首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The far-side solar eruptive event SOL2014-09-01 produced hard electromagnetic and radio emissions that were observed with detectors at near-Earth vantage points. Especially challenging was a long-duration >?100 MeV \(\gamma\)-ray burst that was probably produced by accelerated protons exceeding 300 MeV. This observation raised the question how high-energy protons could reach the Earth-facing solar surface. Some preceding studies discussed a scenario in which protons accelerated by a shock driven by a coronal mass ejection high in the corona return to the solar surface. We continue with the analysis of this challenging event, involving radio images from the Nançay Radioheliograph and hard X-ray data from the High Energy Neutron Detector (HEND) of the Gamma-Ray Spectrometer onboard the Mars Odyssey space observatory located near Mars. HEND recorded unocculted flare emission. The results indicate that the emissions observed from the Earth’s direction were generated by flare-accelerated electrons and protons trapped in static long coronal loops. They can be reaccelerated in these loops by a shock wave that was excited by the eruption, being initially not driven by a coronal mass ejection. The results highlight ways to address the remaining questions.  相似文献   

2.
In this article, we present a multi-wavelength and multi-instrument investigation of a halo coronal mass ejection (CME) from active region NOAA 12371 on 21 June 2015 that led to a major geomagnetic storm of minimum \(\mathrm{Dst} = -204\) nT. The observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory in the hot EUV channel of 94 Å confirm the CME to be associated with a coronal sigmoid that displayed an intense emission (\(T \sim6\) MK) from its core before the onset of the eruption. Multi-wavelength observations of the source active region suggest tether-cutting reconnection to be the primary triggering mechanism of the flux rope eruption. Interestingly, the flux rope eruption exhibited a two-phase evolution during which the “standard” large-scale flare reconnection process originated two composite M-class flares. The eruption of the flux rope is followed by the coronagraphic observation of a fast, halo CME with linear projected speed of 1366 km?s?1. The dynamic radio spectrum in the decameter-hectometer frequency range reveals multiple continuum-like enhancements in type II radio emission which imply the interaction of the CME with other preceding slow speed CMEs in the corona within \(\approx10\)?–?\(90~\mbox{R} _{\odot}\). The scenario of CME–CME interaction in the corona and interplanetary medium is further confirmed by the height–time plots of the CMEs occurring during 19?–?21 June. In situ measurements of solar wind magnetic field and plasma parameters at 1 AU exhibit two distinct magnetic clouds, separated by a magnetic hole. Synthesis of near-Sun observations, interplanetary radio emissions, and in situ measurements at 1 AU reveal complex processes of CME–CME interactions right from the source active region to the corona and interplanetary medium that have played a crucial role towards the large enhancement of the geoeffectiveness of the halo CME on 21 June 2015.  相似文献   

3.
Multi-spacecraft observations are used to study the in-situ effects of a large coronal mass ejection (CME) erupting from the farside of the Sun on 3 November 2011, with particular emphasis on the associated solar energetic particle (SEP) event. At that time both Solar Terrestrial Relations Observatory (STEREO) spacecraft were located more than 90 degrees from Earth and could observe the CME eruption directly, with the CME visible on-disk from STEREO-B and off the limb from STEREO-A. Signatures of pressure variations in the corona such as deflected streamers were seen, indicating the presence of a coronal shock associated with this CME eruption. The evolution of the CME and an associated extreme-ultraviolet (EUV) wave were studied using EUV and coronagraph images. It was found that the lateral expansion of the CME low in the corona closely tracked the propagation of the EUV wave, with measured velocities of 240±19 km?s?1 and 221±15 km?s?1 for the CME and wave, respectively. Solar energetic particles were observed to arrive first at STEREO-A, followed by electrons at the Wind spacecraft at L1, then STEREO-B, and finally protons arrived simultaneously at Wind and STEREO-B. By carrying out a velocity-dispersion analysis on the particles arriving at each location, it was found that energetic particles arriving at STEREO-A were released first and that the release of particles arriving at STEREO-B was delayed by about 50 minutes. Analysis of the expansion of the CME to a wider longitude range indicates that this delay is a result of the time taken for the CME edge to reach the footpoints of the magnetic-field lines connected to STEREO-B. The CME expansion is not seen to reach the magnetic footpoint of Wind at the time of solar-particle release for the particles detected here, suggesting that these particles may not be associated with this CME.  相似文献   

4.
We study the 17 January 2010 flare–CME–wave event by using STEREO/SECCHI-EUVI and -COR1 data. The observational study is combined with an analytic model that simulates the evolution of the coronal wave phenomenon associated with the event. From EUV observations, the wave signature appears to be dome shaped having a component propagating on the solar surface ( $\overline{v}\approx280~\mathrm{km}\,\mathrm{s}^{-1}$ ) as well as one off-disk ( $\overline{v}\approx 600~\mathrm{km}\,\mathrm{s}^{-1}$ ) away from the Sun. The off-disk dome of the wave consists of two enhancements in intensity, which conjointly develop and can be followed up to white-light coronagraph images. Applying an analytic model, we derive that these intensity variations belong to a wave–driver system with a weakly shocked wave, initially driven by expanding loops, which are indicative of the early evolution phase of the accompanying CME. We obtain the shock standoff distance between wave and driver from observations as well as from model results. The shock standoff distance close to the Sun (<?0.3 R above the solar surface) is found to rapidly increase with values of ≈?0.03?–?0.09 R , which gives evidence of an initial lateral (over)expansion of the CME. The kinematical evolution of the on-disk wave could be modeled using input parameters that require a more impulsive driver (duration t=90 s, acceleration a=1.7 km?s?2) compared to the off-disk component (duration t=340 s, acceleration a=1.5 km?s?2).  相似文献   

5.
We analyze multiwavelength observations of an M2.9/1N flare that occurred in AR NOAA 11112 on 16 October 2010. AIA 211 Å EUV images reveal the presence of a faster coronal wave (decelerating from ≈?1390 to ≈?830 km?s?1) propagating ahead of a slower wave (decelerating from ≈?416 to ≈?166 km?s?1) towards the western limb. The dynamic radio spectrum from Sagamore Hill radio telescope shows the presence of a metric type II radio burst, which reveals the presence of a coronal shock wave (speed ≈?800 km?s?1). The speed of the faster coronal wave, derived from AIA 211 Å images, is found to be comparable to the coronal shock speed. AIA 171 Å high-cadence observations showed that a coronal loop, which was located at a distance of ≈?0.32R to the west of the flaring region, started to oscillate by the end of the impulsive phase of the flare. The results indicate that the faster coronal wave may be the first driver of the transversal oscillations of coronal loop. As the slower wave passed through the coronal loop, the oscillations became even stronger. There was a plasmoid eruption observed in EUV and a white-light CME was recorded, having velocity of ≈?340?–?350 km?s?1. STEREO 195 Å images show an EIT wave, propagating in the same direction as the lower-speed coronal wave observed in AIA, but decelerating from ≈?320 to ≈?254 km?s?1. These observations reveal the co-existence of both waves (i.e. coronal Moreton and EIT waves), and the type II radio burst seems to be associated with the coronal Moreton wave.  相似文献   

6.
Counterstreaming beams of electrons are ubiquitous in coronal mass ejections (CMEs) – although their existence is not unanimously accepted as a necessary and/or sufficient signature of these events. We continue the investigation of a high-latitude CME registered by the Ulysses spacecraft on 18?–?19 January 2002 (Dumitrache, Popescu, and Oncica, Solar Phys. 272, 137, 2011), by surveying the solar-wind electron distributions associated with this event. The temporal evolution of the pitch-angle distributions reveals populations of electrons that are distinguishable through their anisotropy, with clear signatures of i) electron strahls, ii) counter-streaming in the magnetic clouds and their precursors, and iii) unidirectionality in the fast wind preceding the CME. The analysis of the counter-streams inside the CME allows us to elucidate the complexity of the magnetic-cloud structures embedded in the CME and to refine the borders of the event. Identifying such strahls in CMEs, which preserve properties of the low β [<1] coronal plasma, gives more support to the hypothesis that these populations are remnants of the hot coronal electrons that escape from the electrostatic potential of the Sun into the heliosphere.  相似文献   

7.
We present a case study of the 13 July 2004 solar event, in which disturbances caused by eruption of a filament from an active region embraced a quarter of the visible solar surface. Remarkable are the absorption phenomena observed in the SOHO/EIT 304 Å channel, which were also visible in the EIT 195 Å channel, in the Hα line, and even in total radio flux records. Coronal and Moreton waves were also observed. Multispectral data allowed reconstructing an overall picture of the event. An explosive filament eruption and related impulsive flare produced a CME and blast shock, both of which decelerated and propagated independently. Coronal and Moreton waves were kinematically close and both decelerated in accordance with an expected motion of a coronal blast shock. The CME did not resemble a classical three-component structure, probably because some part of the ejected mass fell back onto the Sun. Quantitative evaluations from different observations provide close estimates of the falling mass, ~3×1015?g, which is close to the estimated mass of the CME. The falling material was responsible for the observed large-scale absorption phenomena, in particular, shallow widespread moving dimmings observed at 195 Å. By contrast, deep quasi-stationary dimmings observed in this band near the eruption center were due to plasma density decrease in coronal structures.  相似文献   

8.
Flares and coronal mass ejections (CMEs) contribute to the acceleration and propagation of solar energetic particles (SEP) detected in the interplanetary space, but the exact roles of these phenomena are yet to be understood. We examine two types of energetic particle tracers related with 15 CME-less flares that emit bright soft X-ray bursts (GOES X class): radio emission of flare-accelerated electrons and in situ measurements of energetic electrons and protons near 1 AU. The CME-less flares are found to be vigorous accelerators of microwave-emitting electrons, which remain confined in low coronal structures. This is shown by unusually steep low-frequency microwave spectra and by lack of radio emission from the middle and high corona, including dm?–?m wave type IV continua and metre-to-hectometre type III bursts. The confinement of the particles accelerated in CME-less flares agrees with the magnetic field configuration of these events inferred by others. Two events produced isolated metric type II bursts revealing coronal shock waves. None of the seven flares in the western hemisphere was followed by enhanced particle fluxes in the GOES detectors, but one, which was accompanied by a type II burst, caused a weak SEP event detected at SoHO and ACE. Three of the CME-less flares were followed within some hours by SEP-associated flares from the same active region. These SEP-producing events were clearly distinct from the CME-less ones by their association with fast and broad CMEs, dm?–?m wave radio emission, and intense DH type III bursts. We conclude that radio emission at decimetre and longer waves is a reliable indication that flare-accelerated particles have access to the high corona and interplanetary space. The absence of such emission can be used as a signal that no SEP event is to be expected despite the occurrence of a strong soft X-ray burst.  相似文献   

9.
We present a multiwavelength study of the large-scale coronal disturbances associated with the CME?–?flare event recorded on 24 December 1996. The kinematics of the shock wave signature, the type II radio burst, is analyzed and compared with the flare evolution and the CME kinematics. We employ radio dynamic spectra, position of the Nançay Radioheliograph sources, and LASCO-C1 observations, providing detailed study of this limb event. The obtained velocity of the shock wave is significantly higher than the contemporaneous CME velocity (1000 and 235 km?s?1, respectively). Moreover, since the main acceleration phase of the CME took place 10?–?20 min after the shock wave was launched, we conclude that the shock wave on 24 December 1996 was probably not driven by the CME. However, the shock wave was closely associated with the flare impulsive phase, indicating that it was ignited by the energy release in the flare.  相似文献   

10.
We report the results of a multi-instrument, multi-technique, coordinated study of the solar eruptive event of 13 May 2005. We discuss the resultant Earth-directed (halo) coronal mass ejection (CME), and the effects on the terrestrial space environment and upper Earth atmosphere. The interplanetary CME (ICME) impacted the Earth’s magnetosphere and caused the most-intense geomagnetic storm of 2005 with a Disturbed Storm Time (Dst) index reaching ?263 nT at its peak. The terrestrial environment responded to the storm on a global scale. We have combined observations and measurements from coronal and interplanetary remote-sensing instruments, interplanetary and near-Earth in-situ measurements, remote-sensing observations and in-situ measurements of the terrestrial magnetosphere and ionosphere, along with coronal and heliospheric modelling. These analyses are used to trace the origin, development, propagation, terrestrial impact, and subsequent consequences of this event to obtain the most comprehensive view of a geo-effective solar eruption to date. This particular event is also part of a NASA-sponsored Living With a Star (LWS) study and an on-going US NSF-sponsored Solar, Heliospheric, and INterplanetary Environment (SHINE) community investigation.  相似文献   

11.
H. Aurass 《Solar physics》2014,289(12):4517-4531
The hard X-ray time profiles of most solar eruptive events begin with an impulsive phase that may be followed by a late gradual phase. In a recent article (Aurass et al. in Astron. Astrophys. 555, A40, 2013), we analyzed the impulsive phase of the solar eruptive event on November 3, 2003 in radio and X-ray emission. We found evidence of magnetic breakout reconnection using the radio diagnostic of the common effect of the flare current sheet and, at heights of ±0.4 R, of a coronal breakout current sheet (a source site that we called X). In this article we investigate the radio emission during the late gradual phase of this event. The work is based on 40?–?400 MHz dynamic spectra (Radio Spectrograph, Observatorium Tremsdorf, Leibniz Institut für Astrophysik Potsdam, AIP) combined with radio images obtained by the French Nançay Multifrequency Radio Heliograph (NRH) of the Observatoire de Paris-Meudon. Additionally, we use Ramaty High Energy Solar Spectroscopic Imager (RHESSI) hard X-ray (HXR) flux records, and Solar and Heliospheric Observatory (SOHO) Large Angle and Spectrometric Coronagraph (LASCO) and Extreme ultraviolet Imaging Telescope (EIT) images. The analysis shows that the late gradual phase is subdivided into two distinct stages. Stage 1 (lasting five minutes in this case) is restricted to reoccurring radio emission at source site X. We observe plasma emission and an azimuthally moving source (from X toward the NE; speed≈1200 km?s?1) at levels radially ordered against the undisturbed coronal density gradient. These radio sources mark the lower boundary of an overdense region with a huge azimuthal extent. By the end of its motion, the source decays and reappears at point X. This is the onset of stage 2 traced here during its first 13 minutes. By this time, NRH sources observed at frequencies≤236.6 MHz radially lift off with a speed of ≈?400 km?s?1 (one third of the front speed of the coronal mass ejection (CME)) as one slowly decaying broadband source. This speed is still observable in SOHO/LASCO C3 difference frames in the wake of the CME four hours later. In stage 2, the radio sources at higher frequencies appear directly above the active region with growing intensity. We interpret the observations as the transit of the lower boundary of the CME body through the height range of the coronal breakout current sheet. The relaxing global coronal field reconnects with the magnetic surroundings of the current sheets that still connect the CME in its wake with the Sun. The accelerated particles locally excite plasma emission, but can also escape toward the active region, the CME, and the large-scale solar magnetic field. The breakout relaxation process may be a source of reconnection- and acceleration rate modulations. In this view, the late gradual phase is a certain stage of the coronal breakout relaxation after the release of the CME. This article is, to our best knowledge, the first observational report of the coronal breakout recovery. Our interpretation of the radio observations agrees with some predictions of magnetic breakout simulations (e.g. Lynch et al. in Astrophys. J. 683, 1192, 2008). Again, combined spectral and imaging radio observations give a unique access to dynamic coronal processes that are invisible in other spectral ranges.  相似文献   

12.
We continue our study (Grechnev et al., 2013, doi: 10.1007/s11207-013-0316-6 ; Paper I) on the 18 November 2003 geoffective event. To understand possible impact on geospace of coronal transients observed on that day, we investigated their properties from solar near-surface manifestations in extreme ultraviolet, LASCO white-light images, and dynamic radio spectra. We reconcile near-surface activity with the expansion of coronal mass ejections (CMEs) and determine their orientation relative to the earthward direction. The kinematic measurements, dynamic radio spectra, and microwave and X-ray light curves all contribute to the overall picture of the complex event and confirm an additional eruption at 08:07?–?08:20 UT close to the solar disk center presumed in Paper I. Unusual characteristics of the ejection appear to match those expected for a source of the 20 November superstorm but make its detection in LASCO images hopeless. On the other hand, none of the CMEs observed by LASCO seem to be a promising candidate for a source of the superstorm being able to produce, at most, a glancing blow on the Earth’s magnetosphere. Our analysis confirms free propagation of shock waves revealed in the event and reconciles their kinematics with “EUV waves” and dynamic radio spectra up to decameters.  相似文献   

13.
We present here an interesting two-step filament eruption during 14?–?15 March 2015. The filament was located in NOAA AR 12297 and associated with a halo Coronal Mass Ejection (CME). We use observations from the Atmospheric Imaging Assembly (AIA) and Heliospheric Magnetic Imager (HMI) instruments onboard the Solar Dynamics Observatory (SDO), and from the Solar and Heliospheric Observatory (SOHO) Large Angle and Spectrometric Coronagraph (LASCO). We also use \(\mbox{H}\upalpha\) data from the Global Oscillation Network Group (GONG) telescope and the Kanzelhoehe Solar Observatory. The filament shows a first step eruption on 14 March 2015 and it stops its rise at a projected altitude \({\approx}\,125~\mbox{Mm}\) on the solar disk. It remains at this height for \({\approx}\,12~\mbox{hrs}\). Finally it erupts on 15 March 2015 and produces a halo CME. We also find jet activity in the active region during both days, which could help the filament de-stabilization and eruption. The decay index is calculated to understand this two-step eruption. The eruption could be due to the presence of successive instability–stability–instability zones as the filament is rising.  相似文献   

14.
A set of 27 continuous events that showed extension of metric Type-II radio bursts (m-Type IIs) into the deca–hectometric (DH) domain is considered. The coronal mass ejections (CMEs) associated with this type of continuous event supply more energy to produce space-weather effects than the CMEs that produce Type-II bursts in any one region. Since the heights of shock formation at the start of m-Type IIs were not available from observations, they were estimated using kinematic modeling in previous studies. In the present study, the heights of shock formation during metric and DH Type-II bursts are determined using two methods: i) the CME leading-edge method and ii) a method employing known electron-density models and start/end frequencies. In the first method, assuming that the shocks are generated by the associated CMEs at the leading edge, the height of the CME leading edge (LE) is calculated at the onset and end of m-Type IIs using the kinematic equation with constant acceleration or constant speed. The LE heights of CMEs that are assumed to be the heights of shock formation/end of nearly 79% of m-Type IIs are found to be within the acceptable range of \(1\,\mbox{--}\,3~\mbox{R}_{\odot}\). For other events, the heights are beyond this range, for which the shocks might either have been generated at the CME flanks/flare-blast waves, or the initial CME height might have been different. The CME/shock height at the onset and end of 17 DH Type IIs are found to be in the range of \(2\,\mbox{--}\,6~\mbox{R}_{\odot}\) and within \(30~\mbox{R}_{\odot}\), respectively. In addition, the CME LE heights from observations at the onset and end of metric/DH Type IIs are compared with the heights corresponding to the observed frequency that is determined using the known electron-density models, and they are in agreement with the model results. The heights are also estimated using the space speed available for 15 halo CMEs, and it is found that the difference is smaller at the m-Type II start/end (0.02 to \(0.66~\mbox{R}_{\odot}\)) and slightly greater at the DH Type II end (0.19 to \(1.94~\mbox{R}_{\odot}\)). Finally, the possibility of CME–streamer interactions at the start of DH Type IIs is checked, and it is found that many of the events with streamers have lower start frequencies. In addition, these results are discussed in comparison with the values reported in the literature. This study will be useful to find the source region of metric and DH Type IIs and to understand the CME-shock propagation.  相似文献   

15.
We present a review of the different aspects associated with the interaction of successive coronal mass ejections (CMEs) in the corona and inner heliosphere, focusing on the initiation of series of CMEs, their interaction in the heliosphere, the particle acceleration associated with successive CMEs, and the effect of compound events on Earth’s magnetosphere. The two main mechanisms resulting in the eruption of series of CMEs are sympathetic eruptions, when one eruption triggers another, and homologous eruptions, when a series of similar eruptions originates from one active region. CME?–?CME interaction may also be associated with two unrelated eruptions. The interaction of successive CMEs has been observed remotely in coronagraphs (with the Large Angle and Spectrometric Coronagraph Experiment – LASCO – since the early 2000s) and heliospheric imagers (since the late 2000s), and inferred from in situ measurements, starting with early measurements in the 1970s. The interaction of two or more CMEs is associated with complex phenomena, including magnetic reconnection, momentum exchange, the propagation of a fast magnetosonic shock through a magnetic ejecta, and changes in the CME expansion. The presence of a preceding CME a few hours before a fast eruption has been found to be connected with higher fluxes of solar energetic particles (SEPs), while CME?–?CME interaction occurring in the corona is often associated with unusual radio bursts, indicating electron acceleration. Higher suprathermal population, enhanced turbulence and wave activity, stronger shocks, and shock?–?shock or shock?–?CME interaction have been proposed as potential physical mechanisms to explain the observed associated SEP events. When measured in situ, CME?–?CME interaction may be associated with relatively well organized multiple-magnetic cloud events, instances of shocks propagating through a previous magnetic ejecta or more complex ejecta, when the characteristics of the individual eruptions cannot be easily distinguished. CME?–?CME interaction is associated with some of the most intense recorded geomagnetic storms. The compression of a CME by another and the propagation of a shock inside a magnetic ejecta can lead to extreme values of the southward magnetic field component, sometimes associated with high values of the dynamic pressure. This can result in intense geomagnetic storms, but can also trigger substorms and large earthward motions of the magnetopause, potentially associated with changes in the outer radiation belts. Future in situ measurements in the inner heliosphere by Solar Probe+ and Solar Orbiter may shed light on the evolution of CMEs as they interact, by providing opportunities for conjunction and evolutionary studies.  相似文献   

16.
We present the application of novel diagnostics to the spectroscopic observation of a Coronal Mass Ejection (CME) on disk by the Extreme Ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft. We apply a recently developed line profile asymmetry analysis to the spectroscopic observation of NOAA AR 10930 on 14?–?15 December 2006 to three raster observations before and during the eruption of a 1000 km?s?1 halo CME. We see the impact that the observer’s line-of-sight and magnetic field geometry have on the diagnostics used. Further, and more importantly, we identify the on-disk signature of a high-speed outflow behind the CME in the dimming region arising as a result of the eruption. Supported by recent coronal observations of the STEREO spacecraft, we speculate about the momentum flux resulting from this outflow as a secondary momentum source to the CME. The results presented highlight the importance of spectroscopic measurements in relation to CME kinematics, and the need for full-disk synoptic spectroscopic observations of the coronal and chromospheric plasmas to capture the signature of such explosive energy release as a way of providing better constraints of CME propagation times to L1, or any other point of interest in the heliosphere.  相似文献   

17.
18.
On 17 January 2010, STEREO-B observed in extreme ultraviolet (EUV) and white light a large-scale dome-shaped expanding coronal transient with perfectly connected off-limb and on-disk signatures. Veronig et al. (Astrophys. J. Lett. 716, L57, 2010) concluded that the dome was formed by a weak shock wave. We have revealed two EUV components, one of which corresponded to this transient. All of its properties found from EUV, white light, and a metric type II burst match expectations for a freely expanding coronal shock wave, including correspondence with the fast-mode speed distribution, while the transient sweeping over the solar surface had a speed typical of EUV waves. The shock wave was presumably excited by an abrupt filament eruption. Both a weak shock approximation and a power-law fit match kinematics of the transient near the Sun. Moreover, the power-law fit matches the expansion of the CME leading edge up to 24 solar radii. The second, quasi-stationary EUV component near the dimming was presumably associated with a stretched CME structure; no indications of opening magnetic fields have been detected far from the eruption region.  相似文献   

19.
A distinct magnetic cloud (MC) was observed in-situ at the Solar TErrestrial RElations Observatory (STEREO)-B on 20?–?21 January 2010. About three days earlier, on 17 January, a bright flare and coronal mass ejection (CME) were clearly observed by STEREO-B, which suggests that this was the progenitor of the MC. However, the in-situ speed of the event, several earlier weaker events, heliospheric imaging, and a longitude mismatch with the STEREO-B spacecraft made this interpretation unlikely. We searched for other possible solar eruptions that could have caused the MC and found a faint filament eruption and the associated CME on 14?–?15 January as the likely solar source event. We were able to confirm this source by using coronal imaging from the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI)/EUVI and COR and Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronograph (LASCO) telescopes and heliospheric imaging from the Solar Mass Ejection Imager (SMEI) and the STEREO/Heliospheric Imager instruments. We use several empirical models to understand the three-dimensional geometry and propagation of the CME, analyze the in-situ characteristics of the associated ICME, and investigate the characteristics of the MC by comparing four independent flux-rope model fits with the launch observations and magnetic-field orientations. The geometry and orientations of the CME from the heliospheric-density reconstructions and the in-situ modeling are remarkably consistent. Lastly, this event demonstrates that a careful analysis of all aspects of the development and evolution of a CME is necessary to correctly identify the solar counterpart of an ICME/MC.  相似文献   

20.
The eruption of a large quiescent prominence on 17 August 2013 and an associated coronal mass ejection (CME) were observed from different vantage points by the Solar Dynamics Observatory (SDO), the Solar-Terrestrial Relations Observatory (STEREO), and the Solar and Heliospheric Observatory (SOHO). Screening of the quiet Sun by the prominence produced an isolated negative microwave burst. We estimated the parameters of the erupting prominence from a radio absorption model and measured them from 304 Å images. The variations of the parameters as obtained by these two methods are similar and agree within a factor of two. The CME development was studied from the kinematics of the front and different components of the core and their structural changes. The results were verified using movies in which the CME expansion was compensated for according to the measured kinematics. We found that the CME mass (\(3.6 \times 10^{15}\mbox{ g}\)) was mainly supplied by the prominence (\(\approx 6 \times 10^{15}\mbox{ g}\)), while a considerable part drained back. The mass of the coronal-temperature component did not exceed \(10^{15}\mbox{ g}\). The CME was initiated by the erupting prominence, which constituted its core and remained active. The structural and kinematical changes started in the core and propagated outward. The CME structures continued to form during expansion, which did not become self-similar up to \(25~\mathrm{R}_{\odot }\). The aerodynamic drag was insignificant. The core formed during the CME rise to \(4~\mathrm{R}_{\odot }\) and possibly beyond. Some of its components were observed to straighten and stretch outward, indicating the transformation of tangled structures of the core into a simpler flux rope, which grew and filled the cavity as the CME expanded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号