首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
The results of hydrodynamical calculations of radially pulsating helium stars with masses 0.5MM≤0.9M, bolometric luminosities 600L≤5×103L, and effective temperatures 1.5×104 K≤Teff≤3.5×104 K are presented. The pulsation instability of these stars is due to the effects of ionization of iron-group elements in layers with temperatures T~2×105 K. The calculations were carried out using opacities for the relative mass abundances of hydrogen and heavy elements X=0 and Z=0.01, 0.015, and 0.02. Approximate formulas for the pulsation constant Q over the entire range of pulsation instability of the hot helium stars in terms of the mass M, radius R, effective temperature Teff, and heavy-element abundance Z are derived. The instability of BX Cir to radial pulsations with the observed period Π=0.1066 d occurs only for a mass M≥0.55M, effective temperature Teff≥23000 K, and heavy-element abundance Z≥0.015. The allowed mass of BX Cir is in the range 0.55MM≤0.8M, which corresponds to luminosities 800LM≤1400L and mean radii 1.7R?R?2.1R.  相似文献   

2.
We present the results of spectroscopic observations of the X-ray binary V404 Cyg obtained on the 6-m telescope of the Special Astrophysical Observatory in 2001–2002. We have used a statistical approach to interpret the radial-velocity curve of V404 Cyg. We derived the dependence of the mass of the X-ray emitting component mx on the mass of the optical component mv via an analysis of the radial-velocity curve based on profiles of the CaI 6439.075 Å absorption line synthesized in a Roche model. Using the orbital inclination estimated from the ellipticity of the optical component, i=54°–64°, and the component-mass ratio q=mx/mv=16.7 found from the rotational broadening of the spectral lines, we obtain m s =10.65±1.95M for the mass of the black hole.  相似文献   

3.
We have obtained the first estimates of the masses of the components of the Her X-1/HZ Her X-ray binary system taking into account non-LTE effects in the formation of the H γ absorption line: m x = 1.8 M and m v = 2.5 M . These mass estimates were made in a Roche model based on the observed radial-velocity curve of the optical star, HZ Her. The masses for the X-ray pulsar and optical star obtained for an LTE model lie are m x = 0.85 ± 0.15 M and m v = 1.87 ± 0.13 M . These mass estimates for the components of Her X-1/HZ Her derived from the radial-velocity curve should be considered tentative. Further mass estimates from high-precision observations of the orbital variability of the absorption profiles in a non-LTE model for the atmosphere of the optical component should be made.  相似文献   

4.
An analysis of spectroscopic and photometric data for the young pre-cataclysmic variable (PCV) PN G068.1+11.0, which passed through its common-envelope stage relatively recently, is presented. The spectroscopic and photometric data were obtained with the 6-m telescope and Zeiss-1000 telescope of the Special Astrophysical Observatory. The light curves show sinusoidal brightness variations with the orbital-period time scale and brightness-variation amplitudes of Δm = 1.m41, 1.m62, and 1.m57 in the B, V, and R bands, respectively. The system’s spectrum exhibits weak HI (Hβ–Hδ) andHeII λλ4541, 4686, 5411 Å absorption lines during the phases of minimum brightness, as well as HI, HeII, CIII, CIV, NIII, and OII emission lines whose intensity variations are synchronized with variations of the integrated brightness of the system. The emission-line formation in the spectra can be fully explained by the effects of fluorescence of the ultraviolet light from the primary at the surface of the cool star. All the characteristics of the optical light of PN G068.1+11.0 confirm that it is a young PCV containing sdO subdwarf. The radial velocities were measured from a blend of lines of moderately light elements, CIII+NIII λ4640 Å, which is formed at the surface of the secondary due to reflection effects. The ephemeris of the system has been improved through a joint analysis of the radial-velocity curves and light curves of pre-cataclysmic variable, using modelling of the reflection effects. The fundamental parameters of PN G068.1+11.0 have been determined using two evolutionary tracks for planetary-nebula nuclei of different masses (0.7 Mand 0.78M). The model spectra for the system and a comparison with the observations demonstrate the possibility of refining the components’ effective temperatures if the quality of the spectra used is improved.  相似文献   

5.
We have determined the main parameters of the old precataclysmic variable stars MS Peg and LM Com. The radial velocities of the components, reflection effects in the spectra, and light curves of the systems are studied based on model stellar atmospheres subject to external irradiation. Forty-seven moderate-resolution spectra for MS Peg and 57 for LM Com obtained with the 6-m telescope of the Special Astrophysical Observatory are used to derive the refined orbital periods of 0.1736660 days and 0.2586873 days, respectively; the orbital eccentricities do not exceed e=0.04. The mass (M w =0.49e) and radius (e w =0.015R) of the MS Peg primary calculated using the gravitational redshift correspond to those for a cooling carbon white dwarf with a thin hydrogen envelope. The parameters of the red dwarf (M r =0.19M, Teff=3560 K, R r =0.18R) are close to those derived from evolutionary tracks for main-sequence M stars with solar chemical composition. The radius (R r =0.22R) and temperature (Teff=3650 K) of the LM Com secondary exceed theoretical estimates for main-sequence stars with masses of M r =0.17M. The luminosity excess of the red dwarf in LM Com can be explained by a prolonged (T>5×106 yrs) relaxation of the M star to its normal state after the binary leaves the common-envelope stage. For both systems, theoretical U, B, V, and R light curves and spectra calculated using the adopted sets of parameters are generally consistent with the observations. This confirms the radiative origin of the hot spots, the unimportance of horizontal radiative transport, and the absence of large-scale velocity fields with high values (Vtrans>50 km/s) at the surfaces of the secondaries. Most of the emission lines in the spectra of these objects are formed under conditions close to thermalization, enabling modeling of their pro files in an LTE approximation. A strong λ3905 Å emission line has been identified as the 3s23p4s 1P0-3s23p2 1S SiI λ3905.52 Å line formed in the atmosphere of the hot spot. The observed intensity can be explained by non-LTE “superionization” of SiI atoms by soft UV radiation from the white dwarf. We suggest a technique for identifying binaries whose cool components are subject to UV irradiation based on observations of λ3905 Å emission in their spectra.  相似文献   

6.
Orbital-period variations of the eclipsing binaries FK Aql and FZ Del are analyzed. For each of the systems, a superposition of two cyclic variations of their orbital periods is found. FK Aql may be a quadruple system that contains two more bodies, besides the eclipsing binary, with masses M 3 ? 1.75M and M 4 ? 1.47M , and the corresponding periods 15 and 82 yrs. This could also be a triple system with a third body of mass M 3 ? 1.75M and a period of the long-period orbit P 3 = 15 yrs, or with a third body of mass M 3 ? 1.30M and a period of the long-period orbit P 3 = 82 yrs. FZ Del may be a quadruple system with the additional componentmasses M 3 ? 0.2M and M 4 ? 0.3M , with the periods 10.2 and 53.7 yrs. This could also be a triple system with a third-body mass M 3 ? 0.2M and a period of the long-period orbit P 3 = 10.2 yrs. In both systems, the residual period variations could be due to magnetic cycles of the secondary. The period variations of the eclipsing binary FZ Del could also be due to apsidal motion, together with the influence of a third body or the effects of magnetic activity.  相似文献   

7.
The results of a systematic analysis of master radial-velocity curves for the X-ray binary 4U 1700-37 are presented. The dependence of the mass of the X-ray component on the mass of the optical component is derived in a Roche model based on a fit of the master radial-velocity curve. The parameters of the optical star are used to estimate the mass of the compact object in three ways. The masses derived based on information about the surface gravity of the optical companion and various observational data are 2.25 ?0.24 +0.23 M and 2.14 ?0.56 +0.50 M. The masses based on the radius of the optical star, 21.9R, are 1.76 ?0.21 +0.20 M and 1.65 ?0.56 +0.78 M. The mass of the optical component derived from the mass-luminosity relation for X-ray binaries, 27.4M, yields masses for the compact object of 1.41 ?0.08 + M and 1.35 ?0.18 +0.18 M.  相似文献   

8.
We analyze the distribution of close binary stars in the orbital semimajor axis—primary mass plane. The reduced spatial density of stars with semimajor axes below 10R is confirmed. We identify the area in this plane occupied by precursors of W UMa stars, assuming that the driving force causing the components to approach each other is their magnetic stellar wind. This scenario enables us to estimate the rate of formation (0.02/year) and lifetime (108 yr) of W UMa stars. We derive a theoretical estimate of the ratio of the number of blue stragglers, N BS , and of horizontal-branch stars, N HB , in globular clusters based on the hypothesis that all blue stragglers are the result of component mergers in W UMa contact binaries. This ratio is N BS /N HB =0.4, close to the observed value for 62 Galactic globular clusters. We discuss possible reasons for the considerable dispersion of the observed estimates of this ratio for different clusters in our Galaxy.  相似文献   

9.
We have performed speckle interferometry with the 6-m telescope of the Special Astrophysical Observatory and spectroscopy (at 3700–9200 Å) with the 2-m telescope at Peak Terskol of the spectroscopic and interferometric binary 9 Cyg, which is a composite-spectrum star with an orbital period of 4.3 yrs. The atmosphere of the system’s primary component is analyzed in detail. The luminosities of both components estimated to be L 1 = 103.8 L , L 2 = 55.2 L , where L is the solar luminosity, and their effective temperatures to be T e (1) = 5300 K and T e (2) = 9400 K. The abundances of C, N, O, Fe, and other elements in the primary’s atmosphere have been derived. The chemical composition shows signatures of mixing of material from its atmosphere and the region of nuclear reactions. The evolutionary status of 9 Cyg has been determined. The binary’s age is about 400 million years; the brighter star is already in the transition to becoming a red giant, while the secondary is still in the hydrogen-burning stage near the zero-age main sequence. We suggest an evolutionary model for the binary’s orbit that explains the high eccentricity, e = 0.79.  相似文献   

10.
Twenty-eight CS molecular clouds toward HII regions with Galactocentric distances from ~ 4 to 20 kpc have been studied based on observations obtained in the J=2→1 lines of CS and C34S on the 20-meter radio telescope of the Onsala Space Observatory (Sweden) in March 2001. All 28 clouds have been mapped with an angular resolution of ~40″. The peak intensity in the C34S line has been measured for 20 objects. An LTE analysis has been performed and the parameters of the molecular cloud cores derived. The core sizes are dA=0.3–4.8 pc, with a median value of ~1.6 pc. The mean hydrogen densities in the cloud cores are nH2=3.5×102–3.7 × 104 cm?3, with a median value of ~7.2×103 cm?3. The value of nH2 ends to decrease with increasing Galactocentric distance of the cloud. The masses of most clouds are 102?6×103M, with the most probable value being MCS~103M. The data follow the dependence MCSd A (2.4–3.2) . As a rule, the cloud masses are lower than the virial masses for MCS<103M.  相似文献   

11.
An analysis of high-resolution CCD spectra of the giant 25 Mon, which shows signs of metallicity, and the normal giant HR 7389 is presented. The derived effective temperatures, gravitational accelerations, and microturbulence velocities are Teff = 6700 K, log g = 3.24, and ξ t = 3.1 km/s for 25 Mon and Teff = 6630 K, log g = 3.71, and ξ t = 2.6 km/s for HR 7389. The abundances (log ε) of nine elements are determined: carbon, nitrogen, oxygen, sodium, silicon, calcium, iron, nickel, and barium. The derived excess carbon abundances are 0.23 dex for 25 Mon and 0.16 dex for HR 7389. 25 Mon displays a modest (0.08 dex) oxygen excess, with the oxygen excess for HR 7389 being somewhat higher (0.15 dex). The nitrogen abundance is probably no lower than the solar value for both stars. The abundances of iron, sodium, calcium (for HR 7389), barium, and nickel exceed the solar values by 0.22–0.40 dex for both stars. The highest excess (0.62 dex) is exhibited by the calcium abundance for 25 Mon. Silicon displays a nearly solar abundance in both stars—small deficits of ?0.03 dex and ?0.07 dex for 25 Mon and HR 7389, respectively. No fundamental differences in the elemental abundances were found in the atmospheres of 25 Mon and HR 7389. Based on their Teff and log g values, as well as theoretical calculations, A. Claret estimated the masses, radii, luminosities, and ages of 25 Mon (M/M = 2.45, log(R/R) = 0.79, log(L/L) = 1.85, t = 5.3 × 108 yr) and HR 7389 (M/M = 2.36, log(R/R) = 0.50, log(L/L) = 1.24, t = 4.6 × 108 yr), and also of the stars 20 Peg (M/M = 2.36, log(R/R) = 0.73, log(L/L) = 1.79, t = 4.9 × 108 yr) and 30 LMi (M/M = 2.47, log(R/R) = 0.73, log(L/L) = 1.88, t = 4.8 × 108 yr) studied by the author earlier.  相似文献   

12.
We have obtained high-accuracy photoelectric measurements of ES Lac, an eclipsing binary with an elliptical orbit (B9III + B9III; P = 4.459d, e = 0.198) in 1985–2004 at the Sternberg Astronomical Institute’s Tien Shan High-Altitude Observatory. Our detailed analysis of the 19-year uniform series of measurements has yielded the first photometric elements for this system, as well as a self-consistent set of physical and geometrical parameters for the binary. The virtually identical components (M 1 = M 2 = 3.0 M ; R 1 = R 2 = 4.12 R ) are appreciably separated from the main sequence, and are located on the giant branch: their age is t = (3.5 ± 0.2) × 108 yrs. An analysis of our observations together with previously published times of minima has enabled a considerable refinement of the period of the apsidal motion, U = 355 ± 20 years, and a first determination of the apsidal parameter reflecting the radial density distributions for the components stars: k 2 obs = 0.00213(18). This value is in a good agreement with the value expected theoretically for current evolutionary models of such stars: k 2 th = 0.00257(15).  相似文献   

13.
Variations of the orbital periods of the eclipsing binaries TU Cnc, VZ Leo, and OS Ori are analyzed. Secular period decreases were earlier believed to occur in these systems. It is demonstrated that the period variations of TU Cnc can be represented using the light-time effect corresponding to the orbital motion of the eclipsing binary with a period of 78.6 years around the center ofmass of the triple system, with the mass of the third body being M 3 > 0.82M . With the same accuracy, the period variations of VZ Leo and OS Ori can be represented either solely using the light-time effect, or a superposition of a secular period decrease and the light-time effect. For VZ Leo, the period of the long-term orbit is 63.8 years in the former case and 67.9 years in the latter case. Similar masses for the third body are indicated in both cases: M 3 > 0.55M and M 3 > 0.61M . For OS Ori, the period of the long-term orbit is 46 years and M 3 > 0.5M in the former case, and the period is 36 years and M 3 > 0.6M in the latter case.  相似文献   

14.
Theoretical absorption-line profiles and radial-velocity curves for tidally deformed optical stars in X-ray binary systems are calculated assuming LTE. The variations in the profile shapes and radial-velocity curve of the optical star are analyzed as a function of the orbital inclination of the X-ray binary system. The dependence of the shape of the radial-velocity curve on the orbital inclination i increases with decreasing component-mass ratio q = m x /m v . The integrated line profiles and radial-velocity curves of the optical star are calculated for the Cyg X-1 binary, which are then used to estimate the orbital inclination and mass of the relativistic object: i < 43° andm x = 8.2–12.8 M. These estimates are in good agreement with earlier results of fitting the radial-velocity curve of Cyg X-1 using a simpler model (i < 45°, m x = 9.0–13.2 M).  相似文献   

15.
We analyze photometric and spectroscopic observations of the close binary system V664 Cas. All the characteristics of its radiation are consistent with the star being a cataclysmic variable with powerful reflection effects. The orbital period is refined (P=0.5816475 d) and the ephemerides of the system determined. The U, B, V, R light curves of V664 Cas display sinusoidal variations with similar amplitudes near Δm=1.1m. This suggests that a hot spot on the surface of the secondary always dominates the optical radiation of the system. The spectra contain emission lines, two-peaked hydrogen lines, and narrow lines of helium and heavy elements in high ionization states, whose intensities vary synchronously with the brightness. The HeII λ4686 Å line has broad absorption wings that form in the atmosphere of the O subdwarf. The mass function, f(m)=0.007M, is the lowest among all precataclysmic variables: the mass of the secondary exceeds the mass of the primary by more than a factor of 1.6. A full set of fundamental parameters for V664 Cas is determined based on modeling of the spectra and light curves, taking into account reflection effects in the system. Most of the emission lines are formed under conditions of appreciable deviations from local thermodynamic equilibrium. The possibility of carrying out correct modeling of the Balmer-line profiles assuming the stellar radiation is absorbed in a planetary nebula is demonstrated.  相似文献   

16.
We have obtained the first U BV R photoelectric light curves for a recently discovered eclipsing binary with a period of 9.33 d and an appreciable eccentricity (e = 0.08). We have used these data to determine the photometric elements of the system for a model with two spherical stars with linear limb darkening. The high accuracy of the observations enabled determination of the absolute parameters of the components using available calibrations. The masses of the components are 1.28 and 1.08 M , and their ages are two billion years. The present orientation of the orbital ellipse is unfavorable for studies of the apsidal rotation, which is essentially due to relativistic effects.  相似文献   

17.
A brief review of the observed parameters of binary systems with black holes is presented. We discuss in detail the evolutionary status of the X-ray binary GRS 1915+105, which contains a massive black hole. Numerical simulations of the evolution of GRS 1915+105 at the X-ray stage indicate that the most probable initial mass of the optical component (donor star) is (1.5–)M. Two possible scenarios are suggested for the evolution of the system prior to the formation of the black hole. If the initial mass of the optical component was (2.5–)M, the system underwent a common-envelope phase; in this case, the initial mass of the black hole progenitor did not exceed ~50M. If the initial mass of the donor was (1.5–2.5)M, a scenario without a common envelope is possible, with the initial mass of the black hole progenitor being smaller than ~50M. The lack of information about the initial mass-ratio distribution for binary components for small q and the uncertainty of the system parameters make it impossible to give preference to a particular scenario for the system's prior evolution.  相似文献   

18.
We study the growth of the masses of neutron stars in binary systems due to the accumulation of mass from the optical donors accreted onto the neutron-star surface. Possible scenarios for this accretion are considered. The masses and magnetic-field strengths of radio pulsars derived using population-synthesis methods are compared to the observational data. The population-synthesis analysis indicates that a neutron star can increase its mass from the standard value of m x ? 1.35M to the Oppenheimer-Volkoff limit, m x ? 2.5M, via accretion from a companion.  相似文献   

19.
We have analyzed the orbital light curve of the X-ray nova XTE J1118+480 in a “disk + hot line” model based on three-dimensional gas-dynamical computations of gas flows in interacting binary systems. As a result, we have been able to derive reliable parameters for the system: i = 80 ?4 +4 degrees, MBH = 7.1 ?0.1 +0.5 M, M opt = 0.39 ?0.07 +0.15 M.  相似文献   

20.
We show that semi-detached close binary systems with massive (4–25M) black holes are formed in the evolution of massive stellar binaries in which the initial mass of the primary exceeds ~25M. The mass exchange in such systems is maintained by the nuclear evolution of the donor and by its magnetic and induced stellar winds. The donor in such systems can be a main-sequence star, subgiant, non-degenerate helium star, or white dwarf. The evolution of corresponding systems with black-hole masses of 10M is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号