首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
With the aim of better understanding the tight gas reservoirs in the Zizhou area of east Ordos Basin, a total of222 samples were collected from 50 wells for a series of experiments. In this study, three pore-throat combination types in sandstones were revealed and confirmed to play a controlling role in the distribution of throat size and the characteristics of gas-water relative permeability. The type-Ⅰ sandstones are dominated by intercrystalline micropores connected by cluster throats, of which the distribution curves of throat size are narrow and have a strong single peak(peak ratio 30%). The pores in the type-Ⅱ sandstones dominantly consist of secondary dissolution pores and intercrystalline micropores, and throats mainly occur as slice-shaped throats along cleavages between rigid grain margins and cluster throats in clay cement.The distribution curves of throat size for the type-Ⅱ sandstones show a bimodal distribution with a substantial low-value region between the peaks(peak ratio 15%). Primary intergranular pores and secondary intergranular pores are mainly found in type-Ⅲ samples, which are connected by various throats. The throat size distribution curves of type-Ⅲ sandstones show a nearly normal distribution with low kurtosis(peak ratio 10%), and the micro-scale throat radii(0.5 μm) constitute a large proportion. From type-Ⅰ to type-Ⅲ sandstones, the irreducible water saturation(Swo) decreased; furthermore, the slope of the curves of Krw/Krg in two-phase saturation zone decreased and the two-phase saturation zone increased,indicating that the gas relative flow ability increased. Variations of the permeability exist in sandstones with different porethroat combination types, which indicate the type-Ⅲ sandstones are better reservoirs, followed by type-Ⅱ sandstones and type-Ⅰ sandstones. As an important factor affecting the reservoir quality, the pore-throat combination type in sandstones is the cumulative expression of lithology and diagenetic modifications with strong heterogeneity.  相似文献   

2.
Ediacaran discs from the Jodhpur Sandstone of the Marwar Supergroup, Rajasthan, exhibit a wide size ranging from a few millimetres to 75 cm in diameter. Exceptionally large size of the discs in these rocks represent the largest reported so far from any Ediacaran assemblage. Although, larger medu-soid discs have been reported from USA, they are from the middle Cambrian and even younger rocks. Presence of microbial mats and weed-like structures with well preserved hold fasts and horizontal rhizome-like structures in association with some of these large-sized discs support their animal affinity, which probably feed on this weed-like vegetations. This association also supports their benthic habitat. Unlike the general trend of sudden increase in size of organisms in Ediacaran period and further decrease in size during Cambrian, these discs continued increasing in size in Cambrian also.  相似文献   

3.
The most fundamental character of lunar soil is its high concentrations of solar-wind-implanted elements, and the concentrations and behavior of the noble gases He, Ne, Ar, and Xe, which provide unique and extensive information about a broad range of fundamental problems. In this paper, the authors studied the forming mechanism of lunar regolith, and proposed that most of the noble gases in lunar regolith come from the solar wind. Meteoroid bombardment controls the maturity of lunar soil, with the degree of maturation decreasing with grain size; the concentrations of the noble gases would be of slight variation with the depth of lunar soil but tend to decrease with grain size. In addition, the concentrations of noble gases in lunar soil also show a close relationship with its mineral and chemical compositions. The utilization prospects of the noble gas ^3He in lunar regolith will be further discussed.  相似文献   

4.
The paper discusses the distinctive features of grain size distribution of permafrost soils formed under conditions of continental lithogenesis and cryogenic weathering of rocks. As a functional consequence of surface erosion of mineral particles, the log-normal distribution of the density function of grain size is derived confirmed for any conditions and sediment types.  相似文献   

5.
The self-similar is a common phenomena arising in the field of geology.It has been shown that geochemical element data,mineral deposits,and spacial distribution conform to a fractal structure.A fractal distribution requires that the number of objects larger than a specified size have a power-law dependence on size.This paper shows that a number of distributions,including power-function,Pareto, lognormal,and Zipf,display fractal properties under certain conditions and that this may be used as the mathemat...  相似文献   

6.
INTRODUCTION The properties of phosphor usedin a plasma dis-play panel (PDP) affect the performance of the PDP(Okazaki et al .,2000 ; Rao and Devine ,2000) . Theluminescent properties of the phosphor are decided bythe morphology ,particle size and size distribution ofthe powder ,sothe requirements for the powder mor-phology are high in a color PDP which belongs to ahigh resolution display apparatus (I m et al .,2005 ;Yang et al ., 2005) . Studies have shown that withsmall particle si…  相似文献   

7.
Pore distribution and micro pore-throat structure characteristics are significant for tight oil reservoir evaluation, but their relationship remains unclear. This paper selects the tight sandstone reservoir of the Chang 7 member of the Xin’anbian Block in the Ordos Basin as the research object and analyzes the pore size distribution and micro pore-throat structure using field emission scanning electron microscopy(FE-SEM), high-pressure mercury injection(HPMI), highpressure mercury injection, and nuclear magnetic resonance(NMR) analyses. The study finds that:(1) Based on the pore size distribution, the tight sandstone reservoir is characterized by three main patterns with different peak amplitudes. The former peak corresponds to the nanopore scale, and the latter peak corresponds to the micropore scale. Then, the tight sandstone reservoir is categorized into three types: type 1 reservoir contains more nanopores with a nanopore-to-micropore volume ratio of 82:18;type 2 reservoir has a nanopore-to-micropore volume ratio of 47:53;and type 3 reservoir contains more micropores with a nanopore-to-micropore volume ratio of 35:65.(2) Affected by the pore size distribution, the throat radius distributions of different reservoir types are notably offset. The type 1 reservoir throat radius distribution curve is weakly unimodal, with a relatively dispersed distribution and peak ranging from 0.01 μm to 0.025 μm. The type 2 reservoir’s throat radius distribution curve is single-peaked with a wide distribution range and peak from 0.1 μm to 0.25 μm. The type 3 reservoir’s throat radius distribution curve is single-peaked with a relatively narrow distribution and peak from 0.1 μm to 0.25 μm. With increasing micropore volume, pore-throat structure characteristics gradually improve.(3) The correlation between micropore permeability and porosity exceeds that of nanopores, indicating that the development of micropores notably influences the seepage capacity. In the type 1 reservoir, only the mean radius and effective porosity have suitable correlations with the nanopore and micropore porosities. The pore-throat structure parameters of the type 2 and 3 reservoirs have reasonable correlations with the nanopore and micropore porosities, indicating that the development of these types of reservoirs is affected by the pore size distribution. This study is of great significance for evaluating lacustrine tight sandstone reservoirs in China. The research results can provide guidance for evaluating tight sandstone reservoirs in other regions based on pore size distribution.  相似文献   

8.
The study of the physicochemical behaviour of colloids and particles in nature has emerged as a scientific problem of critical importance because of the widespread acknowledgement of their significance in controlling the speciation and fate of essential nutrients and contaminants in the aquatic and soil environments (Ledin et al., 1995; Lead et al., 1999, Doucet et al., 200 l; McCarthy et al., 1989; Koterba et al., 1993; Kretzschmar et al., 1999). Se'quaris and Lewandowski (2003) developed a method based on sedimentation and centrifugation steps to fractionate agricultural top soils after suspension in water. However, progress in the field has been limited by the lack of appropriate techniques for the isolation and characterization of colloids and particles in their native form (Lead et al., 1997). The primary difficulties in separation and analysis are colloidal instability and their small size and low concentration. As a result, reliable, unbiased and minimally perturbing methods for sampling and fractionation are primary requirements for the study of colloids and particles if valuable information is to be obtained. In recent years, cross-flow ultra-filtration (CFUF) has become one of the most commonly used techniques for collecting and separating freshwater and marine colloids and particles (Petrus evski et al., 1995; Gustafsson et al., 1999; Benoit et al., 1999; Sigg et al., 2000; Gue'guen et al., 2002; Benedetti et al., 2003). CFUF has hitherto been used for studies of the biogeochemical cycling of a variety of elements, such as carbon (Benner et al., 1992; Santschi et al., 1998), radionuclides (Moran et al., 1992), trace metals (Reitmeyer et al., 1996) and nutrients (Bauer et al., 1996). The purpose of this study was to develop a protocol to fractionate particles in soil, to measure particle size distributions and to quantify chemical characteristics within different particle size fractions.  相似文献   

9.
Stellar photometry obtained using the Hubble Space Telescope is used to study the distributions of the number densities of stars of various ages in 12 irregular and dwarf spiral galaxies viewed edge-on. Two subsystems can be distinguished in all the galaxies: a thin disk comprised of young stars and a thick disk containing a large fraction of old stars (primarily red giants) in the system. Variations of the stellar number density in the thin and thick disks in the Z direction perpendicular to the plane of the galaxy follow an exponential law. The size of the thin disk corresponds to the visible size of the galaxy at the μ = 25 mag/arcsec2 isophote, while the thick disk is a factor of two to three larger. In addition to a thick disk, the massive irregular galaxy M82 also has a more extended stellar halo that is flattened at the galactic poles. The results of our previous study of 12 face-on galaxies are used together with the new results presented here to construct an empirical model for the stellar structure of irregular galaxies. Original Russian Text ? N.A. Tikhonov, 2006, published in Astronomicheskiĭ Zhurnal, 2006, Vol. 83, No. 7, pp. 579–588.  相似文献   

10.
Phosphogypsum is a waste by-product of the phosphate fertilizer industry that has relatively high concentrations of some U decay-series radionuclides such as ^226Ra and ^210Pb. The distribution and environmental mobility of radionuclides in phosphogypsum are an important concern because this gypsum by-product is used for wallboard, in agriculture and as a soil amendment. This study determined the distribution of ^226Ra, ^210Pb, within phosphogypsum stacks of varying age and among three size fractions (coarse: 〈0.212 mm; medium: 0.212-0.053 mm; fine: 〈0.053 mm), in phosphogypsum derived from Aqaba and Eshidiya fertilizer plants. The results indicated that ^226Ra and ^210Pb were generally uniformly distributed in phosphogypsum stacks and showed no significant difference in the concentration of these elements with the age of stack. In the Aqaba phosphogypsum ^226Ra was slightly 10% enriched in the coarse fraction, while ^210Pb was 10% enriched in the free size fraction. In the Eshidiya phosphogypsum ^226Ra and ^210Pb contents were both relatively enriched (10%) in the fine size fraction.  相似文献   

11.
The Xes-Xen dating of zircons from rocks of the Rayner Complex of the Enderby Land at the Molodezhnaya Station area (coast of the Alasheyev Bight) yielded age estimates of 550 ± 50 and 1040 ± 30 Ma. The metamorphic rocks of the Rayner Complex record two main events: first, the crystallization of the magmatic protoliths of charnockitic and enderbitic gneisses and, second, superimposed structural and metamorphic alterations under conditions transitional from the amphibolite to granulite facies (metamorphism manifested regionally in the rocks of the Rayner Complex). The most reliable Xes-Xen age estimates for magmatic zircons from the charnockitic and enderbitic gneisses correspond to the Grenville stage of the development of the Rayner Complex (~1.0 Ga). The Xe isotopic systematics of metamorphic zircons reflect a pan-African stage in the evolution of the Rayner Complex (600–550 Ma). Pan-African events are reflected in the U-Xe isotope system in two cases: if metamorphic zircons crystallized at the same time (which probably resulted in the formation of a plateau in the Xes-Xen age spectrum) and if the initial isotopic systems were disturbed (which resulted in a decrease in apparent age toward low-temperature gas fractions). It is important that secondary alterations and a decrease in apparent ages to 600–550 Ma affected only those components (i.e., caused xenon release only from those traps) that were unstable under the maximum metamorphic temperatures and yielded T cl values lower than 750°C (conditions transitional from the amphibolite to granulite facies). At a higher xenon retention, “primary” isotopic systems are preserved. Consequently, the age of metamorphism transitional between the amphibolite and granulite facies can be estimated at 600–550 Ma on the basis of Xes-Xen dating. In general, the results of our study indicate that the age of regional metamorphism of the Rayner complex at the Molodezhnaya area is approximately 600–550 Ma rather than ~1.0 Ga, as was previously supposed.  相似文献   

12.
Geochemical and new isotopic (U-Pb, Sm-Nd) data on the Mesoproterozoic metaigneous complexes of the Rayner Province in central East Antarctica (Enderby Land-Kemp Land and the northern Prince Charles Mountains) are presented. These territories are mainly composed of amphibolite-to-granulite-facies orthogneisses, many of which are Y-depleted tonalite gneisses and mafic schists. The igneous complexes of their protolith are largely products of anatexis of the lower crust; mantle-derived and upper crustal rocks are less abundant. The geochemical features of the mafic rocks indicate that they crystallized from high-temperature plume-related mantle melts and low-temperature lithospheric melts. As follows from the published and new Nd model ages, the Rayner Province formed and evolved over the Paleo-to-Mesoproterozoic in the regime of accretionary and collisional tectonics with predominance of accretion of the juvenile Paleoproterozoic crust between 1500–2400 Ma. New data show that in the northern Prince Charles Mountains, granite-gneiss protoliths were emplaced ca. 1040 and 930 Ma ago. The Rayner Province is considered to be a long-living mobile belt formed as a result of collision of Paleoproterozoic island-arc terranes and Archean blocks amalgamating into a continental massif 1050–1000 Ma ago in the course of the growth of the Rodinia supercontinent. In the northern Prince Charles Mountains, thermal processes related to magmatic underplating at the base of the crust were probably important.  相似文献   

13.
Detailed geochronological, structural and petrological studies reveal that the geological evolution of the Field Islands area, East Antarctica, was substantially similar to that of the adjacent Archaean Napier Complex, though with notable differences in late and post Archaean times. These differences reflect the area's proximity to the Proterozoic Rayner Complex and consequent vulnerability to tectonic process involved in the formation of the latter. Distinctive structural features of the Field Islands are (1) consistent development of a discordant, pervasive S3 axial-plane foliation; (2) re-orientation of S3 axial planes to approximate to the subsequent E-W tectonic trend of the nearby Rayner Complex; (3) selective retrogression by a post-D3 static thermal overprint; and (4) relatively common development of retrogressive, E-W-trending, mylonitic shear zones. Peak metamorphic conditions in excess of 800°C at 900 ± 100 M Pa (9 kbar) were attained at one locality following, but probably close to the time of D2 folding. D3 took place in late Archaean times when metamorphic temperatures were about 650°C and pressures were about 600 MPa (6 kbar). Later, temperatures of 600 ± 50°C and pressures of 700 MPa (7kbar) were attained in an amphibolite-facies event, presumably associated with the widespread granulite to amphibolite-facies metamorphism and intense deformation involved in the formation of the Rayner Complex at about 1100 Ma. The area was subsequently subjected to near-isothermal uplift. Rb-Sr isotopic data indicate that the pervasive D3 fabric developed at about 2400–2500 Ma, and this age can be further refined to 2456+8-5 Ma by concordant zircon analyses from a syn-D3 pegmatite. All zircons were affected by only minor (<7–10%) Pb loss and/or new zircon growth during the Rayner event at about 1100Ma. Thus the 450–850 μg/gU concentrations of these zircons were too low to cause sufficient lattice damage over the 1350 Ma (from 2450 Ma) for excessive Pb to be lost during the 1100 Ma event. The emplacement of pegmatite at 522 ± 10 Ma substantially changed the Rb-Sr systematics of the only analysed rock that developed a penetrative fabric during the 1100 Ma event. Monazite in this pegmatite contains an inherited Pb component, which probably resides in small opaque inclusions. A good correlation is found between Rb-Sr total-rock ages and rock fabric. U-Pb zircon intercepts with concordia also mostly correspond to known events. However, in one example a near perfect alignment of zircon analyses, probably developed by mixing of unrelated components, produced concordia intercepts that appear to have no direct geochronological significance.  相似文献   

14.
Abstract New isotopic (Rb–Sr, U–Pb zircon and Sm–Nd) and petrological data are presented for part of an extensive Proterozoic mobile belt (locally known as the Rayner Complex) in East Antarctica. Much of the belt is the product of Mid-Proterozoic (∼ 1800–2000 Ma) juvenile crustal formation. Melting of this crust at about 1500 Ma ago produced the felsic magmas from which the dominant orthogneisses of this terrain were subsequently derived. Deformation and transitional granulite-amphibolite facies conditions (which peaked at 750 ± 50°C and 7–8 kbar (0.7–0.8 GPa) produced open to tight folding about E–W axes and syn-tectonic granitoids about 960 Ma ago. Subsequent felsic magmatism occurred at about 770 Ma and not, as has been widely advocated, at 500–550 Ma, which appears to have been a time of widespread upper greenschist facies (400–500°C) metamorphism, localized shearing and faulting. Sm-Nd model ages of 1.65–2.18 Ga disprove a previously favoured hypothesis that the Rayner Complex mostly represents reworked Archaean rocks from the neighbouring craton (Napier Complex). Models that involve rehydration of the Napier Complex are no longer required, since the Rayner Complex was its own source of water. Two episodes of Proterozoic crustal growth are identified, the later of which occurred between about 1200 Ma and 1000 Ma, and was relatively minor. Sedimentation took place only shortly before Late Proterozoic orogenesis. The multiphase history of the Rayner Complex has resulted in complex isotopic behaviour. Three temporally discrete episodes of Pb loss from zircon have been identified, the earliest two of which are responses to the c. 960 Ma and 540 Ma tectonothermal events. Fluid leaching was operative during the later event for there is a good correlation between degree of isotopic discordance and secondary mineral growth. Pb loss during the high-grade event was probably governed by the same process or by lattice annealing. Some zircon suites also document recent Pb loss. Most lower concordia intercepts have no direct geological meaning and are explicable as mixed ages produced by incomplete Pb loss during two or more secondary events. Whereas all zircon separates from the orthogneisses produce U–Pb isotopic alignments, zircons from the only analysed paragneiss produce scattered data, in part reflecting a range of provenance. The 960 Ma event was also associated with the growth of a characteristically low U zircon (∼ 300 μg/g) in rocks of inferred high Zr content. There is ubiquitous evidence for the resetting of Rb–Sr total-rock isochrons. Even samples separated by up to 10 km fail to produce igneous crystallization ages. Minor mineralogical changes produced by the 540 Ma upper greenschist-facies metamorphism were sufficient to almost completely reset some Rb–Sr isochrons and to produce open system conditions on outcrop scale, at least in one location.  相似文献   

15.
In-situ zircon U–Pb and Hf isotopic analysis via laser ablation microprobe-inductively coupled plasma mass spectrometer (LAM-ICPMS) of samples from Kemp and MacRobertson Lands, east Antarctica suggests that the Kemp Land terrane evolved separately from the rest of the Rayner Complex prior to the ca. 940 Ma Rayner Structural Episode. Several Archaean metamorphic events in rocks from western Kemp Land can be correlated with events previously reported for the adjacent Napier Complex. Recently reported ca. 1,600 Ma isotopic disturbance in rocks from the Oygarden Group may be correlated with a charnockitic intrusion in the Stillwell Hills before ca. 1,550 Ma. Despite being separated by some 200 km, THfDM ages indicate felsic orthogneiss from Rippon Point, the Oygarden Group, Havstein Island and the Stillwell Hills share a ca. 3,660–3,560 Ma source that is indistinguishable from that previously reported for parts of the Napier Complex. More recent additions to this crust include Proterozoic charnockite in the Stillwell Hills and the vicinity of Mawson Station. These plutons have distinct 176Hf/177Hf ratios and formed via the melting of crust generated at ca. 2,150–2,550 Ma and ca. 1,790–1,870 Ma respectively.  相似文献   

16.
Abstract Polymetamorphic orthoamphibole-bearing gneisses from the vicinity of shear zones in Casey Bay, Enderby Land, Antarctica, record both the overprinting of Archaean granulite lithologies by Proterozoic metamorphism and the subsequent evolution of the latter episode during localized deformation.
Mineral chemistry and zoning relationships in orthoamphibole-garnet-kyanite-quartz and later orthoamphibole-garnet-cordierite-quartz assemblages are used together with interpretation of reaction and corona textures to constrain the Proterozoic pressure-temperature path experienced by the rocks. Consideration of reaction topologies, P-T-X(Fe-Mg-A1) relationships in orthoamphibole-bearing assemblages, and standard geothermobarometry indicate that the gneisses underwent a near-isothermal decompression P-T history (steep positive dP/dT) from ± 8 kbar and 700°C to <5.5kbar and 650°C. This uplift path is correlated with the general effects of Rayner Complex metamorphism and deformation which occurred after 1100 Ma in a major erogenic belt south of Casey Bay.  相似文献   

17.
The eastern Amery Ice Shelf (EAIS) and southwestern Prydz Bay are situated near the junction between the Late Neoproterozoic/Cambrian high-grade complex of the Prydz Belt and the Early Neoproterozoic Rayner Complex. The area contains an important geological section for understanding the tectonic evolution of East Antarctica. SHRIMP U–Pb analyses on zircons of felsic orthogneisses and mafic granulites from the area indicate that their protoliths were emplaced during four episodes of ca. 1380 Ma, ca. 1210–1170 Ma, ca. 1130–1120 Ma and ca. 1060–1020 Ma. Subsequently, these rocks experienced two episodes of high-grade metamorphism at > 970 Ma and ca. 930–900 Ma, and furthermore, most of them (except for some from the Munro Kerr Mountains and Reinbolt Hills) were subjected to high-grade metamorphic recrystallization at ca. 535 Ma. Two suites of charnockite, i.e. the Reinbolt and Jennings charnockites, intrude the Late Mesoproterozoic/Early Neoproterozoic and Late Neoproterozoic/Cambrian high-grade complexes at > 955 Ma and 500 Ma, respectively. These, together with associated granites of similar ages, reflect late- to post-orogenic magmatism occurring during the two major orogenic events. The similarity in age patterns suggests that the EAIS–Prydz Bay region may have suffered from the same high-grade tectonothermal evolution with the Rayner Complex and the Eastern Ghats of India. Three segments might constitute a previously unified Late Mesoproterozoic/Early Neoproterozoic orogen that resulted from the long-term magmatic accretion from ca. 1380 to 1020 Ma and eventual collision before ca. 900 Ma between India and the western portion of East Antarctica. The Prydz Belt may have developed on the eastern margin of the Indo-Antarctica continental block, and the Late Neoproterozoic/Cambrian suture assembling Indo-Antarctica and Australo-Antarctica continental blocks should be located southeastwards of the EAIS–Prydz Bay region.  相似文献   

18.
Provenance studies from Cambro‐Ordovician sediments of the North Gondwana passive margin typically ascribe a North African source, a conclusion that cannot be reconciled with all observations. We present new U‐Pb ages from detrital rutile and zircon from Late Ordovician sediments from Saxo‐Thuringia, Germany. Detrital zircons yield age populations of 500–800 Ma, 900–1050 Ma and 1800–2600 Ma. The detrital rutile age spectra are unimodal with ages between 500 and 650 Ma and likely represent, together with the 500–800 Ma and 1800–2600 Ma zircon populations, detritus sourced predominantly from North Africa. In contrast, the c. 950 Ma zircons, which are persistently found in Cambro‐Ordovician sediments of North Gondwana, have no obvious African source. We propose that these zircons are sourced from the Rayner Complex–Eastern Ghats regions of Antarctica and India. An Indo‐Antarctic source indicates either continental‐scale sedimentary transport from central Gondwana to its peripheries or multiple cycles of sediment reworking and redeposition.  相似文献   

19.
INGLE  S.; WEIS  D.; FREY  F. A. 《Journal of Petrology》2002,43(7):1241-1257
At Site 1137 on Elan Bank of the Kerguelen Plateau, a largeigneous province in the southern Indian Ocean, a fluvial, volcaniclastic,polymict conglomerate and a fluvial sandstone are intercalatedwith subaerially erupted tholeiitic basalt flows. Clasts recoveredfrom the conglomerate have highly variable lithologies, includingalkali basalt, rhyolite, trachyte, granitoid and gneiss. Majorand trace element abundances and whole-rock isotopic data forthe sandstones, the conglomerate matrix and representative clastsfrom the conglomerate are used to infer the origin of thesediverse rock types. The gneiss clasts show an affinity to crustalrocks from India, particularly those of the Eastern Ghats Beltand its possible East Antarctic corollary, the Rayner Complex.The felsic volcanic clasts are not genetically related to theintercalated basalt flows, despite being erupted contemporaneouslywith these basaltic magmas. These felsic volcanic clasts probablyformed from partial melting of evolved upper continental crust.The granitoid also probably formed by partial melting of continentalcrust and could be an intrusive equivalent of the felsic volcanicrocks. In contrast, the alkali basalt clasts have isotopic compositionsthat are more similar to those of the tholeiitic basalt flowsrecovered at Site 1137; however, these clasts are highly alkalic(tephrite to phonotephrite) and have a distinct petrogenesisfrom the tholeiitic basalt flow units. KEY WORDS: geochemistry; Indian Ocean; Kerguelen Plateau; large igneous provinces; Ocean Drilling Program  相似文献   

20.
J. W. Sheraton  L. P. Black 《Lithos》1983,16(4):273-296
Archaean granulite-facies orthogneisses of the Napier Complex in Enderby Land, metamorphosed 3070 Maago, comprise two chemically distinct suites. The more abundant, mainly of tonalitic to granodioritic composition, shows strong Y depletion, explicable by hydrous partial melting of a garnet-bearing source (garnet amphibolite or possibly eclogite); it apparently represents new continental crust. Other gneisses (predominantly of trondhjemitic to granitic (s.s) composition) do not show Y depletion, and have higher TiO2, Zr, Nb, La, Ce and Ga/Al, and lower CaO, Sr and Mg/(Mg + total Fe); they probably originated by relatively dry melting of predominantly felsic crystal rocks. Both suites show evidence for loss of Rb (relative to K), Th, and U during metamorphism. Late Archaean (−2800 Ma) amphibolite-facies gneisses of MacRobertson Land are of ‘undepleted’ type and may be representative of a higher crustal level than those of Enderby land. Late Proterozoic (1000 Ma) granulite-facies gneisses of Enderby Land (Rayner Complex) are to a large extent remetamorphosed Napier Complex rocks of igneous derivation; in contrast, gneisses of similar age in MacRobertson Land include a much higher proportion derived, either directly or by partial melting, from sedimentary protoliths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号