首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We carried out I , R , V and B photometric observations of the neutron star X-ray binary RXTE J2123−058 shortly after the end of the X-ray outburst in mid-1998. We adopt the low-mass binary model to interpret our observations. After folding our data on the 0.24 821‐d orbital period, and correcting for the steady brightness decline following the outburst, we observed sinusoidal oscillations with hints of ellipsoidal modulations which became progressively more evident. Our data also show that the decline in brightness was faster in the V band than in the R and I bands. This suggests both the cooling of an irradiation-heated secondary star and the fading of an accretion disc over the nights of our observations.  相似文献   

2.
We have investigated multiband optical photometric variability and stability of the Hα line profile of the transient X-ray binary IGR J01583+6713. We set an upper limit of 0.05 mag on photometric variations in the V band over a time-scale of three months. The Hα line is found to consist of non-Gaussian profile and quite stable for a duration of two months. We have identified the spectral type of the companion star to be B2 IVe while the distance to the source is estimated to be ∼4.0 kpc. Along with the optical observations, we have also carried out analysis of X-ray data from three short observations of the source, two with the Swift –XRT and one with the RXTE –PCA. We have detected a variation in the absorption column density, from a value of  22.0 × 1022 cm−2  immediately after the outburst down to  2.6 × 1022 cm−2  four months afterwards. In the quiescent state, the X-ray absorption is consistent with the optical reddening measurement of   E ( B − V ) = 1.46  mag. From one of the Swift observations, during which the X-ray intensity was higher, we have a possible pulse detection with a period of 469.2 s. For a Be X-ray binary, this indicates an orbital period in the range of 216–561 d for this binary system.  相似文献   

3.
We report optical and near-infrared spectroscopy, and optical spectropolarimetry, of the peculiar variable V838 Mon during the multiple outburst phase in early 2002. The spectral evolution is exceptional. Our earliest spectra (2002 January) are noteworthy for their strong absorption lines of barium and strontium in the optical, and bands of CO and circumstellar H2O in the near-infrared. All but the CO weaken or are absent in later spectra. The behaviour of the CO band during this phase is extraordinary: initially in absorption, it was observed two months later in optically thick emission. The excitation of the CO is probably the result of the propagation of a shock wave at the third maximum. The two spectropolarimetric epochs were taken 6 and 27 d after the second outburst on 2002 February 8. The polarization at both times was measured to be   pV ≈ 2.7  per cent. Nearly all of the measured polarization is believed to be due to interstellar dust, a conclusion that is consistent with previous studies. At both epochs, however, a weak and variable intrinsic component is thought to be present. Between January and March of 2002 the luminosity of V838 Mon increased by a factor of 15 and the apparent diameter increased fourfold.  相似文献   

4.
We present the most complete multiwavelength coverage of any dwarf nova outburst: simultaneous optical, Extreme Ultraviolet Explorer and Rossi X-ray Timing Explorer observations of SS Cygni throughout a narrow asymmetric outburst. Our data show that the high-energy outburst begins in the X-ray waveband 0.9–1.4 d after the beginning of the optical rise and 0.6 d before the extreme-ultraviolet rise. The X-ray flux drops suddenly, immediately before the extreme-ultraviolet flux rise, supporting the view that both components arise in the boundary layer between the accretion disc and white dwarf surface. The early rise of the X-ray flux shows that the propagation time of the outburst heating wave may have been previously overestimated.
The transitions between X-ray and extreme-ultraviolet dominated emission are accompanied by intense variability in the X-ray flux, with time-scales of minutes. As detailed by Mauche & Robinson, dwarf nova oscillations are detected throughout the extreme-ultraviolet outburst, but we find they are absent from the X-ray light curve.
X-ray and extreme-ultraviolet luminosities imply accretion rates of  3 × 1015 g s−1  in quiescence,  1 × 1016 g s−1  when the boundary layer becomes optically thick, and  ∼1018 g s−1  at the peak of the outburst. The quiescent accretion rate is two and a half orders of magnitude higher than predicted by the standard disc instability model, and we suggest this may be because the inner accretion disc in SS Cyg is in a permanent outburst state.  相似文献   

5.
We present a simple physical mechanism that can account for the observed stellar mass spectrum for masses M ∗≳0.5 M . The model depends solely on the competitive accretion that occurs in stellar clusters where each star's accretion rate depends on the local gas density and the square of the accretion radius. In a stellar cluster, there are two different regimes depending on whether the gas or the stars dominate the gravitational potential. When the cluster is dominated by cold gas, the accretion radius is given by a tidal-lobe radius. This occurs as the cluster collapses towards a ρ  ∝  R −2 distribution. Accretion in this regime results in a mass spectrum with an asymptotic limit of γ =−3/2 (where Salpeter is γ =−2.35) . Once the stars dominate the potential and are virialized, which occurs first in the cluster core, the accretion radius is the Bondi–Hoyle radius. The resultant mass spectrum has an asymptotic limit of γ =−2 with slightly steeper slopes ( γ ≈−2.5) if the stars are already mass-segregated. Simulations of accretion on to clusters containing 1000 stars show that, as expected, the low-mass stars accumulate the majority of their masses during the gas-dominated phase whereas the high-mass stars accumulate the majority of their masses during the stellar-dominated phase. This results in a mass spectrum with a relatively shallow γ ≈3/2 power law for low-mass stars and a steeper power law for high-mass stars −2.5≲ γ ≤−2 . This competitive accretion model also results in a mass-segregated cluster.  相似文献   

6.
The post-common envelope and pre-cataclysmic binary V471 Tau has been observed by the authors since 1973. At least a complete light curve in B and V bands and more than two eclipse timings were obtained in each year. All the available data published so far (including the authors') have been collected and analysed for the brightness and orbital period changes. The system brightened about 0.22 mag in both B and V bands more or less regularly up to 1997 and started to decrease afterwards. A search for periodicity of this variation yields a period longer than 85 yr. In addition to this long-period variation, a small amplitude of about 0.08 mag and short time-interval fluctuations on the mean brightness have been detected. The variations of the mean brightness have been discussed and plausible causes suggested. The changes of the apparent period have been attributed to a third body. Analysis of all the 'observed−calculated' (O−C) data yields a period of 32.4 yr, with a semi-amplitude of 151 s and an eccentricity of 0.30 for the third-body orbit. For orbital inclinations greater than 34° the mass of the third body would possibly match to a brown dwarf. One of the most interesting features in the light curve of V471 Tau is the decrement of the eclipse depth with time. The depth of the eclipse in the B band has been decreased from 0.082 to 0.057 mag over 34 yr. Subtracting the variation of the depth due to the brightening of the red dwarf star, the actual variation in depth, originated from from the white dwarf, was found to be about 0.012 mag. This change in the brightness of the compact object has been attributed to the mass accretion from its primary component via thermally driven wind and/or flare-like events.  相似文献   

7.
High time resolution spectroscopic observations of the ultracompact helium dwarf nova 'SN 2003aw' in its quiescent state at   V ∼ 20.5  reveal its orbital period at  2027.8 ± 0.5 s  or 33.80 min. Together with the photometric 'superhump' period of  2041.5 ± 0.5 s  , this implies a mass ratio   q ≈ 0.036  . We compare both the average and time-resolved spectra of 'SN 2003aw' and Sloan Digital Sky Survey (SDSS) J124058.03−015919.2. Both show a DB white dwarf spectrum plus an optically thin, helium-dominated accretion disc. 'SN 2003aw' distinguishes itself from the SDSS source by its strong calcium H & K emission lines, suggesting higher abundances of heavy metals than the SDSS source. The silicon and iron emission lines observed in the SDSS source are about twice as strong in 'SN 2003aw'. The peculiar 'double bright spot' accretion disc feature seen in the SDSS source is also present in time-resolved spectra of 'SN 2003aw', albeit much weaker.  相似文献   

8.
We present optical and infrared observations of BQ Cam, the optical counterpart to the Be/X-ray transient system V0332+53. BQ Cam is shown to be an O8–9Ve star, which places V0332+53 at a distance of ∼7 kpc. H α spectroscopy and infrared photometry are used to discuss the evolution of the circumstellar envelope. Owing to the low inclination of the system, parameters are strongly constrained. We find strong evidence for a tilt of the orbital plane with respect to the circumstellar disc (presumably on the equatorial plane). Even though the periastron distance is only ≈10 R *, during the present quiescent state the circumstellar disc does not extend to the distance of periastron passage. Under these conditions, X-ray emission is effectively prevented by centrifugal inhibition of accretion. The circumstellar disc is shown to be optically thick at optical and infrared wavelengths, which, together with its small size, is taken as an indication of tidal truncation.  相似文献   

9.
Optical/near-infrared (optical/NIR, OIR) light from low-mass neutron star X-ray binaries (NSXBs) in outburst is traditionally thought to be thermal emission from the accretion disc. Here we present a comprehensive collection of quasi-simultaneous OIR and X-ray data from 19 low magnetic field NSXBs, including new observations of three sources: 4U 0614+09, LMC X−2 and GX 349+2. The average radio–OIR spectrum for NSXBs is  α≈+ 0.2  (where   L ν∝να  ) at least at high luminosities when the radio jet is detected. This is comparable to, but slightly more inverted than the  α≈ 0.0  found for black hole X-ray binaries. The OIR spectra and relations between OIR and X-ray fluxes are compared to those expected if the OIR emission is dominated by thermal emission from an X-ray or viscously heated disc, or synchrotron emission from the inner regions of the jets. We find that thermal emission due to X-ray reprocessing can explain all the data except at high luminosities for some NSXBs, namely, the atolls and millisecond X-ray pulsars. Optically thin synchrotron emission from the jets (with an observed OIR spectral index of  αthin < 0  ) dominate the NIR light above     and the optical above     in these systems. For NSXB Z-sources, the OIR observations can be explained by X-ray reprocessing alone, although synchrotron emission may make a low-level contribution to the NIR, and could dominate the OIR in one or two cases.  相似文献   

10.
With extensive monitoring data spanning over 30 years from Vela 5B , Ariel 5 , Ginga , Compton Gamma Ray Observatory , Rossi X-ray Timing Explorer and BeppoSAX , we find evidence for long-term X-ray variability on time-scales     from the black hole low-mass X-ray binary system     . Such variability resembles the outburst cycle of Z Cam-type dwarf novae, in which the standard disc instability model plays a crucial role. If such a model is applicable to     , then the observed variability might be due to the irradiation of an unstable accretion disc. We show that within the framework of the X-ray irradiation model, when the accretion rate exceeds a critical value,     enters a 'flat-topped' high/soft state, such as seen in 1998, which we suggest corresponds to the 'standstill' state of Z Cam systems.  相似文献   

11.
We show that the observed K velocities and periodicities of AM CVn can be reconciled given a mass ratio   q ≈ 0.22  and a secondary star with a modest magnetic field of surface strength   B ∼ 1 T  . We see that the new mass ratio implies that the secondary is most likely semidegenerate. The effect of the field on the accretion disc structure is examined. The theory of precessing discs and resonant orbits is generalized to encompass higher order resonances than 3 : 2 and shown to retain consistency with the new mass ratio.  相似文献   

12.
We present a precise timing analysis of the accreting millisecond pulsar XTE J1814−338 during its 2003 outburst, observed by RXTE . A full orbital solution is given for the first time; Doppler effects induced by the motion of the source in the binary system were corrected, leading to a refined estimate of the orbital period,   P orb= 15 388.7229(2)  s, and of the projected semimajor axis,   a sin  i / c = 0.390633(9)  light-second. We could then investigate the spin behaviour of the accreting compact object during the outburst. We report here a refined value of the spin frequency  (ν= 314.356 108 79(1) Hz)  and the first estimate of the spin frequency derivative of this source while accreting     . This spin-down behaviour arises when both the fundamental frequency and the second harmonic are taken into consideration. We discuss this in the context of the interaction between the disc and the quickly rotating magnetosphere, at accretion rates sufficiently low to allow a threading of the accretion disc in regions where the Keplerian velocity is slower than the magnetosphere velocity. We also present indications of a jitter of the pulse phases around the mean trend, which we argue results from movements of the accreting hotspots in response to variations of the accretion rate.  相似文献   

13.
Low-resolution spectra, taken at La Silla (ESO), identify the old nova RS Car (1895) as a ∼18 mag star located 7 arcsec southwest from the previous published position. This suggests a much brighter absolute magnitude of the old nova, M v ∼5.4, than previously suspected. The spectrum reveals a continuum energy distribution typical of optically thick accretion discs and quite a high excitation state of the gas. The possible detection of the AlO λ 4843 emission band is discussed.  相似文献   

14.
We present images and photometry of a stellar ring-like structure G052.4−00.0 discovered during visual inspection of the Spitzer GLIMPSE Atlas. Although G052.4−00.0 may correspond to one of a large variety of sources, it is argued that it is most likely to be associated with an early-type supergiant at a distance of ∼8 kpc from the Sun. Where this is the case, then the radius of the ring would be of the order of ≈0.3 pc, comparable to those of similar structures about other supergiant stars, and the extinction   A V   would be of the order of ∼21 mag.  相似文献   

15.
We report on time-resolved photometry carried out during the 1995 short outburst and the 1997 long outburst in the eclipsing dwarf nova DV UMa. The revised orbital period is 0.0858526172 (67) d. We detected gigantic superhumps with an amplitude of ∼0.6 mag in the mid-phase of the 1997 outburst, revealing the SU UMa nature of DV UMa. The superhump period is 0.0887 (4) d. The superhumps became less clear during the late phase of the superoutburst, and we found two possible periods of 0.0885 (15) and 0.0764 (15). During both outbursts, the eclipse was wide and shallow near the maximum, and then became narrower and deeper, which is qualitatively well explained by the current disc instability theory.  相似文献   

16.
The 2006 outburst of GK Persei differed significantly at optical and ultraviolet (UV) wavelengths from typical outbursts of this object. We present multiwavelength (X-ray, UV and optical) Swift and AAVSO data, giving unprecedented broad-band coverage of the outburst, allowing us to follow the evolution of the longer-than-normal 2006 outburst across these wavelengths. In the optical and UV we see a triple-peaked morphology with maximum brightness ∼1.5 mag lower than in previous years. In contrast, the peak hard X-ray flux is the same as in previous outbursts. We resolve this dichotomy by demonstrating that the hard X-ray flux only accounts for a small fraction of the total energy liberated during accretion, and interpret the optical/UV outburst profile as arising from a series of heating and cooling waves traversing the disc, caused by its variable density profile.  相似文献   

17.
We report the discovery of a new AM Herculis binary (polar) as the optical counterpart of the soft X-ray source RX J1724.0+4114 detected during the ROSAT all-sky survey. The magnetic nature of this V  ∼ 17 mag object is confirmed by low-resolution spectroscopy showing strong Balmer and He  II emission lines superimposed on a blue continuum, which is deeply modulated by cyclotron humps. The inferred magnetic field strength is 50 ± 4 MG (or possibly even ≈ 70 MG). Photometric observations spanning ∼ 3 yr reveal a period of 119.9 min, directly below the period gap. The morphology of the optical and X-ray light curves, which do not show eclipses by the secondary star, suggests a self-eclipsing geometry. We derive a lower limit on the distance of d  ≳ 250 pc.  相似文献   

18.
We present 14 nights of medium resolution (1–2 Å) spectroscopy of the eclipsing cataclysmic variable UU Aquarii obtained during a high accretion state in 1995 August–October. UU Aqr appears to be an SW Sextantis (SW Sex) star, as noted by Baptista, Steiner & Horne, and we discuss its spectroscopic behaviour in the context of the SW Sex phenomenon. Emission-line equivalent width curves, Doppler tomography, and line profile simulation provide evidence for the presence of a bright spot at the impact site of the accretion stream with the edge of the disc, and a non-axisymmetric, vertically and azimuthally extended absorbing structure in the disc. The absorption has maximum depth in the emission lines around orbital phase 0.8, but is present from φ≈0.4 to φ≈0.95. An origin is explored for this absorbing structure (as well as for the other spectroscopic behaviour of UU Aqr) in terms of the explosive impact of the accretion stream with the disc.  相似文献   

19.
We report the first extensive set of optical photometric observations of the counterpart to SAX J1808.4−3658 (V4580 Sagittarii) in quiescence. The source was detected at V ∼21 , 5 mag fainter than at the peak of its 1998 outburst. However, a comparable ∼6 per cent semi-amplitude 2-h modulation of its flux is revealed. This has the same phasing and approximately sinusoidal modulation as seen during outburst, and with photometric minimum when the pulsar is behind the companion. The lack of a double-humped morphology rules out an ellipsoidal origin, implying that the bulk of the optical flux does not arise from the companion. Moreover, applying crude modelling to the disc and X-ray irradiated face of the donor shows that the internal energy release of a remnant disc (with mass transfer driven by gravitational radiation) is sufficient to explain most of the optical emission, and with the modulation because of the varying contribution of the heated face of the star. We note that this model is also consistent with the much lower X-ray to optical flux ratio in quiescence versus outburst, and with the phasing of the optical modulation.  相似文献   

20.
We report spectroscopic orbital periods of 0.147 d (=3.53 h) for V533 Her, 0.207 d (=4.97 h) for V446 Her and 1.478 d for X Ser. V533 Her (Nova Herculis 1963) shows absorption features in its He  i and Balmer lines which appear only in a limited range of orbital phase, suggesting that it is a low-inclination SW Sextantis star. V446 Her is unusual in that it has started normal dwarf nova eruptions after a nova outburst, but we find nothing else unusual about it – in particular, a distance estimate based on its dwarf nova outbursts agrees nicely with another based on the rate of decline of its nova eruption, both giving d ∼1 kpc. In X Ser, unlike in other old novae with long periods, no spectral features of the secondary star are visible. This and its outburst magnitude both suggest that it is quite distant and luminous, and at least 1 kpc from the Galactic plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号