首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Although the current Solar Cycle 24 is characterized by low solar activity, an intense geomagnetic storm (G4) was recorded in June 2015. It was a complex phenomenon that began on 22 June 2015 as the result of intense solar activity, accompanied by several flares and coronal mass ejections that interacted with the Earth’s magnetic field. A Forbush decrease was also recorded at the neutron monitors of the worldwide network, with an amplitude of 8.4%, and in its recovery phase, a second Forbush decrease followed, with an amplitude of 4.0% for cosmic rays of 10 GV obtained with the global survey method. The Dst index reached a minimum value of ?204 nT that was detected on 23 June 2015 at 05:00?–?06:00 UT, while the Kp index reached the value eight. For our analysis, we used hourly cosmic-ray intensity data recorded by polar, mid-, and high-latitude neutron monitor stations obtained from the High Resolution Neutron Monitor Database. The cosmic-ray anisotropy variation at the ecliptic plane was also estimated and was found to be highly complex. We study and discuss the unusual and complex cosmic-ray and geomagnetic response to these solar events.  相似文献   

2.
In the present work an analysis has been made of the extreme events occurring during July 2005. Specifically, a rather intense Forbush decrease was observed at different neutron monitors all over the world during 16 July 2005. An effort has been made to study the effect of this unusual event on cosmic ray intensity as well as various solar and interplanetary plasma parameters. It is noteworthy that during 11 to 18 July 2005 the solar activity ranged from low to very active. Especially low levels occurred on 11, 15, and 17 July whereas high levels took place on 14 and 16 July 2005. The Sun is observed to be active during 11 to 18 July 2005, the interplanetary magnetic field intensity lies within 15 nT, and solar wind velocity was limited to ∼500 kms-1. The geomagnetic activity during this period remains very quiet, the Kp index did not exceed 5, the disturbance storm time Dst index remains ∼-70 nT and no sudden storm commencement has been detected during this period. It is noted that for the majority of the hours, the north/south component of the interplanetary magnetic field, Bz, remains negative, and the cosmic ray intensity increases and shows good/high correlation with Bz, as the polarity of Bz tends to shift from negative to positive values, the intensity decreases and shows good/high anti-correlation with Bz. The cosmic ray intensity tends to decrease with increase of interplanetary magnetic field strength (B) and shows anti-correlation for the majority of the days. Published in Astrofizika, Vol. 51, No. 2, pp. 255–265 (May 2008).  相似文献   

3.
The effect of solar and interplanetary disturbances on geomagnetospheric conditions leading to 121 moderate geomagnetic storms (MGS) have been investigated using the neutron monitor, solar geophysical and interplanetary data during the period 1978–99. Further, the duration of recovery phase has been observed to be greater than the duration of main phase in most of the cases of MGS. It has further been noted that Ap-index increases on sudden storm commencement (SSC) day than its previous day value and acquires maximum value on the day of maximum solar activity. Generally, the decrease in cosmic ray (CR) intensity and Dst begins few hours earlier than the occurrence of MGS at Earth. Furthermore, negative Bz pointing southward plays a key causal role in the occurrence of MGS and the magnitude and the duration of Bz and Bav also play a significant role in the development of MGS. The solar features Hα, X-ray solar flares and active prominences and disappearing filaments (APDFs) which have occurred within lower helio-latitudinal/helio-longitudinal zones produce larger number of MGS. Solar flares seem to be the major cause for producing MGS.  相似文献   

4.
Identifying the precursors (pre-increases or pre-decreases) of a geomagnetic storm or a Forbush decrease is of great importance since they can forecast and warn of oncoming space weather effects. A wide investigation using 93 events which occurred in the period from 1967 to 2006 with an anisotropy A xy >1.2% has been conducted. Twenty-seven of the events revealed clear signs of precursors and were classified into three categories. Here we present one of the aforementioned groups, including five Forbush decreases (24 June 1980, 28 October 2000, 17 August 2001, 23 April 2002, and 10 May 2002). Apart from hourly cosmic ray intensity data, provided by the worldwide network of neutron monitor stations, data on solar flares, solar wind speed, geomagnetic indices (Kp and Dst), and interplanetary magnetic field were used for the analysis of the examined cosmic ray intensity decreases. The asymptotic longitudinal cosmic ray distribution diagrams were plotted using the “ring of stations” method. Results reveal a long pre-decrease up to 24 hours before the shock arrival in a narrow longitudinal zone from 90° to 180°.  相似文献   

5.
We have analyze the set of 70 intense geomagnetic storms associatedwith Dst decrease of more than 100 nT, observed duringthe period (1986–1991). We have compile these selected intensegeomagnetic storm events and find out their association with twotypes of solar wind streams and different interplanetary parameters.We concluded that the maximum numbers of intense geomagneticstorms are associated with transient disturbances in solar wind streams,which causes strong interplanetary shocks in interplanetary medium.The association of supersonic shocks and magnetic clouds with intensegeomagnetic storms have also been discussed.  相似文献   

6.
The Forbush decrease (Fd) of the Galactic cosmic ray (GCR) intensity and disturbances in the Earth’s magnetic field generally take place simultaneously and are caused by the same phenomenon, namely a coronal mass ejection (CME) or a shock wave created after violent processes in the solar atmosphere. The magnetic cut-off rigidity of the Earth’s magnetic field changes because of the disturbances, leading to additional changes in the GCR intensity observed by neutron monitors and muon telescopes. Therefore, one may expect distortion in the temporal changes in the power-law exponent of the rigidity spectrum calculated from neutron monitor data without correcting for the changes in the cut-off rigidity of the Earth’s magnetic field. We compare temporal changes in the rigidity spectrum of Fds calculated from neutron monitor data corrected and uncorrected for the geomagnetic disturbances. We show some differences in the power-law exponent of the rigidity spectrum of Fds, particularly during large disturbances of the cut-off rigidity of the Earth’s magnetic field. However, the general features of the temporal changes in the rigidity spectrum of Fds remain valid as they were found in our previous study. Namely, at the initial phase of the Fd, the rigidity spectrum is relatively soft and it gradually becomes hard up to the time of the minimum level of the GCR intensity. Then during the recovery phase of the Fd, the rigidity spectrum gradually becomes soft. This confirms that the structural changes of the interplanetary magnetic field turbulence in the range of frequencies of 10?6?–?10?5 Hz are generally responsible for the time variations in the rigidity spectrum we found during the Fds.  相似文献   

7.
In the present work the data of three different neutron monitoring stations, Deep River, Tokyo and Inuvik located at different geomagnetic cutoff rigidities and altitudes has been harmonically analysed for the period 1980–1993, 1980–1990 and 1981–1993 respectively to investigate for a comparative study of diurnal, semi-diurnal and tri-diurnal anisotropies in cosmic ray (CR) intensity in connection with the change in IMF Bz component and solar wind velocity on 60 quietest days. It is observed that the amplitude of first harmonic is highly anti-correlated to the solar wind velocity during the period of high-speed solar wind stream (HSSWS) epoch on quiet days for three neutron monitor stations at different geomagnetic rigidity thresholds. During quiet days the amplitude of all the three harmonics significantly deviates on the onset of HSSWS epoch, whereas the direction of the anisotropy of all the three harmonics remains time invariant at three different cut off rigidity stations. The amplitude as well as the direction of anisotropy of all the three harmonics does not have time variation characteristics associated with Bz component of IMF on geo-magnetically most quiet days.  相似文献   

8.
We analyze and compare the geomagnetic and galactic cosmic-ray (GCR) response of selected solar events, particularly the campaign events of the group International Study of Earth-affecting Solar Transients (ISEST) of the program Variability of the Sun and Its Terrestrial Impact (VarSITI). These selected events correspond to Solar Cycle 24, and we identified various of their features during their near-Earth passage. We evaluated the hourly data of geomagnetic indices and ground-based neutron monitors and the concurrent data of interplanetary plasma and field parameters. We recognized distinct features of these events and solar wind parameters when the geomagnetic disturbance was at its peak and when the cosmic-ray intensity was most affected. We also discuss the similarities and differences in the geoeffectiveness and GCR response of the solar and interplanetary structures in the light of plasma and field variations and physical mechanism(s), which play a crucial role in influencing the geomagnetic activity and GCR intensity.  相似文献   

9.
SMITH  Z.  WATARI  S.  DRYER  M.  MANOHARAN  P. K.  McINTOSH  P. S. 《Solar physics》1997,171(1):177-190
It is necessary to identify signatures of solar sources in order to improve predictions of solar-caused geomagnetic activity. This is not a straightforward task as the relationship is not well understood. We apply an algorithm, derived from numerical simulations to identify the solar source of an interplanetary event that was observed by the WIND spacecraft on October 18, 1995 and was followed by a geomagnetic storm. No specific geomagnetic activity had been predicted at Space Weather Operations (SWO) in Boulder, CO, on the basis of earlier solar observations. The algorithm is used to estimate the time and location of the expected solar source of this interplanetary event. A review of solar observations prior to the WIND observations showed that solar activity precursors could be identified. A long-duration-event was seen by GOES in soft X-rays at the same time as a type IV burst was observed in metric radio wavelengths, and a rearrangement of fields was observed by the soft X-ray telescope on the Yohkoh satellite. This suggests that the algorithm is useful for post facto identification of solar sources, and that such combinations of solar activity should be further investigated for use in geomagnetic forecasting.  相似文献   

10.
A discussion of the January 28, 1967 solar flare event is presented. High energy data from several neutron monitor stations are supplemented by low energy data from the interplanetary space probes Pioneers 6 and 7. A study of the data obtained from these three observation stations widely separated in solar azimuth has shown (1) the most probable location for the responsible flare was 60 ° beyond the western solar limb, (2) other than the large emitted particle flux, the phenomena associated with the January 28 activity are not atypical of other solar flare effects, (3) both the 0.5 GeV and 7.5 MeV fluxes observed at the earth were isotropic, indicative of particle diffusion across the interplanetary magnetic field lines, (4) the spectral exponent of the differential rigidity spectrum at high energies was - 4.8 ± 0.2, and (5) there was an indication of low energy solar injection prior to the high energy event of January 28.A technique is also described for obtaining the differential rigidity spectral index for an isotropic flux as a function of the relative enhancements of any pair of neutron monitors sufficiently separated in latitude.  相似文献   

11.
We have used data from five neutron monitor stations with primary rigidity (Rm) ranging from 16 GeV to 33 GeV to study the diurnal variations of cosmic rays over the period: 1965–1986 covering one 22-year solar magnetic cycle. The heliosphere interplanetary magnetic field (IMF) and plasma hourly measurements taken near Earth orbit, by a variety of spacecraft, are also used to compare with the results of solar diurnal variation. The local time of maximum of solar diurnal diurnal variations displays a 22-year cycle due to the solar polar magnetic field polarities. In general, the annual mean of solar diurnal amplitudes, magnitude of IMF and plasma parameters are found to show separte solar cycle variations. Moreover, during the declining period of the twenty and twenty-ne solar cycles, large solar diurnal amplitudes are observed which associated with high values of solar wind speed, plasma temperature and interplanetary magnetic field magnitude B3.  相似文献   

12.
The problem of solar wind-magnetosphere coupling is investigated for intense geomagnetic storms (Dst < -100nT) that occurred during solar cycle 23. For this purpose interplanetary plasma and field data during some intensely geo-effective transient solar/interplanetary disturbances have been analysed. A geomagnetic index that represents the intensity of planetary magnetic activity at subauroral latitude and the other that measures the ring current magnetic field, together with solar plasma and field parameters (V, B, Bz, σB, N, and T) and their various derivatives (BV,-BVz, BV2, -BzV2, B2V, Bz2V, NV2) have been analysed in an attempt to study mechanism and the cause of geo-effectiveness of interplanetary manifestations of transient solar events. Several functions of solar wind plasma and field parameters are tested for their ability to predict the magnitude of geomagnetic storm.  相似文献   

13.
S. Y. Oh  Y. Yi 《Solar physics》2012,280(1):197-204
The intensity?Ctime profile of Forbush decrease (FD) events observed by neutron monitors (NMs) looks like that of a geomagnetic storm as defined by the Dst index. Oh, Yi, and Kim (J.?Geophys. Res. 113, A01103, 2008) and Oh and Yi (J.?Geophys. Res. 114, A11102, 2009) classified FD events based on the amount of overlap and simultaneity of their main phase in Universal Time (UT). Oh and Yi define an FD event as simultaneous if the main phases observed by NMs distributed evenly around the Earth overlap in UT, and nonsimultaneous if they overlap only in the local time of some stations. They suggested that the occurrence mechanisms of two types of FD events may be related to interplanetary (IP) magnetic structures such as IP shocks and magnetic clouds. In their model, the simultaneity of FD events depends on the strength and propagation direction of magnetic structures overtaking the Earth. Recently, the Solar Terrestrial Relations Observatory (STEREO) mission has been able to visualize the emergence and propagation direction of coronal mass ejections (CMEs) in three dimensions in the heliosphere; thus, it is now possible to test the suggested mechanisms. One simultaneous FD event observed on 18 February 2011 may have been caused by a CME heading directly toward the Earth, which was observed on 15 February 2011 by the STEREO mission. Therefore, the simultaneity of FD events is proven to be a useful analysis tool in understanding the geoeffectiveness of solar events such as interplanetary CMEs and IP shocks.  相似文献   

14.
Caballero  R.  Valdés-Galicia  J.F. 《Solar physics》2003,212(1):209-223
We analyze the evolution of cosmic ray intensity detected by six neutron monitors located at high altitude from 1990 to 1999, that includes most of solar cycle 22 and the start of cycle 23. This set of neutron monitors covers a wide range of geomagnetic cutoff rigidities. We discuss the most significant characteristics of the cosmic ray modulation during the period as: the extraordinary decreases produced by the events of the first half of 1991, the significant two step evolution of the recovery phase of solar cycle 22 and the start of cycle 23. We also determine the rigidity dependence of the different phases of the modulation cycle. Cosmic ray intensity correlations with several solar activity parameters as sunspots, microwave flux at 10.7 cm and solar flares and with the intensity of the interplanetary magnetic field are studied.  相似文献   

15.
Several directional discontinuities in the plasma tail of Comet Austin 1982g are apparent on photographs obtained by different observers between 1982 Augut 17.84 and August 21.85. Furthermore, anomalous changes in the orientation of the inner tail axis with respect to the projection on the sky of the prolonged radius vector are noticed. An analysis based on the wind-sock theory of plasma comet tail orientations shows that changes in the azimuthal component of the solar-wind velocity would have produced the observed anomalies. No satellite data on interplanetary conditions were available to check the existence of such a solar-wind event. A type II–IV solar radio event observed on August 17.64, followed by a geomagnetic storm in August 20.67, might denote, however, the existence of a solar flare-generated interplanetary disturbance.  相似文献   

16.
Selecting the most appropriate source functions among the various solar, interplanetary and terrestrial activity indices we have attempted to reproduce to a certain degree the long-term modulation of galactic cosmic-rays. For this study monthly cosmic-ray data from nine world-wide neutron monitor stations for the period 1975–1985 have been analysed. The empirical formula which has been used to compute the long-term cosmic-ray variations follows the observations fairly well.It is noteworthy that the residuals in the cosmic-ray intensity between that observed and that calculated by this empirical formula exhibits a still remaining short-term variation in all stations of 2.7 and 3.7 months. Possible interpretations of these observed periodicities related to galactic origin are given.  相似文献   

17.
The contributions of quasi-periodic variations of cosmic rays for T>27 days at the primary energies to which neutron monitors are sensitive have a rather complicated character. They were reported in several papers (e.g. Valdés-Galicia, Perez-Enriquez, and Otaola, 1996; Mavromichalaki et al., 2003; Kudela et al., 2002; Caballero and Valdés-Galicia, 2001) from individual stations and for various time intervals covered. The data archive of several neutron monitor stations developed within the NMDB project () now involves long time series of measurements at neutron monitors situated at different geomagnetic cut-off rigidity positions and at different altitudes. It is updated continuously. Using the daily averages of cosmic-ray intensity at three selected stations within NMDB: i) the temporal evolution of the selected quasi-periodicities, especially those of approximately 1.7 yr, 150 days and 26 – 32 days respectively, until 2008 are reviewed, ii) the similarities of the spectra are checked and iii) the occurrence of quasi-periodicities with those observed in solar, interplanetary and geomagnetic activities (Moussas et al., 2005; Richardson and Cane, 2005) as well as in energetic particles below the atmospheric threshold are discussed (Laurenza et al., 2009).  相似文献   

18.
We discuss the effects of certain dynamic features of space environment in the heliosphere, the geo-magnetosphere, and the earth’s atmosphere. In particular, transient perturbations in solar wind plasma, interplanetary magnetic field, and energetic charged particle (cosmic ray) fluxes near 1 AU in the heliosphere have been discussed. Transient variations in magnetic activity in geo-magnetosphere and solar modulation effects in the heliosphere have also been studied. Emphasis is on certain features of transient perturbations related to space weather effects. Relationships between geomagnetic storms and transient modulations in cosmic ray intensity (Forbush decreases), especially those caused by shock-associated interplanetary disturbances, have been studied in detail. We have analysed the cosmic ray, geomagnetic and interplanetary plasma/field data to understand the physical mechanisms of two phenomena namely, Forbush decrease and geomagnetic storms, and to search for precursors to Forbush decrease (and geomagnetic storms) that can be used as a signature to forecast space weather. It is shown that the use of cosmic ray records has practical application for space weather predictions. Enhanced diurnal anisotropy and intensity deficit of cosmic rays have been identified as precursors to Forbush decreases in cosmic ray intensity. It is found that precursor to smaller (less than 5%) amplitude Forbush decrease due to weaker interplanetary shock is enhanced diurnal anisotropy. However, larger amplitude (greater than 5%) Forbush decrease due to stronger interplanetary shock shows loss cone type intensity deficit as precursor in ground based intensity record. These precursors can be used as inputs for space weather forecast.  相似文献   

19.
Based on cosmic ray data obtained by neutron monitors at the Earth's surface, and data on near-relativistic electrons measured by the WIND satellite, as well as on solar X-ray and radio burst data, the solar energetic particle (SEP) event of 2005 January 20 is studied. The results show that this event is a mixed event where the flare is dominant in the acceleration of the SEPs, the interplanetary shock accelerates mainly solar protons with energies below 130 MeV, while the relativistic protons are only accelerated by the solar flare. The interplanetary shock had an obvious acceleration effect on relativistic electrons with energies greater than 2 MeV. It was found that the solar release time for the relativistic protons was about 06:41 UT, while that for the near-relativistic electrons was about 06:39 UT. The latter turned out to be about 2 min later than the onset time of the interplanetary type III burst.  相似文献   

20.
The usefulness of Interplanetary Scintillation (IPS) data, which provide solar wind velocities (V) and relative scintillation indices (g), for predicting interplanetary disturbances is examined. Analysis of two years of g-map data from Cambridge shows that atleast two IPS stations are required for more definitive identification of events. Campaigns were made in April-May 1992 to map predicted solar wind disturbances simultaneously from two widely separated telescopes at Cambridge and Ooty. These show that apriori knowledge of strong flare activity helps in detecting scintillation enhancement. On the other hand, other events have been observed at Ooty, which show that both flares and coronal holes may be responsible for producing, interplanetary disturbances, and hence it is premature to identify any one type of solar event as the sole cause of the disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号