets. This leads to the speculation that magnetic field reconnection near one footpoint of a loop system triggers reconnection near its other footpoint. The loop system is destabilized and ultimately gives rise to the CME. This possibility is supported by magnetic field and H images taken when the active region was at disk center which show that the active region had a double bipole structure with dark H filaments between the bipoles.  相似文献   

11.
Predictions of Energy and Helicity in Four Major Eruptive Solar Flares   总被引:1,自引:0,他引:1  
In order to better understand the solar genesis of interplanetary magnetic clouds (MCs), we model the magnetic and topological properties of four large eruptive solar flares and relate them to observations. We use the three-dimensional Minimum Current Corona model (Longcope, 1996, Solar Phys. 169, 91) and observations of pre-flare photospheric magnetic field and flare ribbons to derive values of reconnected magnetic flux, flare energy, flux rope helicity, and orientation of the flux-rope poloidal field. We compare model predictions of those quantities to flare and MC observations, and within the estimated uncertainties of the methods used find the following: The predicted model reconnection fluxes are equal to or lower than the reconnection fluxes inferred from the observed ribbon motions. Both observed and model reconnection fluxes match the MC poloidal fluxes. The predicted flux-rope helicities match the MC helicities. The predicted free energies lie between the observed energies and the estimated total flare luminosities. The direction of the leading edge of the MC’s poloidal field is aligned with the poloidal field of the flux rope in the AR rather than the global dipole field. These findings compel us to believe that magnetic clouds associated with these four solar flares are formed by low-corona magnetic reconnection during the eruption, rather than eruption of pre-existing structures in the corona or formation in the upper corona with participation of the global magnetic field. We also note that since all four flares occurred in active regions without significant pre-flare flux emergence and cancelation, the energy and helicity that we find are stored by shearing and rotating motions, which are sufficient to account for the observed radiative flare energy and MC helicity.  相似文献   

12.
In this article, we present a multi-wavelength and multi-instrument investigation of a halo coronal mass ejection (CME) from active region NOAA 12371 on 21 June 2015 that led to a major geomagnetic storm of minimum \(\mathrm{Dst} = -204\) nT. The observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory in the hot EUV channel of 94 Å confirm the CME to be associated with a coronal sigmoid that displayed an intense emission (\(T \sim6\) MK) from its core before the onset of the eruption. Multi-wavelength observations of the source active region suggest tether-cutting reconnection to be the primary triggering mechanism of the flux rope eruption. Interestingly, the flux rope eruption exhibited a two-phase evolution during which the “standard” large-scale flare reconnection process originated two composite M-class flares. The eruption of the flux rope is followed by the coronagraphic observation of a fast, halo CME with linear projected speed of 1366 km?s?1. The dynamic radio spectrum in the decameter-hectometer frequency range reveals multiple continuum-like enhancements in type II radio emission which imply the interaction of the CME with other preceding slow speed CMEs in the corona within \(\approx10\)?–?\(90~\mbox{R} _{\odot}\). The scenario of CME–CME interaction in the corona and interplanetary medium is further confirmed by the height–time plots of the CMEs occurring during 19?–?21 June. In situ measurements of solar wind magnetic field and plasma parameters at 1 AU exhibit two distinct magnetic clouds, separated by a magnetic hole. Synthesis of near-Sun observations, interplanetary radio emissions, and in situ measurements at 1 AU reveal complex processes of CME–CME interactions right from the source active region to the corona and interplanetary medium that have played a crucial role towards the large enhancement of the geoeffectiveness of the halo CME on 21 June 2015.  相似文献   

13.
We present a study of the complex event consisting of several solar wind transients detected by the Advanced Composition Explorer (ACE) on 4?–?7 August 2011, which caused a geomagnetic storm with \(\mathit{Dst}=-110~\mbox{nT}\). The supposed coronal sources, three flares and coronal mass ejections (CMEs), occurred on 2?–?4 August 2011 in active region (AR) 11261. To investigate the solar origin and formation of these transients, we study the kinematic and thermodynamic properties of the expanding coronal structures using the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) EUV images and differential emission measure (DEM) diagnostics. The Helioseismic and Magnetic Imager (HMI) magnetic field maps were used as the input data for the 3D magnetohydrodynamic (MHD) model to describe the flux rope ejection (Pagano, Mackay, and Poedts, 2013b). We characterize the early phase of the flux rope ejection in the corona, where the usual three-component CME structure formed. The flux rope was ejected with a speed of about \(200~\mbox{km}\,\mbox{s}^{-1}\) to the height of \(0.25~\mbox{R}_{\odot}\). The kinematics of the modeled CME front agrees well with the Solar Terrestrial Relations Observatory (STEREO) EUV measurements. Using the results of the plasma diagnostics and MHD modeling, we calculate the ion charge ratios of carbon and oxygen as well as the mean charge state of iron ions of the 2 August 2011 CME, taking into account the processes of heating, cooling, expansion, ionization, and recombination of the moving plasma in the corona up to the frozen-in region. We estimate a probable heating rate of the CME plasma in the low corona by matching the calculated ion composition parameters of the CME with those measured in situ for the solar wind transients. We also consider the similarities and discrepancies between the results of the MHD simulation and the observations.  相似文献   

14.
We show observational results on the pre-flare evolutions of H structures as well as the developments of H flares. It is shown that the chromospheric features are brought to a sheared state before flares due to motions of footpoints which correspond to particular sunspot motions. Generally in evolutions of the chromospheric features it is found that motions and reconnections of the footpoints play essential roles. The following three stages are found for development of the neutral line filament before flares: (1) formation of a filament as a result of reconnection; (2) increase of the shear of the filament due to the shear motion; and (3) reconnection of fine components of the filament to form an elongated component immediately before flares. We further show developments of two particular flares with and without the filament, and point out basic release processes of flares. The flare that occurred at the filament (July 5, 1974) started with the activation of the elongated component of the filament after the process (3). The main phase of a two-ribbon flare is considered as the rises of short components of the filament triggered by the rising motion of the elongated component. The flare of September 10, 1974 occurred at the region where fibrils connect the sunspots in distorted form. Pre-flare distortion was produced by translational rotation of the sunspot. Development of this two-ribbon flare is interpreted as being due to successive rises of the fibrils with a self-trigger mechanism.On leave from Tokyo Astronomical Observatory (present address).  相似文献   

15.
Ji  H.S.  Wang  H.  Spirock  T.J.  Qiu  J.  Yang  G.  Goode  P.R. 《Solar physics》2002,211(1-2):221-229
Using data obtained with the 20-cm H full-disk telescope at Big Bear Solar Observatory and Fexii 195 Å EIT on SOHO, we analyze a sudden disappearance event of a quiescent filament in detail. The filament was located along the common boundary of the active regions NOAA 9672 (S19 E13) and NOAA 9673 (N03 E18). The filament disappeared during a time interval between 17:59 UT and 19:47 UT on 22 October 2001 immediately after the onset of a major flare, which occurred in the active region NOAA 9672. At about 23:23 UT of the same day, the filament began to reappear in H and, after about 15 hours, the filament recovered to its steady state with its size being slightly smaller than that before its disappearance. This filament disappearance event belongs to the thermal type of sudden filament disappearances, which is caused by an input of additional heat. The heating mechanism that leads to sudden thermal disappearances of quiescent filaments is still not well understood. This simple event, due to the explicit cause and effect relationship between the flare and the disappearance of the filament, shows us that the flare triggered some kind of heating mechanism which continued several hours. The heat may come from the flare via heat conduction from its ribbon or from the excitation of dissipating Alfvén waves. However, from the data analysis, we conclude that the flare triggered an in-situ heating, which is likely caused by magnetic reconnection.  相似文献   

16.
As a coronal mass ejection (CME) passes, the flank and wake regions are typically strongly disturbed. Various instruments, including the Large Angle and Spectroscopic Coronagraph (LASCO), the Atmospheric Imaging Assembly (AIA), and the Coronal Multi-channel Polarimeter (CoMP), observed a CME close to the east limb on 26 October 2013. A hot (\({\approx}\,10~\mbox{MK}\)) rising blob was detected on the east limb, with an initial ejection flow speed of \({\approx}\, 330~\mbox{km}\,\mbox{s}^{-1}\). The magnetic structures on both sides and in the wake of the CME were strongly distorted, showing initiation of turbulent motions with Doppler-shift oscillations enhanced from \({\approx}\, \pm 3~\mbox{km}\,\mbox{s}^{-1}\) to \({\approx}\, \pm 15~\mbox{km}\,\mbox{s}^{-1}\) and effective thermal velocities from \({\approx}\,30~\mbox{km}\,\mbox{s}^{-1}\) to \({\approx}\,60~\mbox{km}\,\mbox{s}^{-1}\), according to the CoMP observations at the Fe?xiii line. The CoMP Doppler-shift maps suggest that the turbulence behaved differently at various heights; it showed clear wave-like torsional oscillations at lower altitudes, which are interpreted as the antiphase oscillation of an alternating red/blue Doppler shift across the strands at the flank. The turbulence seems to appear differently in the channels of different temperatures. Its turnover time was \({\approx}\,1000\) seconds for the Fe 171 Å channel, while it was \({\approx}\,500\) seconds for the Fe 193 Å channel. Mainly horizontal swaying rotations were observed in the Fe 171 Å channel, while more vertical vortices were seen in the Fe 193 Å channel. The differential-emission-measure profiles in the flank and wake regions have two components that evolve differently: the cool component decreased over time, evidently indicating a drop-out of cool materials due to ejection, while the hot component increased dramatically, probably because of the heating process, which is suspected to be a result of magnetic reconnection and turbulence dissipation. These results suggest a new turbulence-heating scenario of the solar corona and solar wind.  相似文献   

17.
We present the multiwavelength observations of a flux rope that was trying to erupt from NOAA AR 11045 and the associated M-class solar flare on 12 February 2010 using space-based and ground-based observations from TRACE, STEREO, SOHO/MDI, Hinode/XRT, and BBSO. While the flux rope was rising from the active region, an M1.1/2F class flare was triggered near one of its footpoints. We suggest that the flare triggering was due to the reconnection of a rising flux rope with the surrounding low-lying magnetic loops. The flux rope reached a projected height of ≈0.15R with a speed of ≈90 km s−1 while the soft X-ray flux enhanced gradually during its rise. The flux rope was suppressed by an overlying field, and the filled plasma moved towards the negative polarity field to the west of its activation site. We found the first observational evidence of the initial suppression of a flux rope due to a remnant filament visible both at chromospheric and coronal temperatures that evolved a couple of days earlier at the same location in the active region. SOHO/MDI magnetograms show the emergence of a bipole ≈12 h prior to the flare initiation. The emerged negative polarity moved towards the flux rope activation site, and flare triggering near the photospheric polarity inversion line (PIL) took place. The motion of the negative polarity region towards the PIL helped in the build-up of magnetic energy at the flare and flux rope activation site. This study provides unique observational evidence of a rising flux rope that failed to erupt due to a remnant filament and overlying magnetic field, as well as associated triggering of an M-class flare.  相似文献   

18.
We propose a forecasting approach for solar flares based on data from Solar Cycle 24, taken by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) mission. In particular, we use the Space-weather HMI Active Region Patches (SHARP) product that facilitates cut-out magnetograms of solar active regions (AR) in the Sun in near-realtime (NRT), taken over a five-year interval (2012?–?2016). Our approach utilizes a set of thirteen predictors, which are not included in the SHARP metadata, extracted from line-of-sight and vector photospheric magnetograms. We exploit several machine learning (ML) and conventional statistics techniques to predict flares of peak magnitude \({>}\,\mbox{M1}\) and \({>}\,\mbox{C1}\) within a 24 h forecast window. The ML methods used are multi-layer perceptrons (MLP), support vector machines (SVM), and random forests (RF). We conclude that random forests could be the prediction technique of choice for our sample, with the second-best method being multi-layer perceptrons, subject to an entropy objective function. A Monte Carlo simulation showed that the best-performing method gives accuracy \(\mathrm{ACC}=0.93(0.00)\), true skill statistic \(\mathrm{TSS}=0.74(0.02)\), and Heidke skill score \(\mathrm{HSS}=0.49(0.01)\) for \({>}\,\mbox{M1}\) flare prediction with probability threshold 15% and \(\mathrm{ACC}=0.84(0.00)\), \(\mathrm{TSS}=0.60(0.01)\), and \(\mathrm{HSS}=0.59(0.01)\) for \({>}\,\mbox{C1}\) flare prediction with probability threshold 35%.  相似文献   

19.
A theory of two-ribbon solar flares is presented which identifies the primary energy release site with the tops of the flare loops. The flare loops are formed by magnetic reconnection of a locally opened field configuration produced by the eruption of a pre-flare filament. Such eruptions are commonly observed about 15 min prior to the flare itself. It is proposed that the flare loops represent the primary energy release site even during the earliest phase of the flare, i.e., the flare loops are in fact the flare itself.Based upon the supposition that the energy release at the loop tops is in the form of Joulean dissipation of magnetic energy at the rising reconnection site, a quantitative model of the energy release process is developed based upon an analytic reconnecting magnetic field geometry believed to represent the basic process. Predicted curves of energy density vs time are compared with X-ray observations taken aboard Skylab for the events of 29 July, 13 August, and 21 August in 1973. Considering the crudity of the model, the comparisons appear reasonable. The predicted field strengths necessary to produce the observed energy density curves are also reasonable, being in the range 100–1000 G.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

20.
The powerful flare 4B/X17.2 of October 28, 2003 in the NOAA 10486 active region is studied by using Hα filtergrams. This active region had a complicated βγδ magnetic configuration and a sigmoidal pattern of the polarity inversion line, it had the largest AR area in the cycle 23. Local filaments, loops, and systems of loops were also observed in the AR. The light curves obtained for all flare knots clearly reveal two stages in their evolution. The first stage is the pre-flare one, when the accumulation of the nonpotential magnetic energy (the energy of electric currents) comes to an end and the situation becomes favorable for the realization of the second period. The intensity of flare knots (except one knot) changed slightly and slowly, and some structure features (twists and connections) became more active. By the end of the first stage a new magnetic flux emerged and a system of interrelated filaments and loops (IFL) was formed at the center of the AR as well as at its periphery. New flare knots appeared about the main S-like filament. The second flare stage began at about 11:02 UT with a dramatic increase of the intensity and area of all flare knots and the formation of new knots. In a space of 8 min the major part of the AR around the main filament was covered with flare emission which fluctuated at its maximum period. The intensity of all knots was observed to drop slowly after the maximum, at the decay phase. As the IFL system extended over the entire AR, the magnetic field energy accumulated in it was released in the form of powerful electromagnetic and corpuscular emission by way of magnetic reconnection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号