首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pedogenic calcretes are closely associated with Pliocene to Holocene wind-worked deposits of volcanic ash in the Olduvai and Ndolanya Beds of northern Tanzania. The typical profile with calcrete consists of an unconsolidated sediment layer, an underlying laminar calcrete, and a lowermost massive calcrete. The laminar calcrete is a relatively pure limestone, whereas massive calcrete is aeolian tuff cemented and replaced by calcite. An Olduvai calcrete profile can develop to a mature stage in only a few thousand years. Carbonatite ash was the dominant source for most of the calcite in the calcretes. Replacement was a major process in formation of the massive calcretes, and oolitic textures have resulted from micrite replacing pelletoid clay coatings around sand grains. Phillipsite and possible other zeolites were extensively replaced in the massive calcretes. Replacement of clay by micrite in the Olduvai calcretes is accompanied by dissolution or leaching of phengitic illite and the formation of clay approaching the composition of halloysite or kaolinite. In the upper calcrete of the Ndolanya Beds, montmorillonite was altered to a kaolinite-type mineral and to dioctahedral chlorite. Authigenic dolomite, zeolite, and dawsonite in the Olduvai calcretes probably received at least some of their components from replaced materials.  相似文献   

2.
The calcretes in the Thar desert occur in a variety of settings, including the piedmonts, sheetwash aggraded plains; and this study adds calcretes in regolith and colluvio-alluvial plains to the group of settings in which calcretes occur in the region. Field logs, morphological details and analytical data such as petrographic, cathodoluminescence and geochemical characteristics are described along with a discussion on their implications. Sand dunes and sandy plains dating to < 20 ka have weakly developed calcretes. The better-developed calcrete horizons occur in piedmonts, interdunes or in areas that have sufficient groundwater. Deep sections in the region show phases of calcrete development in aeolian sand aggradation at ∼ 150, ∼ 100, ∼ 60 and 27–14 ka. The extensive sheetwash plains have mature calcretes and date to mid-Pleistocene. Our studies indicate that these calcretes represent a hybrid process, where carbonate enrichment of the originally calcareous host occurred due to periodically raised groundwaters, and its differentiation into nodules occurred under subaerial environment i.e., after recession of groundwater. Deep sections also show a stack of discrete calcretes that developed in individual aggradation episodes with hiatuses as indicated by ESR dating results. Nodules display a multiplicity of carbonate precipi tation events and internal reorganization of calcitic groundmass. The process is accompanied by degradation and transformation of unstable minerals, particularly clays and with a neosynthesis of palygorskite. The ancient calcretes are dated from the beginning of the Quaternary to ∼ 600 ka and show more evolved morphologies marked by brecciation, dissolution, laminar growth on brecciated surfaces, pisolites and several generations of re-cementation. Mica/chlorite schists and such other rocks are particularly vulnerable to replacement by carbonate. In an extreme case, replacement of quartzose sandstone was observed also. The presence of stretches of alluvio-colluvial plains in an area presently devoid of drainage bespeaks of occasional high-energy fluvial regime, under a semi-arid climate. The mid-Pleistocene period saw a shift towards more arid climate and this facilitated sheetwash aggradation. Finally, during the late Pleistocene, aggradation of aeolian sands indicated a progressively drier climate. However, this does not find its reflection in stable isotope data. The amount of carbonate in the form of calcretes is substantial. The present studies indicate that aeolian dust or rainwater are minor contributors to the carbonate budget. A more important source was provided by the pre-existing calcretes in the sheetwash aggraded plains and detrital carbonate in the aeolian sediments. The original source of carbonate in the region, however, remains unresolved and will need further investigations. Electron spin resonance protocols for the dating of calcretes were developed as a part of this study and the results accorded well with geological reasoning  相似文献   

3.
Ana M. 《Earth》2003,60(3-4):261-298
Interest in palustrine carbonates and calcretes has increased over the last 20 years since they contain significant environmental information. Much of the work performed in this area has focused on either of two types of terrestrial carbonate—palustrine carbonates or calcretes (pedogenic and groundwater)—yet their simultaneous study shows there may be a gradual transition from one form to the other, revealing the interplay between pedogenic, sedimentary, and diagenetic processes. Three main factors control the formation of these carbonates: the position of the water table, the host rock, and the period of sub-aerial exposure. In pedogenic calcretes, precipitation of carbonate takes places mostly in the vadose zone above the water table, and within a previous host rock or sediment. In groundwater calcretes, the precipitation of carbonate also occurs within a previous host rock and around the groundwater table. In palustrine carbonates, however, the precipitation of lime mud occurs in a lacustrine water body. Palustrine carbonates necessarily form on previous lacustrine mud, whereas both types of calcretes may form on any type of sediment or soil. The sub-aerial exposure time needed to form palustrine carbonates may by relatively short (even a season), whereas pedogenic calcretes need more time (several years to millions of years). Groundwater calcretes do not form on the topographic surfaces, so there is no need of sub-aerial exposure. However, stable surfaces favour the development of thick groundwater calcretes. Small fluctuations in the water table cause gradual transitions of these three types of terrestrial carbonates and the subsequent mixture of their characteristic features, causing difficulties in the interpretation of these carbonates.

The formation of these carbonates is controlled by palaeoenvironmental factors. Both commonly form in semi-arid climates. Arid climates are also suitable for calcretes, but sub-humid conditions are more suitable for palustrine carbonates. More indications of climatic conditions may be obtained through the analysis of the δ18O content of both calcretes and palustrine carbonates, and from the depth of the horizon containing carbonate nodules in pedogenic calcretes. Vegetation is also important in the formation of these types of carbonates. Data on the prevailing vegetation can be obtained from the analysis of the micro and macrofabric as well as from the δ13C signal of the primary carbonates, which, in pedogenic carbonates, has also been used to estimate atmospheric pCO2 during the Phanerozoic. These terrestrial carbonates are widely distributed on floodplains and distal areas of alluvial basins. Their presence and characteristics can be used as indicators of aggradation, subsidence or accommodation rates, and therefore as indicators of different tectonic regimes.

Even though the study of these carbonates has notably increased in recent years, much less is known about them than about marine carbonates. Presently, there is much emphasis on obtaining a general model for sequence stratigraphy in terrestrial basins, with a need to include the carbonates analysed in this paper.  相似文献   


4.
Sedimentologic and petrographic analyses of outcroping and subsurface calcretes, palustrine carbonates, and silcretes were carried out in the southern Paraná Basin (Uruguay). The aim of this work is to describe the microfabric and interpret the genesis of these rocks through detailed analyses, since they contain significant paleoenvironmental and paleoclimatic evolution information.The main calcrete and silcrete host rock (Mercedes Formation) is represented by a fluvial thinning upward succession of conglomerate and sandstone deposits, with isolated pelitic intervals and paleosoils. Most of the studied calcretes are macroscopically massive with micromorphological features of alpha fabric, originated by displacive growth of calcite in the host clastic material due to evaporation, evapotranspiration and degassing. Micromorphologically, calcretes indicate an origin in the vadose and phreatic diagenetic environments. Micrite is the principal component, and speaks of rapid precipitation in the vadose zone from supersaturated solutions. The abundance of microsparite and secondary sparite is regarded as the result of dissolution and reprecipitation processes.Although present, brecciated calcretes are less common. They are frequent in vadose diagenetic environments, where the alternation between cementation and non-tectonic fracturing conditions take place. These processes generated episodes of fragmentation, brecciation and cementation. Fissures are filled with clear primary sparitic calcite, formed by precipitation of extremely supersaturated solutions in a phreatic diagenetic environment. The micromorphological characteristics indicate that calcretes resulted from carbonate precipitation in the upper part of the groundwater table and the vadose zone, continuously nourished by lateral migration of groundwater.The scarcity of biogenic structures suggests that they were either formed in zones of little biological activity or that the overimposed processes related to water table fluctuations produced intense recrystallization completely obliterating the biogenic fabric.Limestone beds containing terrestrial gastropods are geographically restricted. Situated at the top of the calcrete successions, they exhibit brecciated and peloidal-intraclastic textures but lack lamination, edaphic structures, aggregates and vertical rhizoliths. This indicates they correspond to low-energy palustrine deposits, generated in shallow, local and ephemeral ponds developed in topographic depressions. When water table levels dropped, the palustrine deposits were exposed. This favours the presence of terrestrial gastropods, seeds and insect nests. The combination of calcretes and palustrine carbonates indicates periods and areas with a reduced clastic input and a predominantly semiarid climate, with well-defined humid and dry seasons.Characteristics of the later developed massive and nodular horizons of silcretes, such as, preservation of the internal structure of the host rock, the small areal extent, the formation of massive lenses, the complex pore infillings and the lack of a columnar upper section, indicate that they were generated from groundwaters. Every silcretized horizon shows different positions of the groundwater table and relates to the dissection of landscape.The age of calcretization and silcretization is bracketed between the Late Cretaceous (Campanian–Maastrichtian) and the Early Eocene. Paleoclimate indicates changing conditions from warm and humid at the end of the Cretaceous (Mercedes Formation) to semiarid and seasonal during Paleocene (groundwater calcretes and palustrine deposits) and subtropical and seasonal in the early Eocene (Asencio Formation).  相似文献   

5.
华蓥山地区上二叠统长兴阶生物礁顶部普遍存在一套数米至十余米厚的钙结壳.含有钙结壳中常见的渗滤豆石、钙质结核、蜂窝状构造、根模、钙化细菌丝体、花瓣构造、微型钟乳石等典型组构,并伴有变形构造、溶蚀构造和角砾化等现象。这套钙结壳的发现对研究华南二、三叠纪之交的古气候,古地理和沉积发育史具有重要意义,本文主要描述钙结壳的岩石学特征,并简要讨论了本地区钙结壳的成因。  相似文献   

6.
Laminar calcretes are described from the Lower Carboniferous of South Wales, the Upper Jurassic of southern England and the Upper Jurassic-Lower Cretaceous of northern Spain. They are interpreted as calcified root-mats (horizontal root systems) and are compared with other examples in the geological record and with possible modern analogues. All three occurrences consist of virtually identical, centimetre to decimetre-thick, locally organic carbon-rich, laminar micrites containing up to 50% by volume of millimetre-sized typically calcite-filled, tubular fenestrae set in an irregular but very finely laminated matrix. It is suggested that root-mat calcretes are probably very common in the geological record in peritidal, lacustrine margin and floodplain deposits, but owing to their crudely biogenic microstructure, they more closely resemble cryptalgal laminites than do other laminar calcretes. The recognition of such root-mat calcretes in sedimentary sequences not only provides evidence of subaerial exposure and vegetation cover but can also indicate positions of palaeo-water-tables in certain circumstances.  相似文献   

7.
The discovery that Au accumulates in calcrete (pedogenic carbonate or caliche) was made in 1987 by CSIRO. Calcrete is a general term describing accumulation of alkaline earth metals in soils of arid and semi-arid terrains around the world. The principal constituent of calcrete is calcite while Au is a noble metal. Calcrete has been a significant tool in a number of Au deposit discoveries, so understanding the mechanisms by which these diametrically different components come together is valuable for enhancing future discovery. Numerous laboratory experiments, case histories and exploration models have been published (most from Australia) yet we do not fully understand the mechanisms involved. It is timely, therefore, twenty-five years on since the first publication of this phenomenon, to review this highly unusual but economically important association.Critical to any review on Au in calcrete is to first consider calcretes themselves. The nature of a particular calcrete, where it has formed and mode of formation is relevant to how, where and why Au accumulates within it. This review commences with a background, nomenclature, history, classification and some examples of calcrete types found near Au deposits. How calcretes form, their origins and the role of biota is considered. Their locations in the regolith and landscape, as well as exploration models for Au in calcrete are discussed. A section on the chemistry of Au in calcretes details what we know about possible mechanisms of formation and considers what laboratory experiments on microorganisms and abiotic experiments tell us. Following on is a summary of practical aspects of identifying, collecting and analysing samples for exploration purposes. Selected mineral exploration case histories are described and how they fit into models of exploration and different regolith settings. Concluding sections include a summary and implications of this accumulated knowledge to discovering Au deposits.  相似文献   

8.
High concentrations of fluoride (up to 7.6 mg/L) are a recognized feature of the Wailapally granitic aquifer of Nalgonda District, Andhra Pradesh, India. The basement rocks provide abundant sources of F in the form of amphibole, biotite, fluorite and apatite. The whole-rock concentrations of F in the aquifer are in the range 240–990 mg/kg. Calcretes from the shallow weathered horizons also contain comparably high concentrations of F (635–950 mg/kg). The concentrations of water-soluble F in the granitic rocks and the calcretes are usually low (1% of the total or less) but broadly correlate with the concentrations observed in groundwaters in the local vicinity. The water-soluble fraction of fluoride is relatively high in weathered calcretes compared to fresh calcretes.Groundwater major-ion composition shows a well-defined trend with flow downgradient in the Wailapally aquifer, from Na–Ca–HCO3-dominated waters in the recharge area at the upper part of the catchment, through to Na–Mg–HCO3 and ultimately to Na–HCO3 and Na–HCO3–Cl types in the discharge area in the lowest part. The evolution occurs over a reach spanning some 17 km. Groundwater chemistry evolves by silicate weathering reactions, although groundwaters rapidly reach equilibrium with carbonate minerals, favouring precipitation of calcite, and ultimately dolomite in the lower parts of the watershed. This precipitation is also aided by evapotranspiration. Decreasing Ca activity downgradient leads to a dominance of fluorite-undersaturated conditions and consequently to mobilisation of F. Despite the clear downgradient evolution of major-ion chemistry, concentrations of F remain relatively uniform in the fluorite-undersaturated groundwaters, most being in the range 3.0–7.6 mg/L. The rather narrow range is attributed to a mechanism of co-precipitation with and/or adsorption to calcrete in the lower sections of the aquifer. The model may find application in other high-F groundwaters from granitic aquifers of semi-arid regions.  相似文献   

9.
In the Mersin area, Quaternary calcretes are widespread, and occurred in a variety of forms, as namely powdery, nodular, tubular, fracture-infill, laminar crust, hard laminated crust (hardpan), pisolithic crust. They are predominantly calcite, and small amount of palygorskite associated with them as a minor component. Calcite δ18O and δ13C values of the calcretes vary from −4.31 to −6.82 and from −6.03 to −9.65‰ PDB, respectively. These values are consistent with values of pedogenic calcretes reported in literature from worldwide sites. The oxygen isotope values indicate formation under the influence of meteoric water at estimated temperatures from 25 to 32 °C. The carbon isotope values are typical for pedogenic calcretes, reflecting development under the C3-dominated vegetation cover and semiarid or seasonally arid climatic conditions.  相似文献   

10.
In a fluvial system, depending on sub‐aerial exposure, non‐pedogenic pond calcretes can be modified into pedogenic calcretes. The present study attempts to understand the effect of sub‐aerial exposure and pedogenesis on calcretes using carbon and oxygen isotopic composition. For this purpose, two profiles (profile‐A and profile‐B) from the same stratigraphic level in Rayka from the western part of India were selected. The profiles are separated by a distance of 500 m and showed differences in calcrete characteristics. In profile‐A, the calcretes showed pedogenic features (root traces and void filling spar) whereas calcretes in profile‐B showed non‐pedogenic characteristics (fine laminations). However, some of the calcretes in profile‐A exhibited remnants of fine laminations suggesting that initially the calcretes had a non‐pedogenic origin but were modified due to pedogenesis. In profile‐A, the carbon and oxygen isotope values of pedogenic calcrete (δ13CPC and δ18OPC) showed more variation compared with non‐pedogenic pond calcretes (δ13CSPC and δ18OSPC) in profile‐B. The δ13CPC and δ13CSPC values exhibited a spread of 3·0‰ and 1·3‰, respectively, and δ18OPC and δ18OSPC values showed a spread of 2·3‰ and 1·3‰, respectively. The differences in the isotopic composition between the two profiles suggest that pedogenesis controlled the isotopic inheritance in calcretes. In addition, the carbon isotopic composition of organic matter (δ13COM) and n‐alkanes (δ13Cn‐alk) that forms the basis of palaeovegetational reconstruction have also been measured to understand the effect of pedogenesis on organic matter in both of the profiles. The average δ13COM values in profile‐A and profile‐B are ?23·4‰ and ?21·1‰, respectively. The disparity in δ13COM values is a result of the difference in the sources and preservation of organic matter. However, the δ13Cn‐alk values show a similar trend in profile‐A and profile‐B, indicating that sources of n‐alkanes are the same in both of the profiles and δ13Cn‐alk values are unaffected by the pedogenic modifications.  相似文献   

11.
《Resource Geology》2018,68(4):395-424
Petrochemical characteristics of Permo‐Triassic granitoids from five regions (i) Mung Loei, (ii) Phu Thap Fah – Phu Thep, (iii) Phetchabun, (iv) Nakon Sawan – Lobburi, and (v) Rayong – Chantaburi along the Loei Fold Belt (LFB), northeastern Thailand were studied. The LFB is a north–south trending 800 km fold belt that hosts several gold and base‐metal deposits. The granitoids consist of monzogranite, granodiorite, monzodiorite, tonalite, quartz‐syenite, and quartz‐rich granitoids. These are composed of quartz, plagioclase, and K‐feldspar with mafic minerals such as hornblende and biotite. Accessory minerals, such as titanite, zircon, magnetite, ilmenite, apatite, garnet, rutile, and allanite are also present. Magnetic susceptibilities in the SI unit of granitoids vary from 6.5 × 10−3 to 15.2 × 10−3 in Muang Loei, from 0.1 × 10−3 to 29.4 × 10−3 in Phu Thap Fah – Phu Thep, from 2.7 × 10−3 to 34.6 × 10−3 in Petchabun, from 2.4 × 10−3 to 14.1 × 10−3 in Nakon Sawan – Lobburi, and from 0.03 × 10−3 to 2.8 × 10−3 in Rayong – Chantaburi. Concentration of major elements suggests that these intermediate to felsic plutonic rocks have calc‐alkaline affinities. Concentration of REE of the granitoids normalized to chondrite displays moderately elevated light REE (LREE) and relatively flat heavy (HREE) patterns, with distinct depletion of Eu. Rb versus Y/Nb and Nb/Y tectonic discrimination diagrams illustrate that the granitoids from Muang Loei, Phu Thap Fah – Phu Thep, Phetchabun, Nakon Sawan – Lobburi, and Rayong – Chantaburi formed in continental volcanic‐arc setting. New age data from radiometric K‐Ar dating on K‐feldspar from granodiorite in Loei and Nakhon Sawan areas yielded 171 ± 3 and 221 ± 5 Ma, respectively. K‐Ar dating on hornblende separated from diorite in Lobburi yielded 219 ± 8 Ma. These ages suggest that magmatism of Muang Loei occurred in the Middle Jurassic, and Nakon Sawan – Lobburi occurred in Late Triassic. Both Nb versus Y and Rb versus (Y + Nb) diagrams and age data indicate that Nakon Sawan – Lobburi granitoids intruded in Late Triassic at Nong Bua, Nakon Sawan province and Khao Wong Phra Jun, Lobburi province in volcanic arc setting. Muang Loei granitoids at the Loei province formed later in Middle Jurassic also in volcanic arc setting. The negative δ34SCDT values of ore minerals from the skarn deposit suggest that the I‐type magma has been influenced by light biogenic sulfur from local country rocks. The Au‐Cu‐Fe‐Sb deposits correlate with the magnetite‐series granitoids in Phetchabun, Nakon Sawan – Lobburi and Rayong – Chantaburi areas. Metallogeny of the Au and Cu‐Au skarn deposits and the epithermal Au deposit is related to adakitic rocks of magnetite‐series granitoids from Phetchabun and Nakon Sawan areas. All mineralizations along the LFB are generated in the volcanic arc related to the subduction of Paleo‐Tethys. The total Al (TAl) content of biotite of granitoids increases in the following order: granitoids associated with Fe and Au deposit < with Cu deposit < barren granitoids. XMg of biotite in granitoids in Muang Loei indicates the crystallization of biotite in magnetite‐series granitoids under high oxygen fugacity conditions. On the other hand, low XMg (<0.4) of biotite in magnetite‐series granitoids in Phu Thap Fah – Phu Thep and Rayong – Chantaburi indicates a reduced environment and low oxygen fugacity, associated with Au skarn deposit (Phu Thap Fah) and Sb‐Au deposit (Bo Thong), respectively. The magnetite‐series granitoids at Phu Thap Fah having low magnetic susceptibilities and low XMg of biotite were formed by reduction of initially oxidizing magnetite‐series granitic magma by interaction with reducing sedimentary country rocks as suggested by negative δ34SCDT values.  相似文献   

12.
Carbonate cementation in the Triassic Otter Sandstone of Budleigh Salterton, SW England, occurs in two distinct forms: large, vertical, concentrically zoned cyclinders, and thin subhorizontal sheets. The former represent rhizocretions of the tap roots of phreatophytic plants which colonized bars and abandoned channels on a large braidplain. The sheets represent cementation around ancient water-tables. The precipitation of the rhizocretions took place, at least in part, during the life of the plants and δ13C and δ18O values support the view that evapo-transpiration induced carbonate precipitation. Palaeosol profiles are rare in the Otter Sandstone, reflecting the geomorphological instability of the braidplain surfaces. In contrast, rhizocretionary and sheet calcretes, which formed several metres below the active depositional surface, are abundant because they had a high preservation potential.  相似文献   

13.
Early Pliocene (Zanclean) basalts in the Dien Bien Phu pull-apart basin in NW Vietnam, associated with the presently sinistral Dien Bien Phu Fault Zone, have been dated by the K–Ar method at 4.4–4.9 and 5.4–5.2 Ma. Rapid migration of basaltic magma to the surface in the Dien Bien Phu Fault Zone may be due to Pliocene transtension of the crust in this region, resulting from asthenospheric upwelling induced by lateral displacement of the mantle. The basalts are moderately phyric ( < 10%) and consist of olivine (hyalosiderite), plagioclase (bytownite–labradorite) and orthopyroxene (bytownite–labradorite) phenocrysts, and a fine-grained crystalline matrix (olivine–hortonolite, plagioclase–labradorite, clinopyroxene–pigeonite and augite, K-feldspar). The presence of Fe-rich olivine and orthopyroxene phenocrysts indicates that the basalts are SiO2-saturated/oversaturated olivine tholeiites which formed under water-undersaturated conditions. The Dien Bien Phu basalts contain both mantle-derived (pyroxenites, dunites, gabbros) and crustal (sillimanite/mullite + Mg–Fe spinel), wallrock xenoliths, indicative of crustal contamination during the ascent of the basaltic magma. The basalts show selective enrichment in some mobile elements (K, Rb, Sr and Th), a feature considered to be a result of metasomatism. These rocks, classified on the basis of their normative composition as quartz tholeiites, could represent primary olivine tholeiites/basalts, in which the geochemical signatures were modified by the processes of contamination.  相似文献   

14.
The Thakkhola-Mustang Graben represents the extensional tectonic phase of the Tibetan Plateau uplift and whole Himalayan orogeny. It is situated at the northern side of the Dhaulagiri and Annapurna Ranges and south of the Yarlang Tsangpo Suture Zone. Stratigraphically, the oldest sedimentary units are the Tetang and Thakkhola Formations (Miocene), while the Sammargaon, Marpha and Kaligandaki Formations lying disconformably above these formations represent Plio-Pleistocene units. In this study, different lacustrine carbonates and calcretes were investigated within different lithological units and depositional environments to interpret the palaeoenvironmental and palaeoclimatological evolution of the area.Geological mapping, construction of columnar sections and carbonate sampling were carried out in the field, and stable oxygen and carbon isotope analyses and thin section analyses were done in the laboratory. Lacustrine facies contained abundant pelletal, charophytic algae, oncolitic algal micritic palustrine limestones with ostracods, and micritic mudstones with root traces. Stable carbon and oxygen isotope analysis from the carbonates show a range of δ13C values from −0.6‰ to 11.1‰ (V-PDB) and δ18O values from −13.5‰ to −25‰ (V-PDB).Discontinuous growth of oncolites and spherical pellets (25–40 μm in diameter) in micritic limestone, algal mats and charophyte algae indicate the presence of both shallow and deep water carbonates. Ostracods in dark micritic carbonates indicate quiet and calm water conditions. Microfabrics of the carbonates suggest that they were deposited in a flat and shallow lacustrine environment. The δ18O values of the investigated limestones of the Thakkhola-Mustang Graben suggest that it attained the current elevation level prior to the east-west extension of the Himalaya.  相似文献   

15.
A new record of the Marine Isotopic Stage 5, the last Interglacial Stage before present is presented in this paper. Sedimentological, micromorphological, trace elements analyses (Rb–Sr) and magnetic polarity determination were performed on Buenos Aires and Ensenada Formation (Late Cenozoic) deposits in the southern Chaco-Pampean Basin (Argentina). This work aims to unravel paleoclimatic and paleoenvironmental information from the analyzed data.The studied deposits encompass a complex and cyclic 8 m-thick sedimentary-pedogenetic sequence formed by loessic sediments and paleosols with volcano-pyroclastic provenance.Four tabular units, with net base and top, were defined from erosion surfaces.An OSL age >126 kyr was obtained from the upper middle part of unit B, which suggests that this unit as well as unit C, could have developed during the latest interglacial stage, equivalent to MIS 5.The occurrence of calcretes indicates periods of little clastic supply and seasonal arid or semiarid climate while iron oxides, smectites and illite-bearing pedogenetic calcretes point to annual rain rates between 100 and 500 mm. No calcretes of any origin occur in present soils of the same zone. According to our proposed interpretation of the available data, climate during MIS 5 was drier than today. The drier conditions may have been related to lower temperatures during summer.  相似文献   

16.
In the Muskeg Trough of northcentral Alberta the Gilwood Member contains widespread carbonate deposits that formed within terrigenous mudstone and sandstone hosts. Stratigraphic, depositional and petrographic relationships indicate that these carbonates represent calcretes and dolocretes. Calcretes, observed best with cathodoluminescence, display microcrystalline alpha fabrics, circumgranular cracks, root networks, displacive growth fabrics, elongate channel voids and rare coloform growths with flower spar. Similarly, dolocretes have microcrystalline alpha fabrics, brecciation, gradational contacts with host mudstones, extensive layered nodular horizons and are associated with anhydrite and pyrite. δ13C values range between ?7‰ to +1‰ and –6‰ to +3‰ for calcretes and dolocretes, respectively. Oxygen isotopes are more variable and differ with host lithologies. δ18O of calcretes ranges between ?11‰ to ?8‰ for sandstones and ?8‰ to ?3‰ for mudstones, whereas δ18O of dolocretes ranges between ?3‰ to 1‰ for marine mudstones and ?6‰ to ?2‰ for pedogenic mudstones. Regional mapping indicates that calcretes thicken towards the deepest parts of the Muskeg Trough. Widespread dolocretes extend beyond the eastern and western limits of Muskeg Trough and are useful marker intervals for regional correlations. Dolocretes of restricted lateral extent are found within gleyed palaeosol mudstones next to calcretized channel sandstones. Calcrete isotopic values are interpreted as indicative of carbonate precipitation from waters with meteoric water input. However, the higher δ18O values in dolocretes are indicative of a contribution from an isotopically heavier source such as seawater. Stratigraphically, calcretes are most common along the western and northern edges of Muskeg Trough; thus, calcrete accumulation was further controlled by meteoric water in-flow from the highland to the west and sluggish groundwater flow in Muskeg Trough. In contrast, regionally widespread dolocrete horizons appear to have formed from mixing of fresh waters derived from the highland to the west and seawaters introduced from the east. Regionally restricted dolocretes which are found next to channel sandstones formed from groundwater out-flow from the permeable channel sandstones which resulted in calcretization in channel proximal mudstones and dolomitization in channel distal mudstones.  相似文献   

17.
Detailed information on semi‐arid, palustrine carbonate–calcrete lithofacies associations in a sheetwash‐dominated regolith setting is sparse. This is addressed by studying the Lower Limestone of the Lameta Beds, a well‐exposed Maastrichtian regolith in central India. The general vertical lithofacies assemblage for this unit comprises: (a) basal calcareous siltstones and marls with charophytes, ostracods and gastropods; (b) buff micritic limestones associated in their upper parts with calcretized fissure‐fill sandstones; (c) sheetwash as fissure‐fill diamictites and thin pebbly sheets, locally developed over a few metres; and (d) sandy, nodular, brecciated and pisolitic calcretes at the top. The sequence is ‘regressive’, with upsection filling of topographic lows by increased sheetwash. Lateral lithofacies change is marked, but there are no permanent open‐water lake deposits. In topographic lows close to the water table, marshy palustrine or groundwater calcretes formed, whereas on better drained highs, brecciation and calcretization occurred. Prolonged exposure is implied, suggesting that shrinkage was the main cause of brecciation. Evidence for rhizobrecciation and other biological calcrete fabrics is sparse, contrasting with the emphasis on root‐related brecciation in many studies of palustrine lithofacies. Stable isotope (δ18O and δ13C) values are consistent with the palustrine limestones being fed from meteoric‐derived groundwater with a strong input of soil‐zone carbon. There is overlap of both δ18O and δ13C values from the various palustrine and calcrete fabrics co‐occurring at outcrop. This suggests that, in groundwater‐supported wetlands, conversion from palustrine carbonate to calcrete need not show isotopic expression, as the groundwater source and input of soil‐zone carbon are essentially unchanged. Cretaceous–Tertiary δ18O and δ13C values from palustrine lithofacies and associated calcretes appear to be strongly influenced by the inherited values from lakes and wetlands. Hydrologically closed lakes and marine‐influenced water bodies tend to result in low negative palustrine δ18O and δ13C values. During brecciation and calcretization, the degree of isotopic inheritance depends on whether or not alteration occurs in waters that are different from those of the original water body or wetland. Marked biological activity (e.g. rhizobrecciation or root mat development) during calcretization may lower δ13C values where C3 plants are abundant but, in shrinkage‐dominated systems, δ13C values will be largely inherited from the palustrine limestones.  相似文献   

18.
The Kopet-Dagh basin of northeastern Iran was formed during the Middle Triassic orogeny. From Jurassic through Miocene time, sedimentation was relatively continuous in this basin. The Shurijeh Formation (Neocomian), which consists of red bed siliciclastic sediments that were deposited in fluvial depositional settings, crops out in the southeastern part of the Kopet-Dagh basin. In addition to clastic lithofacies, non-clastic facies in the form of calcrete paleosols, were identified in this formation. The calcrete host rocks are mainly sandstone, pebbly sandstone. The calcrete in middle unit in the Shurijeh Formation consists of, from bottom to top: incipient calcrete, nodular calcrete, massive calcrete horizons. The maturity pattern of these calcrete gradationally increases from bottom to top in this unit. Lack of organo-sedimentary structure (mainly plant roots), diversity of calcite fabric, suggest that the studied calcretes have a multi-phase development: a short vadose phase followed by a long phreatic phase. These calcretes are neither pedogenic nor groundwater calcretes. Petrographic studies show that they are composed of micritic textures with a variety of calcite fabrics, microsparitic/sparitic veins, displacive, replacive fabrics, quartz, hematite grains. Cathodoluminescence images, trace elemental analysis (Fe, Mn increased, Na, Sr decreased) of calcrete samples show the effects of meteoric waters during the calcrete formation when water tables were variable. In this study, we conclude that evaporation, degassing of carbon dioxide are the two main factors in the formation of non-pedogenic or groundwater calcrete. The sources of carbonate were probably parent materials, surface waters, ground waters, eolian dusts, numerous outcrops of limestones that have been exposed in the source area during Neocomian time.  相似文献   

19.
泰国普龙矽卡岩铜金矿床是琅勃拉邦-黎府铜金多金属成矿带内一个大型矽卡岩铜金矿床。为了厘定普龙矽卡岩型铜金矿床成岩成矿时代、探讨其矿床成因,本文开展了与矽卡岩化密切相关的闪长岩锆石LA-ICP-MS U-Pb年代学研究。研究表明,普龙铜金矿成矿时代为240.6±1.2Ma,与闪长岩结晶年龄一致。结合前人研究成果,认为琅勃拉邦-黎府铜金多金属成矿带在晚二叠世—早三叠世发生了一次重要的斑岩-矽卡岩-热液铜金成矿事件。  相似文献   

20.
The laminar crust, constituting the upper part of calcretes (terrestrial CaCO3 accumulations inside surficial sediments), is a succession of thin layers of various colors and shapes resembling micro-stromatolites. The crust structure and its diagenetic evolution are similar to stromatolites. A quantitative study of its structure was made using image analysis. Euclidian parameters were calculated to describe lamina shape. Eight hundred and eighty-six laminae were divided into six classes from the flatest forms to columnar shapes. The geometrical relationships between the shapes are interpreted as steps in the growth process of the microstromatolite. A fractal model of laminar crust growth was developed, using the diffusion-limited aggregation model (DLA) and dilation (an operation of mathematical morphology). This model simulates all growth steps observed in thin section and emphasizes the necessity of an interface with the atmosphere to explain the variety of shapes. This growth model supports the theory of a surficial and biogenic origin for certain calcrete laminar crusts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号