首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
行星际磁通量绳是太阳风中一种重要的磁结构.从1995-2001年的Wind卫星的观测资料中认证了144个行星际磁通量绳.其时间尺度介于几十分钟到几十小时之间,其空间尺度呈现连续分布.通过估算磁通量绳单位长度的能量和总能量发现:磁通量绳的能量分布和耀斑的类似都呈现很好的幂率谱.通过讨论行星际磁通量绳和太阳活动爆发的关系,建议所有的小、中、大尺度通量绳都直接起源于太阳上的爆发,和磁云对应于通常的日冕物质抛射一样,中、小尺度的通量绳对应相对较小的日冕物质抛射.  相似文献   

2.
M. Kleman  J. M. Robbins 《Solar physics》2014,289(4):1173-1192
The singularities of an irrotational magnetic field are lines of electric current. This property derives from the relationship between vector fields and the topology of the underlying three-space and allows for a definition of cosmic field flux tubes and flux ropes as cores (in the sense of the physics of defects) of helical singularities. When applied to force-free flux ropes, and assuming current conservation, an interesting feature is the quantization of the radii, pitches, and helicities. One expects similar quantization effects in the general case. In the special case when the total electric current vanishes, a force-free rope embedded in a medium devoid of magnetic field is nonetheless topologically stable, because it is the core of a singularity of the vector potential. Magnetic merging is also briefly discussed in the same framework.  相似文献   

3.
To model irregularities in the magnetic structure of solar flux ropes or in interplanetary magnetic clouds, we propose the following approach. A local irregularity in the form of a compact toroid is added into a cylindrical linear force-free magnetic structure. The radius of the cylinder and the small radius of the toroid are the same, since the force-free parameter α is constant, that is, we have in total a linear force-free configuration, too. Meanwhile, the large radius of the toroid can be smaller. The effect of such modeling depends on the aspect ratio of the compact toroid, its location and orientation, and on its magnetic field magnitude in comparison with that of the cylinder.  相似文献   

4.
Flux ropes are twisted magnetic structures that can be detected by in-situ measurements in the solar wind. However, different properties of detected flux ropes suggest different types of flux-rope populations. As such, are there different populations of flux ropes? The answer is positive and is the result of the analysis of four lists of flux ropes, including magnetic clouds (MCs), observed at 1 AU. The in-situ data for the four lists were fitted with the same cylindrical force-free field model, which provides an estimate of the local flux-rope parameters such as its radius and orientation. Since the flux-rope distributions have a broad dynamic range, we went beyond a simple histogram analysis by developing a partition technique that uniformly distributes the statistical fluctuations across the radius range. By doing so, we found that small flux ropes with radius R<0.1 AU have a steep power-law distribution in contrast to the larger flux ropes (identified as MCs), which have a Gaussian-like distribution. Next, from four CME catalogs, we estimated the expected flux-rope frequency per year at 1 AU. We found that the predicted numbers are similar to the frequencies of MCs observed in-situ. However, we also found that small flux ropes are at least ten times too abundant to correspond to CMEs, even to narrow ones. Investigating the different possible scenarios for the origin of these small flux ropes, we conclude that these twisted structures can be formed by blowout jets in the low corona or in coronal streamers.  相似文献   

5.
We investigate the solar wind structure for 11 cases that were selected for the campaign study promoted by the International Study of Earth-affecting Solar Transients (ISEST) MiniMax24 Working Group 4. We can identify clear flux rope signatures in nine cases. The geometries of the nine interplanetary magnetic flux ropes (IFRs) are examined with a model-fitting analysis with cylindrical and toroidal force-free flux rope models. For seven cases in which magnetic fields in the solar source regions were observed, we compare the IFR geometries with magnetic structures in their solar source regions. As a result, we can confirm the coincidence between the IFR orientation and the orientation of the magnetic polarity inversion line (PIL) for six cases, as well as the so-called helicity rule as regards the handedness of the magnetic chirality of the IFR, depending on which hemisphere of the Sun the IFR originated from, the northern or southern hemisphere; namely, the IFR has right-handed (left-handed) magnetic chirality when it is formed in the southern (northern) hemisphere of the Sun. The relationship between the orientation of IFRs and PILs can be taken as evidence that the flux rope structure created in the corona is in most cases carried through interplanetary space with its orientation maintained. In order to predict magnetic field variations on Earth from observations of solar eruptions, further studies are needed about the propagation of IFRs because magnetic fields observed at Earth significantly change depending on which part of the IFR hits the Earth.  相似文献   

6.
M. A. Raadu 《Solar physics》1972,22(2):425-433
Energy storage in chromospheric flux ropes is discussed, in the context of solar flares. The structure is represented by a cylindrically symmetric magnetic field of finite length. The field is assumed to be approximately force-free. The stability of the field to a kink perturbation is investigated. Flux ropes are rooted in dense photospheric material. So the ends of the field lines are taken to be fixed on rigid boundaries for all perturbations. An energy perturbation method is used and the boundary conditions give a stabilizing effect. It is shown that for a moderate degree of twisting the fields are stable to a kink perturbation. Thus energy can be stored in cylindrical fields prior to release in a solar flare.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

7.
We studied the soft X-ray solar events that could be associated with the interplanetary magnetic flux ropes observed by the WIND satellite during 1995 through 1998. The timings of the launches of the magnetic flux ropes from the Sun were estimated using flux rope speeds derived by the fitting of a cylindrical model. In the reasonable time window, soft X-ray solar signatures were found in approximately 70% of the flux ropes. Parameters (e.g., axis direction, strength of magnetic field, radius, and helicity) of the magnetic flux ropes obtained by the model fitting were compared with the characteristics of the corresponding soft X-ray events observed by Yohkoh. According to the result of the comparison, the magnetic flux ropes with strong magnetic fields or high speeds were observed in association with higher soft X-ray solar activities.  相似文献   

8.
Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) which exhibit signatures consistent with a magnetic flux rope structure. Techniques for reconstructing flux rope orientation from single-point in situ observations typically assume the flux rope is locally cylindrical, e.g., minimum variance analysis (MVA) and force-free flux rope (FFFR) fitting. In this study, we outline a non-cylindrical magnetic flux rope model, in which the flux rope radius and axial curvature can both vary along the length of the axis. This model is not necessarily intended to represent the global structure of MCs, but it can be used to quantify the error in MC reconstruction resulting from the cylindrical approximation. When the local flux rope axis is approximately perpendicular to the heliocentric radial direction, which is also the effective spacecraft trajectory through a magnetic cloud, the error in using cylindrical reconstruction methods is relatively small (≈ 10). However, as the local axis orientation becomes increasingly aligned with the radial direction, the spacecraft trajectory may pass close to the axis at two separate locations. This results in a magnetic field time series which deviates significantly from encounters with a force-free flux rope, and consequently the error in the axis orientation derived from cylindrical reconstructions can be as much as 90. Such two-axis encounters can result in an apparent ‘double flux rope’ signature in the magnetic field time series, sometimes observed in spacecraft data. Analysing each axis encounter independently produces reasonably accurate axis orientations with MVA, but larger errors with FFFR fitting.  相似文献   

9.
J. Y. Ding  Y. Q. Hu  J. X. Wang 《Solar physics》2006,235(1-2):223-234
A major solar active event called Bastille Day Event occurred in AR 9077 on July 14, 2000. Simultaneous occurrence of a filament eruption, a flare and a coronal mass ejection was observed in this event. Previous analyses of this event show that before the event, there existed an activation and eruption of a huge trans-equatorial filament, which might play a crucial role in triggering the Bastille Day event. This implies that independent flux systems are closely related to and affect each other, which has encouraged us to investigate the catastrophic behavior of a multiple coronal flux rope system with the use of a 2.5-D time-dependent MHD model. A force-free field that contains three separate coronal flux ropes is taken to be the initial state. Starting from this state, we increase either the annular or the axial flux of a certain flux rope to examine the catastrophic behavior of the system in two regimes, the ideal MHD regime and the resistive MHD regime. It is found that a catastrophe occurs if the flux exceeds a certain critical value, or the magnetic energy of the system exceeds a certain threshold: the rope of interest breaks away from the base and escapes to infinity, leaving a current sheet below. Moreover, the destiny of the remainder flux ropes relies on whether reconnection takes place across the current sheet. In the ideal MHD regime, i.e., in the absence of reconnection, these ropes remain to be attached to the base in equilibrium, whereas in the resistive MHD regime they abruptly erupt upward during reconnection and escape to infinity. Reconnection causes the field lines to close back to the base and thus changes the background field outside the attached flux ropes in such a way that the constraint on these ropes is substantially relaxed and the corresponding catastrophic energy threshold is reduced accordingly, leading to a catastrophic eruption of these ropes. Since magnetic reconnection is generally inevitable when a current sheet forms and develops through an eruption of one flux rope, the eruption of this flux rope must lead to an eruption of the others. This provides an example to demonstrate the interaction between several independent magnetic flux systems in different regions, as implied by the Bastille Day event, and may serve as a possible mechanism for sympathetic events occurring on the Sun.  相似文献   

10.
Reliable measurements of the solar magnetic field are restricted to the level of the photosphere. For about half a century attempts have been made to calculate the field in the layers above the photosphere, i.e. in the chromosphere and in the corona, from the measured photospheric field. The procedure is known as magnetic field extrapolation. In the superphotospheric parts of active regions the magnetic field is approximately force-free, i.e. electric currents are aligned with the magnetic field. The practical application to solar active regions has been largely confined to constant-α or linear force-free fields, with a spatially constant ratio, α, between the electric current and the magnetic field. We review results obtained from extrapolations with constant-α force-free fields, in particular on magnetic topologies favourable for flares and on magnetic and current helicities. Presently, different methods are being developed to calculate non-constant-α or nonlinear force-free fields from photospheric vector magnetograms. We also briefly discuss these methods and present a comparison of a linear and a nonlinear force-free magnetic field extrapolation applied to the same photospheric boundary data. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Newly formed stars have magnetic fields provided by the compression of the interstellar field, and contrary to a widely accepted idea these fields are not destroyed by convective motions. For the same reason, the fallacy of ‘turbulent diffusion’, turbulent dynamo action is not possible in any star. Thus all stellar magnetic fields have a common origin, and persist throughout the lifetime of each star, including degenerate phases. This common origin, and a general similarity in stellar evolutionary processes, suggest that the fields may develop similar structural characteristics and MHD effects. This would open new possibilities of coordinating the studies of different types of stars and relating them to solar physics which has tended to become isolated from general stellar physics. As an initial step we consider three features of solar magnetic fields and their MHD effects. First, the solar magnetic field comprises two separate components: a poloidal field and a toroidal field. The former is a dipole field, permeating the entire Sun and closely aligned with the rotational axis; at the surface it is always concealed by much stronger elements of the toroidal field. The latter is probably wound from the former by differential rotation at latitudes below about 35°, where sections emerge through the solar surface and are then carried polewards. The second feature of solar magnetic fields is that all flux is concentrated into flux tubes of strength some kG, isolated within a much larger volume of non-magnetic plasma. The third feature is that the flux tubes are helically twisted into flux ropes (up to ?1022Mx) and smaller elements ranging down to flux fibres (? 1018Mx). Some implications of similar features in other stars are discussed.  相似文献   

12.
Recent numerical magnetohydrodynamic calculations by Braithwaite and collaborators support the 'fossil field' hypothesis regarding the origin of magnetic fields in compact stars and suggest that the resistive evolution of the fossil field can explain the reorganization and decay of magnetar magnetic fields. Here, these findings are modelled analytically by allowing the stellar magnetic field to relax through a quasi-static sequence of non-axisymmetric, force-free states, by analogy with spheromak relaxation experiments, starting from a random field. Under the hypothesis that the force-free modes approach energy equipartition in the absence of resistivity, the output of the numerical calculations is semiquantitatively recovered: the field settles down to a linked poloidal–toroidal configuration, which inflates and becomes more toroidal as time passes. A qualitatively similar (but not identical) end state is reached if the magnetic field evolves by exchanging helicity between small and large scales according to an α-dynamo-like, mean-field mechanism, arising from the fluctuating electromotive force produced by the initial random field. The impossibility of matching a force-free internal field to a potential exterior field is discussed in the magnetar context.  相似文献   

13.
Magnetic Energy of Force-Free Fields with Detached Field Lines   总被引:2,自引:0,他引:2  
Using an axisymmetrical ideal MHD model in spherical coordinates, we present a numerical study of magnetic configurations characterized by a levitating flux rope embedded in a bipolar background field whose normal field at the solar surface is the same or very close to that of a central dipole. The characteristic plasma β (the ratio between gas pressure and magnetic pressure) is taken to be sosmall (β= 10^-4) that the magnetic field is close to being force-free. The system as a whole is then let evolve quasi-statically with a slow increase of either the annular magnetic flux or the axial magnetic flux of the rope, and the total magneticenergy of the system grows accordingly. It is found that there exists an energy threshold: the flux rope sticks to the solar surface in equilibrium if the magneticenergy of the system is below the threshold, whereas it loses equilibrium if the threshold is exceeded. The energy threshold is found to be larger than that of thecorresponding fully-open magnetic field by a factor of nearly 1.08 irrespective as towhether the background field is completely closed or partly open, or whether the magnetic energy is enhanced by an increase of annular or axial flux of the rope.This gives an example showing that a force-free magnetic field may have an energy larger than the corresponding open field energy if part of the field lines is allowed tobe detached from the solar surface. The implication of such a conclusion in coronal mass ejections is briefly discussed and some comments are made on the maximum energy of force-free magnetic fields.  相似文献   

14.
We present a straightforward comparison of model calculations for the α-effect, helicities, and magnetic field line twist in the solar convection zone with magnetic field observations at atmospheric levels. The model calculations are carried out in a mixing-length approximation for the turbulence with a profile of the solar internal rotation rate obtained from helioseismic inversions. The magnetic field data consist of photospheric vector magnetograms of 422 active regions for which spatially-averaged values of the force-free twist parameter and of the current helicity density are calculated, which are then used to determine latitudinal profiles of these quantities. The comparison of the model calculations with the observations suggests that the observed twist and helicity are generated in the bulk of the convection zone, rather than in a layer close to the bottom. This supports two-layer dynamo models where the large-scale toroidal field is generated by differential rotation in a thin layer at the bottom while the α-effect is operating in the bulk of the convection zone. Our previous observational finding was that the moduli of the twist factor and of the current helicity density increase rather steeply from zero at the equator towards higher latitudes and attain a certain saturation at about 12 – 15. In our dynamo model with algebraic nonlinearity, the increase continues, however, to higher latitudes and is more gradual. This could be due to the neglect of the coupling between small-scale and large-scale current and magnetic helicities and of the latitudinal drift of the activity belts in the model.  相似文献   

15.
Ions falling in vertically aligned magnetic structures of quiescent prominences may experience a vertical Lorentz force as flux ropes are distorted from the force-free condition. The terminal velocity of such ions may be sub-Alfvénic and may correspond to the 5–15 km s–1 velocity of down falling material observed in many quiescent prominences. The higher velocities of down falling material found in active prominences and coronal rain may occur because of higher terminal velocities occurring in stronger magnetic fields.Visiting Astronomer, on leave from the Department of Astro-Geophysics, University of Colorado, Boulder, Colorado 80309.  相似文献   

16.
An outstanding question concerning interplanetary coronal mass ejections (ICMEs) is whether all ICMEs have a magnetic flux rope structure. We test this question by studying two different ICMEs, one having a magnetic cloud (MC) showing smooth rotation of magnetic field lines and the other not. The two ICMEs are chosen in such a way that their progenitor CMEs are very similar in remote sensing observations. Both CMEs originated from close to the central meridian directly facing the Earth. Both CMEs were associated with a long-lasting post-eruption loop arcade and appeared as an elliptical halo in coronagraph images, indicating a flux rope origin. We conclude that the difference in the in-situ observation is caused by the geometric selection effect, contributed by the deflection of flux ropes in the inner corona and interplanetary space. The first event had its nose pass through the observing spacecraft; thus, the intrinsic flux rope structure of the CME appeared as a magnetic cloud. On the other hand, the second event had the flank of the flux rope intercept the spacecraft, and it thus did not appear as a magnetic cloud. We further argue that a conspicuous long period of weak magnetic field, low plasma temperature, and density in the second event should correspond to the extended leg portion of the embedded magnetic flux rope, thus validating the scenario of the flank-passing. These observations support the idea that all CMEs arriving at the Earth include flux rope drivers.  相似文献   

17.
宋其武  吴德金 《天文学报》2004,45(4):381-388
由磁绳结构主导、平均尺度约二、三十个小时的行星际磁云是日冕物质抛射在行星际膨胀、传播的体现。最近,Moldwin等人报道在太阳风中还观测到一些尺度在几十分钟的小尺度磁绳结构,并认为太阳风中的磁绳结构在尺度分布上可能具有双峰特征,在全面检视了WIND卫星(1995年-2000年)和ACE卫星(1998年-2000年)的观测资料后,发现了在行星际太阳风中一些尺度为几个小时的中尺度磁绳结构,利用初步整理的其中28个中尺度磁绳结构事件,认为太阳风中的磁绳结构在尺度分布上可能是连续的,这对行星际太阳风中磁绳结构物理起源的研究可能提出重要的物理限制。  相似文献   

18.
The coronal magnetic field is the primary driver of solar dynamic events. Linear and circular polarization signals of certain infrared coronal emission lines contain information about the magnetic field, and to access this information either a forward or an inversion method must be used. We study three coronal magnetic configurations that are applicable to polar-crown filament cavities by doing forward calculations to produce synthetic polarization data. We analyze these forward data to determine the distinguishing characteristics of each model. We conclude that it is possible to distinguish between cylindrical flux ropes, spheromak flux ropes, and sheared arcades using coronal polarization measurements. If one of these models is found to be consistent with observational measurements, it will mean positive identification of the magnetic morphology that surrounds certain quiescent filaments, which will lead to a better understanding of how they form and why they erupt.  相似文献   

19.
The possible existence of strong magnetic fields in stars is discussed and a method of constructing highly distorted models of magnetic, rotating stars developed. For stars with both poloidal and toroidal fields at the surface a force-free outer boundary condition is necessary. Non-linear solutions of the force-free equations must be used. The force-free equations and the structure equations for a white dwarf are solved simultaneously by a finite difference method.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

20.
Patsourakos et al. (Astrophys. J. 817, 14, 2016) and Patsourakos and Georgoulis (Astron. Astrophys. 595, A121, 2016) introduced a method to infer the axial magnetic field in flux-rope coronal mass ejections (CMEs) in the solar corona and farther away in the interplanetary medium. The method, based on the conservation principle of magnetic helicity, uses the relative magnetic helicity of the solar source region as input estimates, along with the radius and length of the corresponding CME flux rope. The method was initially applied to cylindrical force-free flux ropes, with encouraging results. We hereby extend our framework along two distinct lines. First, we generalize our formalism to several possible flux-rope configurations (linear and nonlinear force-free, non-force-free, spheromak, and torus) to investigate the dependence of the resulting CME axial magnetic field on input parameters and the employed flux-rope configuration. Second, we generalize our framework to both Sun-like and active M-dwarf stars hosting superflares. In a qualitative sense, we find that Earth may not experience severe atmosphere-eroding magnetospheric compression even for eruptive solar superflares with energies \({\approx}\, 10^{4}\) times higher than those of the largest Geostationary Operational Environmental Satellite (GOES) X-class flares currently observed. In addition, the two recently discovered exoplanets with the highest Earth-similarity index, Kepler 438b and Proxima b, seem to lie in the prohibitive zone of atmospheric erosion due to interplanetary CMEs (ICMEs), except when they possess planetary magnetic fields that are much higher than that of Earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号