首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The crustal gravitational potential energy change (ΔGPE) caused by earthquakes in the Philippine area from January 1976 to November 2011 was estimated in this study. The active convergence between the Philippine Sea Plate and the Sundaland–Eurasian margin is reflected by the greatest gains in GPE along the Philippine, Negros and Cotabato trenches, whereas the Manila Trench is covered by a GPE loss pattern. Although the Philippine Mobile Belt (PMB) itself is actually affected by the ongoing collision and subduction processes, almost the entire Philippine Fault Zone is dominated by GPE loss, revealing a slightly extensional environment along the fault. The time evolution of the cumulated ΔGPE for different segments along the Philippine archipelago shows distinct patterns. Due to the numerous large underthrusting events that have occurred along the Philippine Trench, the cumulated ΔGPE is regularly increasing in its most southern segment. However, in the middle segments, where the Palawan Block enters into collision with the PMB, the increase in cumulated ΔGPE is relatively small. In the most northern segment, where the North Luzon is located, a decrease of cumulated ΔGPE demonstrates that the seismic characteristic of the Manila Trench is dissimilar from other subduction systems in the world. We suggest that the collision of both the Palawan Block and the Benham Rise with the PMB promotes the rotation of the PMB and facilitates the northward escape of the northeastern Luzon, resulting in a decrease of cumulated ΔGPE in the northern Philippines.  相似文献   

2.
We explore the tectono‐magmatic processes in the western West Philippine Basin, Philippine Sea Plate, using bathymetric data acquired in 2003 and 2004. The northwestern part of the basin formed through a series of northwestward propagating rifts. We identify at least five sequences of propagating rifts, probably triggered by mantle flow away from the mantle thermal anomaly that is responsible for the origin of the Benham and Urdenata plateaus. Gravitational forces caused by along‐axis topographic gradient and a ~30° ridge reorientation appear to also be driving the rift propagations. The along‐axis mantle flow appears to be reduced and deflected along the Luzon‐Okinawa fracture zone, because the spreading system remained stable west of this major fault zone. North‐east of the Benham plateau, a left‐lateral fracture zone has turned into a NE–SW‐trending spreading axis. As a result, a microplate developed at the triple junction.  相似文献   

3.
The Luzon Island is a volcanic arc sandwiched by the eastward subducting South China Sea and the northwestward subducting Philippine Sea plate.Through experiments of plane-stress,elastic,and 2-dimensional finite-element modeling,we evaluated the relationship between plate kinematics and present-day deformation of Luzon Island and adjacent sea areas.The concept of coupling rate was applied to define the boundary velocities along the subduction zones.The distribution of velocity fields calculated in our models was compared with the velocity field revealed by recent geodetic (GPS) observations.The best model was obtained that accounts for the observed velocity field within the limits of acceptable mechanical parameters and reasonable boundary conditions.Sensitivity of the selection of parameters and boundary conditions were evaluated.The model is sensitive to the direction of convergence between the South China Sea and the Philippine Sea plates,and to different coupling rates in the Manila trench,Philippine trench and eastern Luzon trough.We suggest that a change of±15° of the di rection of motion of the Philippine Sea plate can induce important changes in the distribution of the computed displacement trajectories,and the movement of the Philippine Sea plate toward azimuth330° best explains the velocity pattern observed in Luzon Island.In addition,through sensitivity analysis we conclude that the coupling rate in the Manila trench is much smaller compared with the rates in the eastern Luzon trough and the Philippine trench.This indicates that a significant part of momentum of the Philippine Sea plate motion has been absorbed by the Manila trench;whereas,a part of the momentum has been transmitted into Luzon Island through the eastern Luzon trough and the Philippine trench.  相似文献   

4.
The Philippine Fault results from the oblique convergence between the Philippine Sea Plate and the Sunda Block/Eurasian Plate. The fault exhibits left-lateral slip and transects the Philippine archipelago from the northwest corner of Luzon to the southeast end of Mindanao for about 1200 km. To better understand fault slip behavior along the Philippine Fault, eight GPS surveys were conducted from 1996 to 2008 in the Luzon region. We combine the 12-yr survey-mode GPS data in the Luzon region and continuous GPS data in Taiwan, along with additional 15 International GNSS Service sites in the Asia-Pacific region, and use the GAMIT/GLOBK software to calculate site coordinates. We then estimate the site velocity from position time series by linear regression. Our results show that the horizontal velocities with respect to the Sunda Block gradually decrease from north to south along the western Luzon at rates of 85–49 mm/yr in the west–northwest direction. This feature also implies a southward decrease of convergence rate along the Manila Trench. Significant internal deformation is observed near the Philippine Fault. Using a two dimensional elastic dislocation model and GPS velocities, we invert for fault geometries and back-slip rates of the Philippine Fault. The results indicate that the back-slip rates on the Philippine Fault increase from north to south, with the rates of 22, 37 and 40 mm/yr, respectively, on the northern, central, and southern segments. The inferred long-term fault slip rates of 24–40 mm/yr are very close to back-slip rates on locked fault segments, suggesting the Philippine Fault is fully locked. The stress tensor inversions from earthquake focal mechanisms indicate a transpressional regime in the Luzon area. Directions of σ1 axes and maximum horizontal compressive axes are between 90° and 110°, consistent with major tectonic features in the Philippines. The high angle between σ1 axes and the Philippine Fault in central Luzon suggests a weak fault zone possibly associated with fluid pressure.  相似文献   

5.
Abstract. The aseismic Palawan microcontinental block is an oceanic bathymetric high that has collided with the seismically-ac-tive Philippine Mobile Belt since the Early Miocene. Consequently, tectonic microblocks immediately north (Luzon) and south (Western Visayas Block) of the collision front rotated in opposite senses. The rotation led the microblocks to onramp adjacent strike-slip faults, and converted these to subduction zones, namely, the current Manila and Negros Trenches. In addition, the collision also initiated the southward propagation of a major left-lateral strike slip fault, the Philippine Fault Zone, and the Philippine Trench, which bounds the Philippine archipelago along its eastern boundary. Based on onshore and offshore data, the Philippine Fault Zone and the East Luzon Trough - Philippine Trench appears to also propagate northward. Furthermore, the opposite direction of propagation is also noted for the Manila and Negros Trenches from the locus of the collision in the Central Philippines to their northern and southern extensions, respectively. The ages of initiation of the Manila Trench (Early Miocene), Philippine Fault Zone (Middle Miocene) and Philippine Trench (Pliocene) as encountered along a west to east transect in the Central Philippines are consistent with the collision and subsequent indentation of Palawan with the rest of the Philippine Mobile Belt.  相似文献   

6.
Volcanoes were created, grew, uplifted, became dormant or extinct, and were accreted as part of continents during continuous arc–continent collision. Volcanic rocks in Eastern Taiwan’s Coastal Range (CR) are part of the northern Luzon Arc, an oceanic island arc produced by the subduction of the South China Sea Plate beneath the Philippine Sea Plate. Igneous rocks are characterized by intrusive bodies, lava and pyroclastic flows, and volcaniclastic rocks with minor tephra deposits. Based on volcanic facies associations, Sr–Nd isotopic geochemistry, and the geography of the region, four volcanoes were identified in the CR: Yuemei, Chimei, Chengkuangao, and Tuluanshan. Near-vent facies associations show different degrees of erosion in the volcanic edifices for Chimei, Chengkuangao, and Tuluanshan. Yuemei lacks near-vent rocks, implying that Yuemei’s main volcanic body may have been subducted at the Ryukyu Trench with the northward motion of the Philippine Sea Plate. These data suggest a hypothesis for the evolution of volcanism and geomorphology during arc growth and ensuing arc–continent collision in the northern Luzon Arc, which suggests that these volcanoes were formed from the seafloor, emerging as islands during arc volcanism. They then became dormant or extinct during collision, and finally, were uplifted and accreted by additional collision. The oldest volcano, Yuemei, may have already been subducted into the Ryukyu Trench.  相似文献   

7.
Recognition of neotectonic features along the Marikina Valley fault system (MVFS) in central Luzon, Philippines indicates a dominantly dextral strike-slip motion during its most recent activity believed to be Late Pleistocene to Holocene in age. Variations in the ratios of vertical to horizontal displacements for the segments imply a dominantly dextral motion of the West Marikina Valley fault (WMVF) and oblique dextral motion for the East Marikina Valley fault (EMVF). The displacement data further suggest that rupturing along the EMVF involved multiple segments and occurred separately from the events along the WMVF segments. Estimated earthquake magnitudes for the WMVF and EMVF based on single-event offsets fall within the range M 7.3–7.7. The vertical slip component in the northern part of the Marikina Valley is associated with the development of a basin between the EMVF and WMVF while the large vertical component in the southernmost segment of the EMVF (Talim) is attributed to volcanism-related extension. Lateral advection of the block bounded by the MVFS and the Philippine fault zone (PFZ), rather than pure shear resulting from an assumed east–west compression, best explains the observed kinematics of the MVFS. This is the result of compression during the westward drift of the Philippine Sea Plate and northern Luzon and occurs through slip along the WMVF and EMVF at rates of 5–7 mm/yr.  相似文献   

8.
The Cabog Formation, newly established herein and exposed in central East Luzon, Philippine Mobile Belt, is defined in age by the occurrence of radiolarians. The radiolarian assemblage is correlative with the middle Eocene and suggests a low paleolatitude affinity. The correlation, sedimentary environment, and the tectonic significance are discussed. The Cabog Formation is correlative with the distal part of the middle–late Eocene Caraballo Formation, which is exposed in the northeastern side of the Philippine Fault Zone. The sandstone composition and radiolarian age suggest that the Cabog Formation represents the first depositional stage in the early arc setting. The northward migration of the formation is also estimated in relation with the Philippine Sea Plate motion along the Older Philippine Fault from the equatorial area.  相似文献   

9.
A synthesis of crustal thickness estimates was made recently utilizing available field, geochemical, seismicity, shear wave velocity and gravity data in the Philippines. The results show that a significant portion of the Philippine archipelago is generally characterized by crust with a thickness of around 25 to 30 kilometers. However, two zones, which are made up of a thicker crust (from 30 to 65 km) have also been delineated. The Luzon Central Cordillera region is characterized by thick crust. Another belt of thickened crust is observed in the Bicol-Negros-Panay-Central Mindanao region. This paper examines the interplay of tectonic and magmatic processes and their role in modifying Philippine arc crust. The processes, which could account for the observed crustal thicknesses, are presented. The contributions of magmatic arcs as compared to the contribution of the emplacement and accretion of ophiolite complexes to crustal thickness are also discussed.  相似文献   

10.
The paper considers Cretaceous magmatism at the continental margin of the Arctic Region. It is shown that Cretaceous igneous rocks of this region are rather heterogeneous in age, composition, and geodynamic formation setting. This differentiates them from rocks of typical large igneous provinces (LIPs). Local areas of magmatic activity, their substantial remoteness them from one another, and significant distinctions in age, composition of rocks, and formation conditions prevent us from unreservedly combining all occurrences of Cretaceous magmatism at the continental margin of the Arctic Region into a common igneous province. The stage of tholeiitic magmatism in the Svalbard Archipelago, Franz Josef Land, Arctic Canada, and the Alpha–Mendeleev Rise, which can be considered an LIP, began in the Early Cretaceous and continued for a long time, at least until the Campanian. The magmatism apparently had a plume source and was caused by extension during opening of the Canada Basin. Tholeiitic magmatism gave way to the alkaline magmatism stage from the Campanian to the onset of the Paleocene, related to continental rifting at the initial stage of formation of Eurasian Basin in the Arctic Region. No convincing evidence for a genetic link between Early Cretaceous tholeiitic and Late Cretaceous alkaline magmatism is known at present, nor for the alkaline magmatism belonging to a plume source.  相似文献   

11.
We utilize regional GPS velocities from Luzon, Philippines, with focal mechanism data from the Harvard Centroid Moment Tensor (CMT) Catalog, to constrain tectonic deformation in the complex plate boundary zone between the Philippine Sea Plate and Eurasia (the Sundaland block). Processed satellite imagery and digital elevation models are used with existing gravity anomaly, seismicity, and geologic maps to define a suite of six elastic blocks. Geodetic and focal mechanism data are inverted simultaneously to estimate plate rotations and fault-locking parameters for each of the tectonic blocks and faults comprising Luzon. Major tectonic structures that were found to absorb the plate convergence include the Manila Trench (20–100 mm yr− 1) and East Luzon Trough ( 9–15 mm yr− 1)/Philippine Trench ( 29–34 mm yr− 1), which accommodate eastward and westward subduction beneath Luzon, respectively; the left-lateral strike-slip Philippine Fault ( 20–40 mm yr− 1), and its northward extensions, the Northern Cordillera Fault ( 17–37 mm yr− 1 transtension), and the Digdig Fault ( 17–27 mm yr− 1 transpression). The Macolod Corridor, a zone of active volcanism, crustal thinning, extension, and extensive normal and strike-slip faulting in southwestern Luzon, is associated with left-lateral, transtensional slip of  5–10 mm yr− 1. The Marikina Fault, which separates the Central Luzon block from the Southwestern Luzon block, reveals  10–12 mm yr− 1 of left-lateral transpression. Our analysis suggests that much of the Philippine Fault and associated splays are locked to partly coupled, while the Manila and Philippine trenches appear to be poorly coupled. Luzon is best characterized as a tectonically active plate boundary zone, comprising six mobile elastic tectonic blocks between two active subduction zones. The Philippine Fault and associated intra-arc faults accommodate much of the trench-parallel component of relative plate motion.  相似文献   

12.
A synthesis of the geologic evolution of Taiwan   总被引:2,自引:0,他引:2  
The island arc of Taiwan is composed of Cenozoic geosynclinal sediments more than 10,000 m thick, lying on a pre-Tertiary metamorphic basement. Pleistocene to Miocene andesitic islands surround the main island and are related mostly to arc magmatism. The Penghu Island Group in the Taiwan Strait is covered with Pleistocene flood basalt. Neogene shallow marine clastic sediments are exposed mainly in the western foothills with Pleistocene andesitic extrusives at the northern tip and the northeastern offshore islands. A thick sequence of Paleogene to Miocene argillitic to slaty metaclastic rocks underlies the western Central Range and forms the immediate sedimentary cover on the pre-Tertiary metamorphic complex to the east, which represents an older Mesozoic arc-trench system. The Coastal Range in eastern Taiwan is a Neogene andesitic magmatic arc, including also a large variety of volcaniclastic and turbiditic sediments. Cenozoic Taiwan is the site of arc-continent collision where the Luzon arc on the Philippine Sea plate overrides the Chinese continental margin on the Eurasian plate. East and northeast of Taiwan, the polarity of subduction changes whereby the oceanic Philippine Sea plate is subducting beneath the Ryukyu arc system on the Eurasian plate. Continent-arc collision in Taiwan island is anomalous and may occur in a broad belt of deformation rather than along a well-defined plate boundary or subduction zone.  相似文献   

13.
Baguio, in the Central Cordillera of Northern Luzon, is a district that displays porphyry copper and epithermal gold mineralization, associated with Early Miocene–Pliocene–Quaternary calc‐alkaline and adakitic intrusions. Systematic sampling, K‐Ar dating, major and trace elements, and Sr, Nd, Pb isotopic analyses of fresh magmatic rocks indicate three magmatic pulses: an Early Miocene phase (21.2–18.7 Ma), a Middle–Late Miocene phase (15.3–8 Ma) and finally a Pliocene–Quaternary event (3–1 Ma). The first phase emplaced evolved calc‐alkaline magmas, essentially within the Agno Batholith complex, and is thought to be related to the westward‐dipping subduction of the West Philippine Basin. After a quiescence period during which the Kennon limestone was deposited, magmatic activity resumed at 15.3 Ma, in connection with the start of the subduction of the South China Sea along the Manila Trench. It emplaced first petrogenetically related and relatively unradiogenic low‐K calc‐alkaline lavas and intermediate adakites. Temporal geochemical patterns observed from 15.3 to 1 Ma include progressive enrichment in K and other large ion lithophile elements, increase in radiogenic Sr and Pb and corresponding decrease in radiogenic Nd. These features are thought to reflect the progressive addition to the Luzon arc mantle wedge of incompatible elements largely inherited from South China Sea sediments. The origin of the long quiescence period, from 8 to 3 Ma, remains problematic. It might represent a local consequence of the docking of the Zambales ophiolitic terrane to Northern Luzon. Then, magmatic activity resumed at 3 Ma, emplacing chemically diversified rocks ranging from low K to high K and including a large proportion of adakites, especially during the Quaternary (dacitic plugs). The authors tentatively relate this diversity to the development of a slab tear linked with the subduction of the fossil South China Sea ridge beneath the Baguio area.  相似文献   

14.
Results from the first detailed radiolarian biostratigraphic study conducted in Luzon are reported. The data were obtained from cherts associated with the Casiguran Ophiolite, a dismembered ophiolite mass consisting of serpentinized peridotites, gabbros, dolerite dikes and pillow basalts exposed along the eastern coast of the Northern Sierra Madre, Luzon, Philippines. Cherts and limestone interbeds conformably overlie the ophiolite. The radiolarian assemblages from the cherts constrain the stratigraphic range of the cherts to the Lower Cretaceous (upper Barremian–lower Aptian to Albian). This new biostratigraphic result is in contrast with the Upper Cretaceous stratigraphic range previously reported in the region.Radiolarian biostratigraphic results from the Casiguran Ophiolite provide additional evidence for the existence of Mesozoic oceanic substratum upon which Luzon and neighboring regions within the Philippine archipelago were likely built. Interestingly, the result closely resembles those reported for the ophiolite in southeastern Luzon as well as the oceanic crust of the Huatung Basin situated east of Taiwan and the ophiolites in eastern Indonesia. In light of this, along with previously gathered geochemical data from the ophiolites, a common provenance is being looked into for these crust–upper mantle sequences in the western Pacific region.  相似文献   

15.
We conducted rock magnetic and paleomagnetic research on two deep-sea sediment cores from the west Philippine Sea, located to the east of Benham Rise with the length of 4 m and water depth of over 5000 m. At the bottom of core 146 occurs a reversal of inclination and deflection of relative declination, which is recognized as Brunhes-Matuyama Polarity Boundary (MBPB). No reversal occurs in core 89, which implies a younger bottom age than that of core 146. Rock magnetic results reveal magnetic uniformities in mineralogy, concentration and grain size along the two cores, thus relative paleointensity variations are acquired. The three normalizers-anhysteresis remanent magnetization (ARM), magnetic susceptibility (k) and saturation isothermal remanent magnetization (SIRM) are used for normalization to obtain relative paleointensities. The three normalization results are averaged to indicate the paleoitensity of the cores and are further stacked together to get a synthetic curve for west Philippine Sea (named asWPS800 in this paper). Based on the magnetic correlation between cores and paleointensity to Sint800, we transfer the changes of rock magnetic parameters from depth to time. Furthermore, the astronomically tuned oxygen isotope from ODP site 1143 in the south China Sea is used for the glacial and interglacial indicator. Three concentration proxies (ARM, k and SIRM) and grain size indicators (k ARM/SIRM, k ARM/k) are examined according to the paleointensity-assisted chronology. The grain size changes in the two cores display a consistent pattern with the climatic changes embodied by oxygen isotope. The magnetic sizes are usually coarser in glacial periods and finer in interglacial times, which may reflect the influence of chemical erosion rather than fining from sea level rising on the source sediment. Furthermore, the sub-peaks and sub-troughs in interglaciations almost correspond with that of oxygen isotope records, which means sedimentation can reflect the subtle changes in interglaciations. This kind of revelation of climatic fluctuation by magnetic size is also found in the South China Sea, which shows a common pattern of magnetic signals to climate at least within East Asia. The concentration of ARM (representing more about fine grain) also shows similar response to glacial and interglacial cycles, that is, high in interglacial cycle and low in glacial cycle; but k and SIRM (reflecting more about coarse grain) lack the response to the climatic cycles. At the same time, S-ratio lacks the correlation with aeolian dust record and rhythmic changes, indicating the dominant source of main magnetic carrier (low coercivity magnetite) is the suspended matter instead of dust. The decreasing trend of sedimentation rate from west to east also reveals that the sediments are mainly from west Luzon and adjacent land. Grain sizes first became coarse and then stable around 400 ka B.P., and at the same time all the magnetic contents lowered and amplitude of magnetic mineral changes increased. The magnetic transition around 400 ka B.P. is simultaneous with the decreases of carbonate content, reflecting a global carbonate dissolution event, i.e. mid Brunhes event. The synchronization of magnetic content and grain size with climatic cycles of glacials and interglacials imply the validity of paleointesnityassisted chronology. Also, the response of rock magnetic signals to stable oxygen isotope changes and carbonate variation reveals that rock magnetismmethod can be an effective tool for paleoclimatic and paleoceanographic research. __________ Translated from Quaternary Sciences, 2007, 27(6): 1040–1052 [译自 : 第四纪研究]  相似文献   

16.
菲律宾海西部吕宋岛岸外MD98-2188钻孔揭示末次冰期以来发生过数次浊流沉积事件。研究发现浊流沉积层具有密度高、颜色亮度大等物理特征,含有较多粗沉积组分和翼足类化石碎片,说明其来源于浅海沉积物。本文运用AMS 14C测年和浮游有孔虫氧同位素建立精细的年龄模式,发现浊流沉积层段主要与末次盛冰期、冰期Heinrich变冷事件以及氧同位素4期等低海平面时期相对应,推测与千年尺度北半球气候冷期相关的海平面快速上升可能是西菲律宾海浊流沉积的触发原因。这对于认识快速气候变化的环境后果和开展西菲律宾海晚第四纪地层划分对比都有重要意义。  相似文献   

17.
陈建民 《世界地质》2011,30(2):145-153
拉惹普( Larap) 铁、铜钼矿床产于菲律宾板块俯冲吕宋岛被动陆缘的岛弧造山带上,处于菲律宾中央走滑断裂带近旁。含矿层位于古近纪渐新世晚期蚀变安山岩、角砾岩和古新统的角岩、角岩化页岩的喷溢角度不整合面的追踪断裂带上。大面积的安山岩、角砾岩的褪色化和带状展布的灰绿色热液交代蚀变岩系,矿体产于蚀变带中,呈似层状、透镜状; 铁矿体在上部层位,铜钼矿体在铁矿体下部,与贫磁铁矿相伴产出; 铁矿体伴生铜、钼,铜钼矿体又伴生铁、金、银和钴等,矿石中的金属矿物以磁铁矿为主,其次有黄铁矿、黄铜矿、辉钼矿、磁黄铁矿、沥青铀矿和自然金等。元素组合除铁、铜、钼外,还有金、银、钴和铀等,与奥林匹克坝、Candelaria ( 智利) 的氧化铁型( IOCG) 铜金矿床类比,拉惹普矿床成因属于氧化铁型铜钼金矿床新类型。  相似文献   

18.
Slater PB 《GeoJournal》1982,6(5):477-480
In contrast to results for several other nations, hierarchical regionalizations based upon 1960 Philippine lifetime migration do not indicate that islands act as migration regions — groups of provinces, relatively self-contained with respect to migration flows. Inter-island links seem to be more important than intra-island ties. Northern Luzon, the Bicol Peninsula and the Southern Philippines are among the regions that appear. Manila and its suburban province of Rizal are exceptional both for the breadth and strength of their interprovincial migration ties.  相似文献   

19.
Collision and stress trajectories in Taiwan: a finite element model   总被引:2,自引:0,他引:2  
Field analyses of Plio-Quaternary compressional deformations in Taiwan have enabled us to reconstruct the paleostress trajectories resulting from the collision of the Luzon arc (Philippine Sea plate) with the Chinese continental margin (Eurasian plate). The direction of the maximum compressional stress σ1 shows a fan-shaped pattern that we interpret as resulting from the collision of a rigid body (the Luzon arc) indenting a more deformable material (the thick sediments of the Chinese continental margin). Simple analytical models qualitatively explain the fan-shaped pattern, but the influence of various parameters such as boundary conditions and rheology cannot be quantitatively accounted for by this approach. Consequently, we have used a finite element technique to compute the stresses and strains induced by the push of a rigid body against a two-dimensional, viscous material. The boundary conditions are the velocities based on plate kinematics. A motion in the N300°E direction best explains the stress trajectories observed in central Taiwan. Viscosity contrasts as well as small changes in the shape of the northern edge of the indenter have little influence on the computed stress pattern. The most important parameter is the direction of convergence. Our model quantitatively explains the general pattern of the stress trajectories observed in the collision zone of Taiwan, between the Philippine Sea plate and Eurasia.  相似文献   

20.
论菲律宾海板块大地构造分区   总被引:10,自引:0,他引:10  
菲律宾海板块是毗邻中国大陆的一个独特的小型板块。除南端表现十分复杂外,它的构造边界多以海沟为界,比较清楚,然而次级大地构造单元划分则比较复杂。本文根据近年来的研究成果,按照块体构造理论注重统一的地球物理场、相似的地壳结构、有机的成因联系等3个基本原则,将菲律宾海板块划分为3个具有不同构造演化特征的单元,即西菲律宾海块体、四国-帕里西维拉块体和伊豆-博宁-马里亚纳块体。西菲律宾海块体包括两部分:一个是西菲律宾海盆,始新世以来受太平洋板块和印澳板块近南北向的相对俯冲作用影响,并顺时针旋转形成了现今的构造样式,于30 Ma左右停止扩张。另一个包括大东盆岭、花东盆地、帕劳海盆和吕宋岛弧蛇绿岩等洋壳在内的白垩纪洋盆。根据形成年代和形成时的扩张方向可将四国-帕里西维拉块体分为两部分:四国海盆和帕里西维拉海盆,两者以索夫干断裂为界。伊豆-博宁-马里亚纳块体沿博宁高原南缘分为南北两部分,两者表现出不同的地质特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号