首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The largest Plinian eruption of our era and the latest caldera-forming eruption in the Kuril-Kamchatka region occurred about cal. A.D. 240 from the Ksudach volcano. This catastrophic explosive eruption was similar in type and characteristics to the 1883 Krakatau event. The volume of material ejected was 18–19 km3 (8 km3 DRE), including 15 km3 of tephra fall and 3–4 km3 of pyroclastic flows. The estimated height of eruptive column is 22–30 km. A collapse caldera resulting from this eruption was 4 × 6.5 km in size with a cavity volume of 6.5–7 km3. Tephra fall was deposited to the north of the volcano and reached more than 1000 km. Pyroclastic flows accompanied by ash-cloud pyroclastic surges extended out to 20 km. The eruption was initially phreatomagmatic and then became rhythmic, with each pulse evolving from pumice falls to pyroclastic flows. Erupted products were dominantly rhyodacite throughout the eruption. During the post-caldera stage, when the Shtyubel cone started to form within the caldera, basaltic-andesite and andesite magma began to effuse. The trigger for the eruption may have been an intrusion of mafic magma into the rhyodacite reservoir. The eruption had substantial environmental impact and may have produced a large acidity peak in the Greenland ice sheet.  相似文献   

2.
The well-documented 1883 eruption of Krakatau volcano (Indonesia) offers an opportunity to couple the eruption’s history with the tsunami record. The aim of this paper is not to re-analyse the scenario for the 1883 eruption but to demonstrate that the study of tsunami deposits provides information for reconstructing past eruptions. Indeed, though the characteristics of volcanogenic tsunami deposits are similar to those of other tsunami deposits, they may include juvenile material (e.g. fresh pumice) or be interbedded with distal pyroclastic deposits (ash fall, surges), due to their simultaneity with the eruption. Five kinds of sedimentary and volcanic facies related to the 1883 events were identified along the coasts of Java and Sumatra: (1) bioclastic tsunami sands and (2) pumiceous tsunami sands, deposited respectively before and during the Plinian phase (26–27 August); (3) rounded pumice lapilli reworked by tsunami; (4) pumiceous ash fall deposits and (5) pyroclastic surge deposits (only in Sumatra). The stratigraphic record on the coasts of Java and Sumatra, which agrees particularly well with observations of the 1883 events, is tentatively linked to the proximal stratigraphy of the eruption.  相似文献   

3.
Tsunami deposits in Kyushu Island, Southwestern Japan, have been attributed to the 7.3 ka Kikai caldera eruption, but their origin has not been confirmed. We analyzed an 83-cm-thick Holocene event deposit in the SKM core, obtained from incised valley fill in the coastal lowlands near Sukumo Bay, Southwestern Shikoku Island. We confirmed that the event deposit contains K-Ah volcanic ash from the 7.3 ka eruption. The base of the event deposit erodes the underlying inner-bay mud, and the deposit contains material from outside the local terrestrial and marine environment, including angular quartz porphyry from a small inland exposure, oyster shell debris, and a coral fragment. Benthic foraminifers and ostracods in the deposit indicate various habitats, some of which are outside Sukumo Bay. The sand matrix contains low-silica volcanic glass from the late stage of the Kikai caldera eruption. We also documented the same glass in an event deposit in the MIK1 core, from the incised Oyodo River valley in the Miyazaki Plain on Southeastern Kyushu. These two 7.3 ka tsunami deposits join other documented examples that are widely distributed in Southwestern Japan including the Bungo Channel and Beppu Bay in Eastern Kyushu, Tachibana Bay in Western Kyushu, and Zasa Pond on the Kii Peninsula as well as around the caldera itself. The tsunami deposits near the caldera have been divided into older and younger 7.3 ka tsunami deposits, the younger ones matching the set of widespread deposits. We attribute the younger 7.3 ka tsunami deposits to a large tsunami generated by a great interplate earthquake in the Northern part of the Ryukyu Trench and (or) the Western Nankai Trough just after the late stage of the Kikai caldera eruption and the older 7.3 ka tsunami deposits to a small tsunami generated by an interplate earthquake or Kikai caldera eruption.  相似文献   

4.
A moderately violent phreatomagmatic explosive eruption of Taal Volcano, Philippines, occurred from 28 to 30 September, 1965. The main phreatic explosions, which were preceded by ejection of basaltic spatter, opened a new crater 1.5 km long and 0.3 km wide on the southwest side of Volcano Island in Lake Taal. The eruption covered an area of about 60 square kilometers with a blanket of ash more than 25 cm thick and killed approximately 200 persons. The clouds that formed during the explosive eruption rose to heights of 15 to 20 km and deposited fine ash as far as 80 km west of the vent. At the base of the main explosion column, flat, turbulent clouds spread radially, with hurricane velocity, transporting ash, mud, lapilli and blocks. The horizontally moving, debris-laden clouds, sandblasted trees, coated the blast side of trees and houses with mud, and deposited coarse ejecta with dune-type bedding in a zone roughly 4 km in all directions from the explosion crater.  相似文献   

5.
Drill-hole, geochronologic, and gravity data identify the buried Shishimuta caldera beneath post-caldera lava domes and lacustrine deposits in the center of the Hohi volcanic zone. The caldera is the source of the Yabakei pyroclastic flow, which erupted 1.0 Ma ago with a bulk volume of 110 km3. The caldera is a breccia-filled funnel-shaped depression 8 km wide and > 3 km deep with a V-shaped negative Bouguer gravity anomaly up to 36 mgal. Neither ring vents nor resurgence was recognized; instead, post-caldera monogenetic volcanism in an extensional setting dominated the area. The andesitic breccia has a relatively low density and fills the caldera; it possibly formed by fragmentation of disrupted roof rock during the violent Yabakei eruption and related collapse. Fewer normal faults and shallow microearthquakes occur inside the caldera than around it, possibly because rocks beneath the caldera are structurally incoherent. A profile of Shishimuta caldera may be more elongated vertically, and have a more intensely fractured zone, than that of a Valles-type caldera.  相似文献   

6.
The majority of tephra generated during the paroxysmal 1883 eruption of Krakatau volcano, Indonesia, was deposited in the sea within a 15-km radius of the caldera. Two syneruptive pyroclastic facies have been recovered in SCUBA cores which sampled the 1883 subaqueous pyroclastic deposit. The most commonly recovered facies is a massive textured, poorly sorted mixture of pumice and lithic lapilli-to-block-sized fragments set in a silty to sandy ash matrix. This facies is indistinguishable from the 1883 subaerial pyroclastic flow deposits preserved on the Krakatau islands on the basis of grain size and component abundances. A less common facies consists of well-sorted, planarlaminated to low-angle cross-bedded, vitric-enriched silty ash. Entrance of subaerial pyroclastic flows into the sea resulted in subaqueous deposition of the massive facies primarily by deceleration and sinking of highly concentrated, deflated components of pyroclastic flows as they traveled over water. The basal component of the deposit suggests no mixing with seawater as inferred from retention of the fine ash fraction, high temperature of emplacement, and lack of traction structures, and no significant hydraulic sorting of components. The laminated facies was most likely deposited from low-concentration pyroclastic density currents generated by shear along the boundary between the submarine pyroclastic flows and seawater. The Krakatau deposits are the first well-documented example of true submarine pyroclastic flow deposition from a modern eruption, and thus constitute an important analog for the interpretation of ancient sequences where subaqueous deposition has been inferred based on the facies characteristics of encapsulating sedimentary sequences.  相似文献   

7.
Previous research indicates that Yakushima Island, southwestern Japan, may have been struck by a huge tsunami before or soon after the arrival of the Koya pyroclastic flow during the 7.3 ka caldera‐forming Kikai eruption, but this has not yet been confirmed. This paper describes sedimentological and chronostratigraphic evidence showing that Unit TG, one of three gravel beds exposed on the Koseda coast of northeast Yakushima Island and investigated here, is a tsunami deposit. Unit TG is a poorly sorted, 30 cm thick gravel bed overlying a wave‐cut bench and underlying a Koya pyroclastic flow deposit. Sparse wood fragments in Unit TG were dated at 7 416–7 167 cal year BP. The constituent gravel clasts of Unit TG are similar in composition to those of modern beach and river deposits along the Koseda coast. Unit TG also contains pumice clasts whose chemistry is identical to that of pumice derived from the 7.3 ka eruption at Kikai caldera. The long‐axis orientations and composition of gravel clasts in Unit TG suggest that they were transported by a landward‐travelling high‐particle‐concentration flow, which suggests that Unit TG was deposited by a tsunami run‐up flow during the 7.3 ka Kikai caldera eruption, just before the arrival of the major Koya pyroclastic flow at the Koseda coast. Whether the 7.3 ka tsunami was caused by a volcanic eruption or an earthquake remains unclear, but Unit TG demonstrates that a tsunami arrived immediately before emplacement of a Koya pyroclastic flow.  相似文献   

8.
The 1883 eruption of Augustine Volcano produced a tsunami when a debris avalanche traveled into the waters of Cook Inlet. Older debris avalanches and coeval paleotsunami deposits from sites around Cook Inlet record several older volcanic tsunamis. A debris avalanche into the sea on the west side of Augustine Island ca. 450 years ago produced a wave that affected areas 17 m above high tide on Augustine Island. A large volcanic tsunami was generated by a debris avalanche on the east side of Augustine Island ca. 1600 yr BP, and affected areas more than 7 m above high tide at distances of 80 km from the volcano on the Kenai Peninsula. A tsunami deposit dated to ca. 3600 yr BP is tentatively correlated with a southward directed collapse of the summit of Redoubt Volcano, although little is known about the magnitude of the tsunami. The 1600 yr BP tsunami from Augustine Volcano occurred about the same time as the collapse of the well-developed Kachemak culture in the southern Cook Inlet area, suggesting a link between volcanic tsunamis and prehistoric cultural changes in this region of Alaska.  相似文献   

9.
Taal Volcano is peculiar in its violent explosivity in spite of its low altitude. The surrounding topographies suggest that the origin of Taal Volcano is either a caldera or a graben structure. To confirm the caldera origin one must search for a vast quantity of caldera ejecta balancing with the depression. As a first step, a gravity survey was carried out on and around Taal Volcano, and high gravity anomalies were lound on Volcano Island. The distribution of the gravities may suggest a graben structure overlying a denser layer of igneous material.  相似文献   

10.
Karthala volcano is a basaltic shield volcano with an active hydrothermal system that forms the southern two-thirds of the Grande Comore Island, off the east coat of Africa, northwest of Madagascar. Since the start of volcano monitoring by the local volcano observatory in 1988, the July 11th, 1991 phreatic eruption was the first volcanic event seismically recorded on this volcano, and a rare example of a monitored basaltic shield. From 1991 to 1995 the VT locations, 0.5<Ml<4.3, show a crack shaped pattern (3 km long, 1 km wide) within the summit caldera extending at depth from –2 km to +2 km relative to sea level. This N-S elongated pattern coincides with the direction of the regional maximum horizontal stress as deduced from regional focal mechanism solutions. This brittle signature of the damage associated with the 1991 phreatic eruption is a typical pattern of the seismicity induced by controlled fluid injections such as those applied at geothermal fields, in oil and gas recovery, or for stress measurements. It suggests the 1991 phreatic eruption was driven by hydraulic fracturing induced by forced fluid flow. We propose that the extremely high LP and VT seismicity rates, relative to other effusive volcanoes, during the climax of the 1991 phreatic explosion, are due to the activation of the whole hydrothermal system, as roughly sized by the distribution of VT hypocenters. The seismicity rate in 1995 was still higher than the pre-eruption seismicity rate, and disagrees with the time pattern of thermo-elastic stress readjustment induced by single magma intrusions at basaltic volcanoes. We propose that it corresponds to the still ongoing relaxation of pressure heterogeneity within the hydrothermal system as suggested by the few LP events that still occurred in 1995.Editorial responsibility: H Shinohara  相似文献   

11.
It is shown that the youngest (~40000 14C years BP) caldera of the Opala caldera complex, the Opala IV, was formed by a catastrophic explosive supereruption, the largest in Kamchatka during the last 50000 years of the seven dated similar-type eruptions that occurred during the Late Pleistocene paroxysm of explosive volcanism. It is thought that the ejected volume was on the order of 250 km3 of pyroclastic material. A smaller part of it went to form pumice-rich pyroclastic flows, with the greater part being transported as tephra. The principal axis of the ash fallout was oriented NNE (azimuth ~30°) where the tephra thickness was 20–30 cm at a distance of 300–320 km from the eruptive center. The uncontaminated juvenile material is rhyolite, the concentration of SiO2 was 75–76%, the total alkali content 7.3–8.3%, and the K2O/Na2O ratio 0.83–0.96. It was concluded that no such eruption can occur in the Opala caldera complex in the future for hundreds or thousands of years.  相似文献   

12.
The central part of the Island of Pantelleria is occupied by a caldera depression of ellipsoidal form, the major diameter of which is about 7 kilometers. The collapse causing the caldera to form seems to have taken place after a complex eruption which led to the extrusion of a great endogenous dome, the formation of which was followed by a localized explosive activity. The succession of the acid volcanites of Pantelleria shows periodical evolutions of the magmas, undergoing various cycles of differentiation. After a period of quiescence a new cycle of differentiation started again. This may be explained by admitting that the differentiation was accompanied by an increase in the gas content. The violent degassing re-established conditions analogous to those which had existed at the beginning of the previous cycle.  相似文献   

13.
—The 1996 subaquatic explosive eruption near the northern shore of Karymskoye Lake in Kamchatka, Russia, generated multiple tsunamis. We document the explosive process that produced the tsunamis, and describe the tsunami effects and runup around the 4-km diameter lake. These data enable the determination of an attenuation relation of runup (wave) height for these “explosive” tsunamis, which is compared with theoretical models of wave height distributions. For the proximal zone, involving radial distances (r) up to 1.3 km from the source, the runup height (R) shows rapid attenuation (from > 30 m to 8 m) with distance as log R = ?1.98 log[r] + 2.6. For the distal zone, r > 1.3 km, involving mainly wave travel southeastwards along the body of the lake away from the explosion source, R decays more slowly (from 8 m to 3 m) as log R = ?0.56 log[r] + 1.9. Rapid decay in the proximal zone suggests that near the source of the explosion, the tsunami propagated radially as a collapsing wave (bore) with discontinuous change in height. The break-in-slope of the runup plot at 1.3 km suggests that beyond this distance the tsunami propagated approximately as a decaying one-dimensional wave in a channel of approximately constant width.  相似文献   

14.
Tofua Island is the largest emergent mafic volcano within the Tofua arc, Tonga, southwest Pacific. The volcano is dominated by a distinctive caldera averaging 4 km in diameter, containing a freshwater lake in the south and east. The latest paroxysmal (VEI 5–6) explosive volcanism includes two phases of activity, each emplacing a high-grade ignimbrite. The products are basaltic andesites with between 52 wt.% and 57 wt.% SiO2. The first and largest eruption caused the inward collapse of a stratovolcano and produced the ‘Tofua’ ignimbrite and a sub-circular caldera located slightly northwest of the island’s centre. This ignimbrite was deposited in a radial fashion over the entire island, with associated Plinian fall deposits up to 0.5 m thick on islands >40 km away. Common sub-rounded and frequently cauliform scoria bombs throughout the ignimbrite attest to a small degree of marginal magma–water interaction. The common intense welding of the coarse-grained eruptive products, however, suggests that the majority of the erupted magma was hot, water-undersaturated and supplied at high rates with moderately low fragmentation efficiency and low levels of interaction with external water. We propose that the development of a water-saturated dacite body at shallow (<6 km) depth resulted in failure of the chamber roof to cause sudden evacuation of material, producing a Plinian eruption column. Following a brief period of quiescence, large-scale faulting in the southeast of the island produced a second explosive phase believed to result from recharge of a chemically distinct magma depleted in incompatible elements. This similar, but smaller eruption, emplaced the ‘Hokula’ Ignimbrite sheet in the northeast of the island. A maximum total volume of 8 km3 of juvenile material was erupted by these events. The main eruption column is estimated to have reached a height of ∼12 km, and to have produced a major atmospheric injection of gas, and tephra recorded in the widespread series of fall deposits found on coral islands 40–80 km to the east (in the direction of regional upper-tropospheric winds). Radiocarbon dating of charcoal below the Tofua ignimbrite and organic material below the related fall units imply this eruption sequence occurred post 1,000 years BP. We estimate an eruption magnitude of 2.24 × 1013 kg, sulphur release of 12 Tg and tentatively assign this eruption to the AD 1030 volcanic sulphate spike recorded in Antarctic ice sheet records.  相似文献   

15.
 A radar and gravity survey of the ice-filled caldera at Volcán Sollipulli, Chile, indicates that the intra-caldera ice has a thickness of up to 650 m in its central part and that the caldera harbours a minimum of 6 km3 of ice. Reconnaissance geological observations show that the volcano has erupted compositions ranging from olivine basalt to dacite and have identified five distinct volcanic units in the caldera walls. Pre- or syn-caldera collapse deposits (the Sharkfin pyroclastic unit) comprise a sequence which evolved from subglacial to subaerial facies. Post-caldera collapse products, which crop out along 17 of the 20 km length of the caldera wall, were erupted almost exclusively along the caldera margins in the presence of a large body of intra-caldera ice. The Alpehué crater, formed by an explosive eruption between 2960 and 2780 a. BP, in the southwest part of the caldera is shown to post date formation of the caldera. Sollipulli lacks voluminous silicic pyroclastic rocks associated with caldera formation and the collapse structure does not appear to be a consequence of a large-magnitude explosive eruption. Instead, lateral magma movement at depth resulting in emptying of the magma chamber may have generated the caldera. The radar and gravity data show that the central part of the caldera floor is flat but, within a few hundred metres of the caldera walls, the floor has a stepped topography with relatively low-density rock bodies beneath the ice in this region. This, coupled with the fact that most of the post-caldera eruptions have taken place along the caldera walls, implies that the caldera has been substantially modified by subglacial marginal eruptions. Sollipulli caldera has evolved from a collapse to a constructional feature with intra-caldera ice playing a major role. The post-caldera eruptions have resulted in an increase in height of the walls and concomitant deepening of the caldera with time. Received: 12 June 1995 / Accepted: 7 December 1995  相似文献   

16.
Holocene explosive activity of Hudson Volcano, southern Andes   总被引:3,自引:1,他引:2  
 Fallout deposits in the vicinity of the southern Andean Hudson Volcano record at least 12 explosive Holocene eruptions, including that of August 1991 which produced ≥4 km3 of pyroclastic material. Medial isopachs of compacted fallout deposits for two of the prehistoric Hudson eruptions, dated at approximately 3600 and 6700 BP, enclose areas at least twice that of equivalent isopachs for both the 1991 Hudson and the 1932 Quizapu eruptions, the two largest in the Andes this century. However, lack of information for either the proximal or distal tephra deposits from these two prehistoric eruptions of Hudson precludes accurate volume estimates. Andesitic pyroclastic material produced by the 6700-BP event, including a  1 10-cm-thick layer of compacted tephra that constitutes a secondary thickness maximum over 900 km to the south in Tierra del Fuego, was dispersed in a more southerly direction than that of the 1991 Hudson eruption. The products of the 6700-BP event consist of a large proportion of fine pumiceous ash and accretionary lapilli, indicating a violent phreatomagmatic eruption. This eruption, which is considered to be the largest for Hudson and possibly for any volcano in the southern Andes during the Holocene, may have created Hudson's 10-km-diameter summit caldera, but the age of the caldera has not been dated independently. Received: 31 January 1997 / Accepted: 29 October 1997  相似文献   

17.
Known tsunamis of volcanic origin are reviewed and classified according to their causes. Earthquakes accompanying eruptions (excluding tectonic events which apparently triggered eruptions), pyroclastic flows, and submarine explosions have each accounted for about 20% of cases. Ten causes of volcanic tsunamis are discussed. From the risk point of view, those due to landslides are particularly dangerous. Eruptions at calderas are more likely to generate tsunamis than eruptions elsewhere. Of those killed directly by volcanic eruptions, nearly a quarter have died as a result of tsunamis. By transfer of energy to sea waves, a violent eruption, which would be comparatively harmless on land, extends greatly the radius over which destruction occurs. Krakatoa, 1883, is the only eruption sequence for which sufficient data exist for a detailed study of tsunamis. The times at which air and water waves generated by this sequence were recorded have been reread, and new origin times have been calculated and compared with observations made at the time. Origin times of successive pairs of air and water waves agree closely, except in some cases in which the tsunami arrived up to 15 minutes early, thus giving an apparent origin time 15 minutes before that of the corresponding air wave. This is explained by postulating that these tsunamis did not originate at the focus of the explosions, but at distances along the path towards the tide gauge, equivalent to those which would be covered by a tsunami in the time interval observed. The calculated point at which the largest recorded tsunami originated coincides with the outer edge of a bank of volcanic debris laid down during the eruption. This is interpreted as part of an unwelded ignimbrite deposit, the violent emplacement of which, within a minute or so of the explosion, generated the tsunami. A satisfactory correlation is established between explosions and deposits laid down by the eruptions, as described from a geological section close to the source vent. An outline is given of a proposed numerical index to define tsunamigenic potential at a given volcano. Such an index could be used to calculate the expected amplitudes of tsunamis at particular places in the vicinity, and hence could serve as a basis for tsunami risk contingency planning.  相似文献   

18.
Krakatau Volcano is located along a N35E volcanic lineament running through the Sunda straits (Indonesia). Its last activity has been characterized by successive phases, each beginning with the construction of a cone, and ending with its destruction and the formation of a caldera. The two last (pre- and post-1883) cycles are well known, but the more ancient ones are not so clearly defined.Lavas of Krakatau belong to an andesitic series, in which fractional crystallization plays the most important role. The petrologic evolution is characterized by a cyclicity in good agreement with the structural evolution: the succession is regular: basalts, basic andesites, acid andesites, dacites. A gap between acid and basic andesites occurs in each cycle. The destructive stages correspond to the occurrence of dacitic terms.The Anak cycle was characterized from 1927 to 1979 by basalts and basic andesites; the 1981 eruption involved a more differentiated magma (close to dacitic). Detailed study of the petrologic evolution since 1883 emphasizes the predominant role of fractional crystallization. This process occurred during a very short period, between 1979 and 1981. Separation of labradorite, augite, olivine and magnetite from parental basic andesite may generate the dacitic descendant, in a shallow reservoir (PH2O estimated about 0.5 kbar). Implications for a future activity are considered.  相似文献   

19.
 The Woods Mountain volcanic center is a well-exposed, mildly alkaline volcanic center that formed during the Miocene in southeastern California. Detailed geologic mapping and geochemical studies have distinguished three major volcanic phases: precaldera, caldera forming, and postcaldera. Geologic mapping indicates that caldera formation occurred incrementally during eruptions of three large ignimbrites and continued into a period of voluminous intracaldera lava-flow eruptions. Rhyolitic ignimbrites and lava flows within the caldera are associated with large amplitude, circular gravity, and magnetic minima that are among the most prominent gravity and magnetic anomalies in southeastern California. Analysis of a Bouguer gravity anomaly map, reduced-to-the-pole magnetic intensity map, and three-dimensional gravity and magnetic models indicates that there is a single, funnel- to bowl-shaped caldera approximately 4 km thick and approximately 10 km wide at the surface. This model is consistent with other siliceous, pyroclastic-filled calderas on continental crust, except that most siliceous volcanic centers associated with more than one eruption are characterized by more than one caldera. Received: 20 December 1997 / Accepted: 15 October 1998  相似文献   

20.
Ambrym Island has an unusually large, well-preserved basaltic caldera 13 km across. The caldera occurs in the central region of an early broad composite cone, which formed a north-south line with three smailer volcanoes. Alter the caldera was formed volcanism occurred within it and along fissure lines running nearly east-west. Two volcanic cones are active almost continuously and historic fissure cruptions have been recorded. The caldera formed by quiet subsidence, or by subsidence accompanied by eruption of scoria lappili similar to that erupted prior and subsequent to caldera formation. The collapse was at least 600 metres and radiocarbon dating suggests it took place less than 2000 years ago. The caldera is detined by gravity anomalies 10 to 14 milligals lower than those at its rim suggesting predominantly ash infilling. Aeromagnetic anomalies show a prominent. nearly east-west lineation, with normally magnetised bipole anomalies over the centre of the caldera and over fissure lines east of it. The source of the present volcanic activity is believed to be located along dyke fissures, with a perched magma chamber beneath the caldera. The geophysical evidence on Ambrym, together with that of regional east trending magnetic anomalies and recent bathymetric results, suggests that the volcanic activity is localised by the intersection of an east-west fracture zone with the axis of the New Hebrides island are.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号