首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Water samples from the Wujiang River, a typical karst river system, were analyzed for major ion concentrations and δ^34S values of dissolved sulfate in order to identify the sources of sulfate, quantify the sulfate export flux and understand the role of sulfur cycling in chemical weathering rate of carbonate. Spatial variations in sulfate concentration and sulfur isotopic composition of tributaries over the catchment area are obvious, allowing to decipher S sources between rocks and atmosphere. According to the variations in sulfate concentration and isotopic composition, it is inferred that sulfate ions in the upper-reach river waters may have three sources, rain water, sulfate resultant from oxidation of pyrite in coal, and sulfate from sulfide deposits. In the lower reaches, the S isotopic composition of the samples lies mainly on a mixing trend between evaporite sulfate and rainwater sulfate, the contribution of sulfate from oxidation of pyrite being lesser. A pronounced seasonal variation in both content and isotopic composition of sulfate characterizes the Wujiang River. The average sulfate concentration of the waters is 0.65 mmol/L in winter, 0.17 mmol/L higher than that in summer. River water δ^34S values range from -15.7‰ to 18.9‰ in winter, while the δ^34S values of river waters in summer vary to a lesser extent than in winter, from -11.5‰ to 8.3‰. The δ^34S values of the main stream range from -6.7‰ to -3.9‰ in summer, averaging 3‰ lower than in winter. This indicates that in summer, when the discharge increases, the contribution of a source enriched in light isotopes to the atmosphere or the oxidation of pyrite in coal is more important.  相似文献   

2.
The Tianqiao Pb-Zn ore deposit of Guizhou Province, China, is located in the mid-east of the Si-chuan-Yunnan-Guizhou Pb-Zn-Ag multi-metallic mineralization area, which is representative of the Pb-Zn ore de-posits in this area. It consists of three main orebodies, whose Pb+Zn reserves are more than 0.2 million ton. This paper analyzes the sulfur isotopic composition of these orebodies. The data show that the ore minerals (galena, sphalerite, pyrite) in these orebodies are enriched in heavy sulfur, with δ34SV-CDT values varying between 8.35‰ and 14.44‰, i.e. the δ34SV-CDT values of pyrite are between 12.81‰ and 14.44‰, the mean value is 13.40‰; the δ34SV-CDT values of sphalerite are range from 10.87‰ to 14.00‰, the mean value is 12.53‰; the δ34SV-CDT values of galena are range from 8.35‰ to 9.83‰, the mean value is 8.84‰, and they have the feature of δ34Spyrite>δ34Ssphalerite>δ34Sgalena, which indicates the sulfur isotope in ore-forming fluids has attained equilibrium. The δ34S V-CDT values of the deposit are close to those of sulfates from carbonate strata of different ages in the ore-field (15‰), which suggests that the sulfur in the ore-forming fluids should be derived from the thermo-chemical sulfate reduction of sulfates from the sedimentary strata.  相似文献   

3.
In order to constrain sulfur isotope compositions of ore-forming fluids, ore-forming temperature, source of sulfur and mechanism of sulfur reduction in the Huize lead-zinc ore field, based on sulfur isotope compositions from previous studies, new data of sulfur isotopic composition of primary sulfide of upper ore-bodies in Qilinchang and newly-found sulfate outside the deposits were utilized in this study. It show that 5 values of primary sulfide vary from 8. Oft∗ to 17. 68 ft∗ , and sulfur isotopes in ore-forming fluid have reached equilibrium; S'lS values of sulfur out side the deposits vary from 17. 95ft∗ to 24. 30ft∗ with average value of 20. 14ft∗ , yielding sulfur isotopic composition of ore-for ming fluids as 14. 14ft∗ by the Pinekney method for mineral association. The value is close to 5'4S of marine sulfate. Ore-forming temperature is calculated as 1 34 - 388by isotope geological thermometer. The results of fluid inclusion thermometer indicate that barites were crystallized from hydrothermal fluid, which is suggested that sulfur in ore-forming fluid probably originates from marine sulfate of stratum in and outside the deposits or hydrothermal barites found in ore district. Reduction mechanism of sulfate is likely to be themio-chemical sulfate reduction.  相似文献   

4.
The Jinshachang lead–zinc deposit is mainly hosted in the Upper Neoproterozoic carbonate rocks of the Dengying Group and located in the Sichuan–Yunnan–Guizhou(SYG) Pb–Zn–Ag multimetal mineralization area in China.Sulfides minerals including sphalerite,galena and pyrite postdate or coprecipitate with gangue mainly consisting of fluorite,quartz,and barite,making this deposit distinct from most lead–zinc deposits in the SYG.This deposit is controlled by tectonic structures,and most mineralization is located along or near faults zones.Emeishan basalts near the ore district might have contributed to the formation of orebodies.The δ34S values of sphalerite,galena,pyrite and barite were estimated to be 3.6‰–13.4‰,3.7‰–9.0‰,6.4‰ to 29.2‰ and 32.1‰–34.7‰,respectively.In view of the similar δ34S values of barite and sulfates being from the Cambrian strata,the sulfur of barite was likely derived from the Cambrian strata.The homogenization temperatures(T ≈ 134–383°C) of fluid inclusions were not suitable for reducing bacteria,therefore,the bacterial sulfate reduction could not have been an efficient path to generate reduced sulfur in this district.Although thermochemical sulfate reduction process had contributed to the production of reduced sulfur,it was not the main mechanism.Considering other aspects,it can be suggested that sulfur of sulfides should have been derived from magmatic activities.The δ34S values of sphalerite were found to be higher than those of coexisting galena.The equilibrium temperatures calculated by using the sulfur isotopic composition of mineral pairs matched well with the homogenization temperature of fluid inclusions,suggesting that the sulfur isotopic composition in ore-forming fluids had reached a partial equilibrium.  相似文献   

5.
The Aha Lake is a seasonal anoxic water system in the southwest of Guiyang City, Guizhou Province, China. Seasonal variations in SO42- concentrations and their isotopic compositions in lake water as well as in the tributaries were investigated in this study. The results showed that sulfate concentrations in river water range from 0.94 to 6.52 mmol/L and their δ34S values range from -14.9‰ and 0.9‰, while lake water has sulfate concentrations ranging from 1.91 to 2.79 mmol/L, and δ34S values from -9.8‰ to -5.9‰. It is suggested that coal mining drainage is the major source of SO42- in the Aha Lake. Rainfall, sewage discharge, sulfide oxidation and gypsum dissolution have made only limited contributions. Different depth-dependent distributions of dissolved SO42- and δ34S were de-veloped for both DB and LJK in summer and winter. Due to water overturn, δ34S values display homogenous vertical distributions in winter and spring. While in summer and autumn, significant positive shifts of δ34S were clearly ob-served in epilimnion and bottom strata as a result of water stratification. High δ34S values in epilimnion may result from the retention of rainwater during water stratification. Dissimilatory sulfate reduction by bacteria was thought to be responsible for the increase of δ34S value in hypolimnion.  相似文献   

6.
Multiple sulfur isotope ratios (^34S/^33S/^32S) of Archean bedded sulfides deposits were measured in the Yanlingguan Formation of the Taishan Group in Xintai, Shandong Province, East of China; 633S = -0.7%o to 3.8‰,δ^34S = 0.1‰-8.8‰, △^33S = -2.3‰ to -0.7‰. The sulfur isotope compositions show obvious mass-independent fractionation (MIF) signatures. The presence of MIF of sulfur isotope in Archean sulfides indicates that the sulfur was from products of photochemical reactions of volcanic SO2 induced by solar UV radiation, implying that the ozone shield was not formed in atmosphere at that time, and the oxygen level was less than 10-5 PAL (the present atmosphere level). The sulfate produced by photolysis of SO2 with negative △^33S precipitated near the volcanic activity center; and the product of element S with positive △^33S precipitated far away from the volcanic activity center. The lower △^33S values of sulfide (-2.30‰ to --0.25‰) show that Shihezhuang was near the volcanic center, and sulfur was mostly from sulfate produced by photolysis. The higher △^33S values (-0.5‰ to -‰) indicate that Yanlingguan was far away from the volcanic center and that some of sulfur were from sulfate, another from element S produced by photolysis. The data points of sulfur isotope from Yanlingguan are in a line parallel to MFL (mass dependent fractionation line) on the plot of δ^34S--δ^33S, showing that the volcanic sulfur species went through the atmospheric cycle into the ocean, and then mass dependent fractionation occurred during deposition of sulfide. The data points of sulfur isotope from Shihezhuang represent a mix of different sulfur source.  相似文献   

7.
安徽罗河铁矿的硫同位素温度及意义   总被引:3,自引:0,他引:3  
The Luohe iron deposit is a volcano-pneumato-hydatogenetic metasomatic deposit of late Mesozoic age. In addition to magnetite, this ore deposit contains abundant pyrite and anhydrite. The temperatures of mineralization and alteration may he estimated from sulfur isotopic fractionation between the coexisting anhydrite and pyrite. The fact that the estimated temperatures from the weakly altered zone using the sulfate-pyrite equation of H. Ohmoto and R. O. Rye (1979) coincide with those estimated by other means (e.g. fluid inclusion), but the opposite holds true with those from the strongly altered zone indicates the establishment of isotopic equilibrium between anhydrite and pyrite in the weakly altered zone.However,assuming δ^34SAub=δ^34SSO2 and δ^34Spy=δ^34SH2S and using the SO2-H2S equation,the isotopic temperatures from the strongly altered zone are reported to be coineident with the data from fluid inclusions and one formation on.So the authors consider that there was established an equilibrium between SO2 and H2S in hydrothermal fluids during strong alteration,and the mechanisms of formation of anhydrite and pyrite in the two altered zones are probably different.  相似文献   

8.
The effect of Co2 and CH4 degassing from the mantle on the carbon isotopic composition of diamond has been quantitatively modeled in terms of the principles of Rayleigh distillation.Assuming the δ^13 C value of -5‰ for the mantle,the outgassing of CO2 can result in the large negative δ^13 C values of diamond,whereas the outgassing of CH4 can drive the δ^13C values of diamond in the positive direction.The theoretical expectations can be used to explain the full range of δ^13 C values from-34.4‰5 to 5‰ observed for natural diamonds.It is possible that diamond formation was triggered by the degassing of Co2 and/or CH4 from the mantle and the associated fractional crystallization of carbonate-bearing melt.  相似文献   

9.
In order to better understand the paleoceanographic sedimentary environment of the Lower Cambrian black shales extensively distributed in South China, outcropped along the present southern margin of the Yangtze Platform with a width of ca. 200-400 km and a length of more than 1500 km, we present new paired δ13C data on carbonates (δ13Ccarb) and associated organic carbon (δ13Corg) and δ34Spy data on sedimentary pyrite in black shales from three sections (Ganziping, Shancha and Xiaohekou) located in NW Hunan, China. In these sections, a total of 82 Lower Cambrian black shale samples have δ13Ccarb values ranging from -4.0‰ to 1.7‰ with an average value of -2.1‰, and δ13Corg values between -34.9‰ and -28.8‰, averaging -31.9‰. The ?34Spy values of 16 separated sedi-mentary pyrite samples from the black shales vary between +10.2‰ and +28.7‰ with an average value of +19.5‰, presenting a small isotope fractionation between seawater sulfate and sedimentary sulfide. The model calculation based on credible data from the paired analyses for δ13Ccarb and δ13Corg of 11 black shale samples shows a high CO2 concentration in the Early Cambrian atmosphere, about 20 times higher than pre-industrial revolution values, consis-tent with previous global predictions. The small sulfur isotope fractionation between seawater sulfate and sedimen-tary sulfide in black shales, only 15.5‰ on average, implies a low sulfate level in the Early Cambrian seawater around 1 mmol. In combination with a high degree of pyritization (DOP) in the black shales, it is suggested that sul-fidic deep-ocean water could have lingered up to the earliest Cambrian in this area. The black shale deposition is envisaged in a stratified marine basin, with a surface euphotic and oxygenated water layer and sulfidic deeper water, controlled by a continental margin rift.  相似文献   

10.
A new aproach to isotopic analysis of carbon,oxygen,sulfur and nitrogen in microsamples has been established.Samples were conventionally prepared by mixing microsamples to be analyzed with reference samples with known δ values in a proper proportion,and then analyzed for their stable isotopes as those at ordinary levels.According to the equilibrium relationships before and after mixing,the δvalues of unknown microsamples were calculated.The δ^15N of the atmosphere was estimated at zero by this approach,which is concordant with the internationally recommended value.  相似文献   

11.
On the basis of ore-forming periods and stages of the Dachang ore field, the pH and conditions and the S isotopic systematics during ore formation have been thcrmodynamically treated in this paper. Calculations show a progressively decreased pH, an increased oxidation regime and an intensified activity of sulfur from the early to the late stage. Owing to the unreliability of inferring the S source from δ34Smin, has been calculated using the Ohmoto’s model. Results indicate that the δ34 min frequency distribution is more concentrated than that of δ34Smin and the peak value shifts to negative region by 2.5%. The sulfur in the whole ore field seems to be of multiple source, i.e., different deposits have their own S sources. But the S isotopic composition pertaining to each stage is nearly constant, suggesting that the ore-forming system be open to sulfur and the supply of sulfur be sufficient. The conclusions deduced from calculations are supported by many lines of geological evidence.  相似文献   

12.
岩浆去气作用碳硫同位素效应   总被引:6,自引:0,他引:6       下载免费PDF全文
 根据开放体系条件下的瑞利分馏原理,并考虑岩浆中可能溶解的合碳和含硫组分,从理论上定量模式了岩浆去气作用对火成岩碳、硫同位素组成的影响。结果表明,岩浆CO2去气作用能够导致岩石中碳酸盐显着亏损13C,其δ13C值能够从原始-5‰变化到-20‰(PDB);岩浆CH4去气作用则导致岩石中碳酸盐相对富集13C,其δ13C值能够从原始-5‰变化到+4‰。岩浆SO2去气作用可以导致岩石中硫化物显着亏损34S,其δ34S值能够从0‰变化到-8‰(CDT);岩浆H2S去气作用则导致岩石中的硫化物相对富集4S,其δ34S值能够从0‰变化到+6‰。因此,除源岩原始同位素不均一性和地壳物质混染能引起火成岩的碳、硫同位素组成发生较大变化外,岩浆去气作用也是重要原因之一。  相似文献   

13.
Bulk δ 34Srock values, sulfur contents, and magnetic susceptibility were determined for 12 gold-related granitoid intrusions in southwestern New Brunswick, the Canadian Appalachians. The sulfur isotope compositions of sulfide minerals in some of the granitoid samples were also analyzed. This new dataset was used to characterize two distinctive groups of granitoids: (1) a Late Devonian granitic series (GS) and (2) a Late Silurian to Early Devonian granodioritic to monzogranitic series (GMS). The GS rocks have a large range in δ 34S values of −7.1‰ to +13‰ with an average of 2.2 ± 5.0‰ (1σ), low bulk-S contents (33 to 7,710 ppm) and low magnetic susceptibility values (<10−4 SI), consistent with reduced ilmenite-series granites. The GMS rocks have a relatively narrower variation in δ 34S values of −4.4‰ to +7.3‰ with an average 1.2 ± 2.9‰ but with larger ranges in bulk-S contents (45 to 11,100 ppm) and high magnetic susceptibility values (>10−3 SI), indicative of oxidized magnetite-series granites. The exceptions for the GMS rocks are the Lake George granodiorite and Tower Hill granite that display reduced characteristics, which may have resulted from interaction of the magmas forming these intrusions with graphite- or organic carbon-bearing sedimentary rocks. The bulk δ 34S values and S contents of the GMS rocks are interpreted in terms of selective assimilation–fractional crystallization (SAFC) processes. Degassing processes may account for the δ 34S values and S contents of some GS rocks. The characteristics of our sulfur isotope and abundance data suggest that mineralizing components S and Au in intrusion-related gold systems are dominantly derived from magmatic sources, although minor contaminants derived from country rocks are evident. In addition, the molar sulfate to sulfide ratio in a granitic rock sample can be calculated from the δ 34Srock value of the whole-rock sample and the δ 34Ssulfide (or δ 34Ssulfate) value of sulfide and/or sulfate mineral in the sample on the basis of S-isotope fractionation and mass balance under the condition of magmatic equilibrium. This may be used to predict the speciation of sulfur in granitic rocks, which can be a potential exploration tool for intrusion-related gold systems.  相似文献   

14.
Stable sulfur isotopes may aid in distinguishing sulfides of a magmatic hydrothermal origin from sulfides containing biogenic sulfur. For those sulfide ore depositis that are intimately associated with the intrusive body from which it is inferred their ore solutions were derived, the variation in S34 values is generally less than ± 5 permil. Biogenic sulfides, on the other hand, exhibit a broad spread in S34 values that is rately less than a few permil. The reason for this is that the sulfur produced, as hydrogen sulfide by anaerobic bacteria, is isotopically fractionated by variable amounts resulting in a relatively broad spread in S34 values.Raw culture experiments have illustrated the isotopic effects resulting from reduction of sulfate to hydrogen sulfate by sulfate reducing bacteria. The characteristics of enrichment of S32 to a highly variable extent in hydrogen sulfide is verified by these experiments.In addition, a series of closed system raw culture experiments resulted in fractionation factors between 1.043 to 1.062 which are similar to variations in S34 between juxtaposed sulfides in nature produced by bacteriogenic processes.Speech delivered on October 1, 1965, on the occasion of the colloquy concerning Sulphurisotopes organized by the Deutsche Forschungsgemeinschaft at Bad Sooden-Allendorf.  相似文献   

15.
We present multiple sulfur isotope measurements of sulfur compounds associated with the oxidation of H2S and S0 by the anoxygenic phototrophic S-oxidizing bacterium Chlorobium tepidum. Discrimination between 34S and 32S was +1.8 ± 0.5‰ during the oxidation of H2S to S0, and −1.9 ± 0.8‰ during the oxidation of S0 to , consistent with previous studies. The accompanying Δ33S and Δ36S values of sulfide, elemental sulfur, and sulfate formed during these experiments were very small, less than 0.1‰ for Δ33S and 0.9‰ for Δ36S, supporting mass conservation principles. Examination of these isotope effects within a framework of the metabolic pathways for S oxidation suggests that the observed effects are due to the flow of sulfur through the metabolisms, rather than abiotic equilibrium isotope exchange alone, as previously suggested. The metabolic network comparison also indicates that these metabolisms work to express some isotope effects (between sulfide, polysulfides, and elemental sulfur in the periplasm) and suppress others (kinetic isotope effects related to pathways for oxidation of sulfide to sulfate via the same enzymes involved in sulfate reduction acting in reverse). Additionally, utilizing fractionation factors for phototrophic S oxidation calculated from our experiments and for other oxidation processes calculated from the literature (chemotrophic and inorganic S oxidation), we constructed a set of ecosystem-scale sulfur isotope box models to examine the isotopic consequences of including sulfide oxidation pathways in a model system. These models demonstrate how the small δ34S effects associated with S oxidation combined with large δ34S effects associated with sulfate reduction (by SRP) and sulfur disproportionation (by SDP) can produce large (and measurable) effects in the Δ33S of sulfur reservoirs. Specifically, redistribution of material along the pathways for sulfide oxidation diminishes the net isotope effect of SRP and SDP, and can mask the isotopic signal for sulfur disproportionation if significant recycling of S intermediates occurs. We show that the different sulfide oxidation processes produce different isotopic fields for identical proportions of oxidation, and discuss the ecological implications of these results to interpreting minor S isotope patterns in modern systems and in the geologic record.  相似文献   

16.
Based on the oxygen isotopic compositions of 133 wolframite samples and 110 quartz samples collected from 30 tungsten ore deposits in south China, in conjunction withδD values and other data, these deposits can be divided into four types.
(1)  Reequilibrated magmatic water-hydrothermal tungsten ore deposits. Theδ 18O values of wolframite and quartz samples from this type of tungsten ore deposits are about +5–+12‰, respectively. The calculatedδ 18O values of ore fluids in equilibrium with quartz are about +6.5‰, and theδ values of fluid inclusions in quartz range from −40 to −70‰
(2)  Meteoric water-hydrothermal tungsten ore deposits. Theδ 18O values of wolframite in this type of tungsten deposits are around −1‰
(3)  Stratiform tungsten ore deposits. In these deposits, theδ 18O values of quartz and wolframite are about +17 and +3‰, respectively. It is considered that these stratiform tungsten ore deposits are genetically related to submarine hot-spring activities.
(4)  Complex mixed-hydrothermal tungsten ore deposits. These tungsten ore deposits are characterized by multi-staged mineralization. Theδ 18O values of early wolframite are around +5‰, but of later wolframite are lower than +4‰, indicating that the early wolframite was precipitated from reequilibrated magmatic water-hydrothermal solutions and the late one from the mixture of hydrothermal solutions with meteoric waters or mainly from meteoric waters.
Based on theδ 18O values of the coexisting quartz and wolframite and temperature data, two calibration equilibrium curves have been constructed, and the corresponding equations have been obtained:
  相似文献   

17.
Zusmmenfassung Die Ergebnisse der Schwefelisotopenanalysen von sechs Sulfid- und vier Sulfatmineralproben von Bleiberg/Kreuth (Österreich) variieren von –6,9 bis –25,9 34S in den Sulfiden und von +14,8 bis +18,9 34S in den Sulfaten. Die große Variationsbreite der Schwefelisotopen und die Bevorzugung des leichten Schwefels deutet vermutlich auf bakterielle Prozesse der Sulfidfällung. Die Sulfatschwefel fallen in den Bereich der Schwefelisotopenzusammensetzung des mesozoischen (postskytischen) Meerwassers.
Determination of the sulfur isotopic composition in some sulfide and sulfate minerals of the lead zinc deposit, Bleiberg/Kreuth, Carinthia
Summary Results of sulfur isotope analyses on 6 sulfides and 4 sulfates from Bleiberg/Kreuth (Austria) range from –6.9 to –25.9 34S (in sulfides) and from +14.8 to +18.9 34S (in sulfates). A large range of sulfide sulfur isotope fractionation with appreciable light sulfur probably indicates a bacterial sulfur source in sulfide precipiation. The sulfate sulfur plots in the range of Mesozoic (post-Skytian) seawater sulfur isotopic composition.
  相似文献   

18.
Gossan Hill is an Archean (∼3.0 Ga) Cu–Zn–magnetite-rich volcanic-hosted massive sulfide (VHMS) deposit in the Yilgarn Craton of Western Australia. Massive sulfide and magnetite occur within a layered succession of tuffaceous, felsic volcaniclastic rocks of the Golden Grove Formation. The Gossan Hill deposit consists of two stratigraphically separate ore zones that are stratabound and interconnected by sulfide veins. Thickly developed massive sulfide and stockwork zones in the north of the deposit are interpreted to represent a feeder zone. The deposit is broadly zoned from a Cu–Fe-rich lower ore zone, upwards through Cu–Zn to Zn–Ag–Au–Pb enrichment in the upper ore zone. New sulfur isotope studies at the Gossan Hill deposit indicate that the variation is wider than previously reported, with sulfide δ34S values varying between −1.6 and 7.8‰ with an average of 2.1 ± 1.4‰ (1σ error). Sulfur isotope values have a broad systematic stratigraphic increase of approximately 1.2‰ from the base to the top of the deposit. This variation in sulfur isotope values is significant in view of typical narrow ranges for Archean VHMS deposits. Copper-rich sulfides in the lower ore zone have a narrower range (δ34S values of −1.6 to 3.4‰, average ∼1.6 ± 0.9‰) than sulfides in the upper ore zone. The lower ore zone is interpreted to have formed from a relatively uniform reduced sulfur source dominated by leached igneous rock sulfur and minor magmatic sulfur. Towards the upper Zn-rich ore zone, an overall increase in δ34S values is accompanied by a wider range of δ34S values, with the greatest variation occurring in massive pyrite at the southern margin of the upper ore zone (−1.0 to 7.8‰). The higher average δ34S values (2.8 ± 2.1‰) and their wider range are explained by mixing of hydrothermal fluids containing leached igneous rock sulfur with Archean seawater (δ34S values of 2 to 3‰) near the paleoseafloor. The widest range of δ34S values at the southern margin of the deposit occurs away from the feeder zone and is attributed to greater seawater mixing away from the central upflow zone. Received: 10 June 1999 / Accepted: 28 December 1999  相似文献   

19.
In order to reconstruct paleo-environmental conditions for the saline playa lakes of the Rio Grande Rift, we investigated sediment sulfate sources using sulfur isotope compositions of dissolved ions in modern surface water, groundwater, and precipitated in the form of gypsum sediments deposited during the Pleistocene and Holocene in the Tularosa and Estancia Basins. The major sulfate sources are Lower and Middle Permian marine evaporites (δ34S of 10.9-14.4‰), but the diverse physiography of the Tularosa Basin led to a complex drainage system which contributed sulfates from various sources depending on the climate at the time of sedimentation. As inferred from sulfur isotope mass balance constraints, weathering of sulfides of magmatic/hydrothermal and sedimentary origin associated with climate oscillations during Last Glacial Maximum contributed about 35-50% of the sulfates and led to deposition of gypsum with δ34S values of −1.2‰ to 2.2‰ which are substantially lower than Permian evaporates. In the Estancia Basin, microbial sulfate reduction appears to overprint sulfur isotopic signatures that might elucidate past groundwater flows. A Rayleigh distillation model indicates that about 3-18% of sulfates from an inorganic groundwater pool (δ34S of 12.6-13.8‰) have been metabolized by bacteria and preserved as partially to fully reduced sulfur-bearing minerals species (elemental sulfur, monosulfides, disulfides) with distinctly negative δ34S values (−42.3‰ to −20.3‰) compared to co-existing gypsum (−3.8‰ to 22.4‰). For the Tularosa Basin microbial sulfate reduction had negligible effect on δ34S value of the gypsiferous sediments most likely because of higher annual temperatures (15-33 °C) and lower organic carbon content (median 0.09%) in those sediments leading to more efficient oxidation of H2S and/or smaller rates of sulfate reduction compared to the saline playas of the Estancia Basin (5-28 °C; median 0.46% of organic carbon).The White Sands region of the Tularosa Basin is frequently posited as a hydrothermal analogue for Mars. High temperatures of groundwater (33.3 °C) and high δ18O(H2O) values (1.1‰) in White Sands, however, are controlled predominantly by seasonal evaporation rather than the modern influx of hydrothermal fluids. Nevertheless, it is possible that some of the geochemical processes in White Sands, such as sulfide weathering during climate oscillations and upwelling of highly mineralized waters, might be considered as valid terrestrial analogues for the sulfate cycle in places such as Meridiani Planum on Mars.  相似文献   

20.
The sulfur content in basaltic melts coexisting with eithersulfide or sulfate melts was determined experimentally. Theexperimental conditions were in the range of 1300–1355°Cand 1·0–1·6 GPa, conditions appropriatefor the melting of the upper mantle above subduction zones.Under these conditions, both sulfide and sulfate were presentas immiscible liquids, as inferred from the round geometriesof the quenched sulfide and sulfate phases. The measured S contentin basaltic melts saturated with sulfate liquids ([S] = 1·5± 0·2 wt %) was 10 times higher than the S contentin basaltic melts saturated with sulfide liquids ([S] = 0·14± 0·02 wt %). In our experiments, sulfate liquidswere stable at fO2 as low as FMQ = +1·85 [FMQ = log (fO2)sample– log (fO2)FMQ, where FMQ is the fayalite–magnetite–quartzoxygen buffer], and evidence from other sources indicates thatsulfates will be stable at lower fO2 in melts with lower activitiesof silica. Because chalcophile and highly siderophile elements,such as Cu, Ni, Au, and Pd, are partitioned preferentially intosulfide phases, melting of sufficiently oxidized sources, inwhich sulfides are not stable, would favor incorporation ofthese elements into the silicate melt produced. Such melts wouldhave a higher potential to generate ore deposits. This studyshows that the high sulfur contents of such oxidized basaltsalso means that relatively small amounts of such magmas canprovide significant amounts of sulfur to exsolving volatilephases and account for the bulk of the sulfur expelled in somevolcanic eruptions, such the 1991 eruption of Mount Pinatubo. KEY WORDS: basalt; mantle; oxidation state; sulfate; sulfur  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号